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Abstract: As a direct energy converter between heat and electricity, thermoelectric generators (TEGs)
have potential applications including recovery of waste heat, and solar thermoelectric power gener-
ation. Geometric parameter and material are two critical factors to improve the TEG performance.
However, the strategies base on structure design and material development are always separated.
There are limited studies on the effects of consolidating them simultaneously. Here, an idea of
segmented material coupled with irregularly variable cross-section design was conceived to further
improve the TEG output power. The performance of TEGs with rectangular leg, segmented leg,
variable cross-sectional leg, and the new design are compared. The coupling effects between various
mechanisms are revealed, which are responsible for the superior performance provided by the devel-
oped design. Based on this knowledge, a multiparameters optimization was performed through the
genetic algorithm to reach the optimal combination of design parameters. The results show that, with
a constraint of certain material volume, the optimal performance of the TEG can be further enhanced
by coupling segmented material and irregularly variable cross-section design. An improvement of
51.71% was achieved when compared with the conventional counterpart. This work offers a simple
route to enhance the TEG performance when the device materials are specified, without an increase
in the cost of manufacturing.

Keywords: thermoelectric generator; waste heat recovery; segmented material; irregularly variable
cross-section; optimization; genetic algorithm

1. Introduction

Thermoelectric generators (TEGs) can directly convert heat into electricity by the
Seebeck effect [1]. Their compact size, reliability, environmental friendliness, and lack
of working fluid and chemical reaction render them a promising candidate for on-chip
heat recovery and power generation [2,3]. However, relatively low conversion efficiency
and power density fundamentally hinder their applications. It has been experimentally
and theoretically demonstrated that the performance is mainly determined by the figure
of merit (ZT) of thermoelectric material [4]. Although material development is the most
effective way to boost performance, it is challenged that optimizing one physical parameter
(e.g., Seebeck coefficient) often deteriorates another (e.g., thermal conductivity) [5]. Thus,
the exploration of new thermoelectric materials alone has suffered an efficiency bottleneck.
Fortunately, it is demonstrated that architecture optimization is equally important to obtain
a better performance [6]. The changed structure causes varied electrical and thermal
resistances, influences transport path of the charge carrier, and determines the Joule heat,
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Thomson heat, and Fourier heat conduction. Hence, to mediate above multiphysical
effects, lots of performance-driven studies involving architecture design of TEG have been
performed [7–20].

One effective way is introducing variable cross-section (VCS) geometry of the legs.
There are elaborately designed TEGs including diverse leg shapes and different structures,
significantly improving the performance. However, the contributions mainly focused on
regular cross-section, including exponential-shaped leg [7], frustum-shaped leg [8], tapered
leg [9], T-shaped configuration [10], X-leg [11], etc. [12–14]. Due to the limitation of regular
function shape, the cross-section cannot change freely so that it is unable to reach maximum
performance. Thus, there is a strong need to perform a constraint-free irregularly variable
cross-section design (IVCS). Unfortunately, the relative studies are very limited. In addition
to geometric factors, segmented design is also critical [15,16]. During a TEG operation,
a temperature gradient is established across the leg from the heat source to the heat
rejection end. Most materials cannot hold the best performance if they are not in their work
temperature regime. As a function of temperature, ZT varies over the length of the device,
causing TEGs to lose efficiency [4,17,18]. Hence, it is essential to examine the performance
considering both the material and device parameters. In recent years, researchers found
that segmental or functionally graded material enable striking improvement of the output
power [19–25]. The core design strategy consists in making the divided material operate in
its most suitable temperature regime. However, most of the pertinent designs only involve
segmented idea but overlook the variable cross-section effects.

It can be concluded that although significant progress has been made to boost TEG
performance, there has been no report on combining segmented and irregularly variable
cross-section (S-IVCS) design together. The potential contributions in this work could be
summarized as: (1) In the previous studies, variable cross-sections improved performance.
Segmented design can also boost performance. It is expected that hybridization of thermo-
electric segmented material and irregularly variable cross-sectional structures may enable
synergistic advantages (see Figure 1b). (2) Neither segmented nor irregularly variable cross-
section, the influential factors are diversely variable (e.g., geometric parameters, material,
external load). There will be strong coupling phenomena to be explored for S-IVCS design.
The feasibility and mechanism to further improve performance are unknown and deserve
exploration. (3) The parameter combination corresponding to the optimal performance
and the design strategy remain unsolved. Optimizing the structure is a promising way to
enhance the TEG performance without an increase in the cost of manufacturing.
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Based on the above analysis, this work aims to justify the feasibility and reveal the
mechanism of S-IVCS design strategy. The remainder of the paper is organized as follows.
Firstly, a multiphysical TEG model is introduced and the feasibility of S-IVCS design to
further improve performance is justified. Then, a multiparameters genetic algorithm is
coupled into the model to find the optimal design considering segment material and irreg-
ular geometry simultaneously. Finally, the underlying physics behind the improvement
is elucidated.

2. Physical Model
2.1. TEG Structure Design

As shown in Figure 1a, a TEG module is composed of dozens of thermocouples, which
are connected electrically in series and thermally in parallel. As one unit of the module, each
thermocouple consists of a P-type and an N-type semiconductor leg, which are connected
by thin metal connectors and sandwiched between two ceramic insulated plates. During
power generation, the heat is absorbed from the top ceramic plate, transferred across the
thermocouples, and removed by the heat sink at the bottom. Considering the periodic
feature of the module, only one unit was simulated in this study. Figure 1b plots the
structure of the unit, of which the geometric parameters are listed in Table 1.

Table 1. Geometric parameters of the thermoelectric unit.

L1 L2 L3 H1 H2 H3

1.5 mm 1.0 mm 0.4 mm 3.0 mm 0.1 mm 0.2 mm

Due to their better performance at relative high temperature, Ce0.9Fe3CoSb12 and
Yb0.35Co4Sb12 are selected as the P- and the N-type semiconductor material, respec-
tively, for the hot side segment, while Bi2−xSbxTe3 (P-type) and Bi2Te3−xSex (N-type)
are used for the cold side segment because they are advantageous in low tempera-
ture regime. The temperature-dependent properties of the materials are detailed in
Ref. [18]. The thermal conductivity, density, and specific heat capacity of the copper
connectors are λCu = 400 W/(mK), ρCu = 8960 kg/m, and Cp,Cu = 385 J/(kg K), respec-
tively. The thermal conductivity, density, and specific heat capacity of the ceramic plates
are λCer = 175 W/(mK), ρCer = 178, 00 kg/m, and Cp,Cer = 132 J/(kg K), respectively.

2.2. Governing Equations

The Fourier heat conduction, Joule heating, Thomson effect, and Peltier effect are
multiphysically coupled with each other in the model. When the TE unit operates in
steady-state mode, the governing equations read as follows.

Energy conversion equation
∇ · q = Q (1)

Current continuity equation
∇ · j = 0 (2)

where q, Q, and j are the heat flux, the Joule heat, and the current density vector, respectively,
which can be further coupled by the following thermoelectric equation as

q = −λ∇T + αTj (3)

Q = −∇U · j (4)

j = −σ(∇U + α∇T) (5)

where λ is the thermal conductivity, α is the Seebeck coefficient, σ is the electric conductivity,
T is the temperature, and U is the electric potential.
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Based on Equations (2)–(5), the energy conversion equation can be rewritten as

∇ · (λ∇T) + j · j
σ
− T∇α · j = 0 (6)

where the first term is Fourier heat conduction, the second term is Joule heat, and the third
term is Peltier effect (∇α at the junction) and Thomson effect (∇α in thermal gradient).

2.3. Irregularly Variable Cross-Section Design and Boundary Conditions

Considering that the material properties of the P-leg and the N-leg distinctly vary
with temperature, their optimal designs may be significantly different. Therefore, the P-leg
and N-leg are both optimized. As shown in Figure 1b, for each leg, seven anchor points
with uniform distribution along the leg height and with variable locations in the width are
designed to control the irregularly variable cross-sectional area. Here, the variable anchor
points are P1, P2, P3, P4, P5, P6, and P7 for the P-leg and N1, N2, N3, N4, N5, N6, and N7
for the N-leg. The above anchor points are search-variables during the optimization. The
consequent leg geometry can be constructed by an interpolation curve of the anchor points.
In this case, all variable cross-sections will be rectangular-shaped in the x-y plane, where
the seven side lengths (LPi) for P-leg and seven side lengths (LNi) for N-leg are varied. The
dimensionless parameters γ (ratio of the hot side height of the P-leg to the total height H1)
and δ (ratio of the hot side height of the N-leg to the total height H1) are used to control
the segmented material of the thermoelectric leg. In addition, the applied current, I, is also
regarded as one of the optimization variables. For the thermal boundary conditions, the
top surface of the TEG is set as Q = 0.5 W, while the bottom surface is fixed as Tc = 300 K.
Other surfaces are defined as thermally insulated. For the electric conditions, the N-leg end
is injected with a current of I, indicating the corresponding resistance load. The P-type end
is set as ground.

2.4. Optimization Algorithm

In terms of the S-IVCS performance, the interplay between various influential parame-
ters are complex. It is consequently hard to find the optimal parameter combination without
a multiparameters optimization. There are several algorithms to perform the optimiza-
tion, such as Particle Swarm Optimization (PSO), Differential Evolution (DE), and Genetic
Algorithm (GA). PSO could operate without any specific knowledge about the problem,
but it often fails in searching the global optimal solution when the objective function has a
large number of dimensions [26]. DE is a simple and efficient technique for solving global
optimization problems. However, DE may occasionally suffer from problems of stagnation
or losing its diversity [27]. GA is popularly used in various optimization problems in
science and engineering. It can widely handle complex optimization with nonlinear or
non-stationary fitness functions even with random noise [28]. In the open literature, GA is
suitable and commonly used for optimization of thermoelectric devices [29,30]. Thus, GA
is adopted in this paper.

Figure 2 plots the flow chart of the optimization procedure. The finite element method
is employed to solve the direct problem, and a single-objective GA is coupled into the
above model to optimize the output power. During optimization, GA operates through four
steps involving population initialization, selection, crossover, and mutation. Following the
above steps, a population is generated, and the iteration continues until the convergence
condition is achieved. It is worth indicating that in the entire optimization process, the
crossover and mutation probabilities are set as 0.9 and 0.2, respectively. The population
size and the evolutionary generation number are 30 and 200, respectively. The ranges of
the search-variables in the model are defined as
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0.1 < LPi < 0.5 (i = 1, 2, . . . , 7)
2 < LNi < 2.4 (i = 1, 2, . . . , 7)

0.3 < γ < 0.8
0.3 < δ < 0.8
0.1 < I < 2.0

To achieve the maximum output power Pmax, the fitness function, Ffit, is defined as

Ffit =
1

P + 1
=

1
U × I + 1

(7)

where P is the output power and I is the electric current.
In the optimization process, it should be noticed that the temperature may be higher

than the suitable working temperature range of the material during the constantly chang-
ing geometry and boundary conditions. To avoid this problem, four judgment functions
(TPh < 800 K, TNh < 800 K, TPc < 550 K, and TNc < 500 K, which denote maximum temper-
ature of the hot segment of P-leg, hot segment of N-leg, cold segment of P-leg, and cold
segment of N-leg, respectively) are employed to ensure that the four kinds of thermoelectric
materials operate in their suitable temperature regimes.
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2.5. Model Validation

Before simulation, the grid independence test was examined to ensure the accuracy
of the results. To validate the model, the experimental results from three research groups
of Hu et al. [31], Hsu et al. [32], and Shen et al. [33] are compared with the present model,
respectively. In Hu et al.’s study, the TEG is composed of a single N-type Bi2Te3 leg and
copper connectors. Two cases with different leg heights are compared with the present
model. The size of case 1 is 2.98 × 2.215 × 6.22 mm3, and case 2 is 2.98 × 2.215 × 9.68 mm3.
The boundary conditions are set as the same with those in Ref. [31] (i.e., 420.75 K for the
hot end and 296.55 K for the cold end). The compared results for the I-U curve are shown
in Figure 3a, demonstrating a reasonable agreement with a maximum error < 5%. In the
report of Hsu et al. [32], a TEG module consisting of 199 pairs of TE legs was performed.
The TEG measurement system is composed of the heater, copper plate, TEG module, and
liquid cooling system. Each TE leg has dimensions of 2 × 2 × 0.64 mm3. Here, we consider
two cases with different thermal boundary conditions for comparison. In case 1, the cold
and hot side temperatures are set as 318.788 K and 330 K. In case 2, the cold and hot side
temperatures are 304.992 K and 320 K. It should be indicated that the additional thermal and
electrical resistance are modeled in the present simulation by the method given in Ref. [34].
Figure 3b shows the characteristics of the I-U curves of the present model compared with
the experiments of Hsu et al., giving evidence that a good agreement can be observed. The
model was also validated by Shen et al.’s experiment, where a commercial thermoelectric
cooler with traditional TE element was tested [33]. The design parameters and material
properties are identical to those listed in Table 1 in Ref. [33]. The boundary conditions are
the same with the experiment. As shown in Figure 3c, the calculated temperature of the
hot side agrees well with the experiment data, which further validates the model.
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3. Results and Discussion
3.1. Effects of Segment Material Coupled with Irregularly Variable Cross-Section

In this section, performances of the TEGs with only segment material, only IVCS,
and S-IVCS design will be comparatively examined. As shown in Figure 4, the output
power as a function of current for segmented designs is compared with the structure with
uniform material. Here, four combinations of γ and δ are specified to determine different
segmented structure (i.e., γ = 0.4 and δ = 0.9; γ = 0.4 and δ = 0.6; γ = 0.8 and δ = 0.6;
γ = 0.8 and δ = 0.9). As a reference structure, the conventional TEG with uniform material
is also designed for comparison, in which the P- and the N-leg volume keep the same
with the segmented design. It is demonstrated that the segmented design can significantly
improve the performance, which is consistent with the previous studies. The max power
is below 30 mW for the uniform design, surpassed by all the cases of segmented ones.
Additionally, the working regime is also extended to a larger one. The reason is that the
temperature follows into the appropriate regime for each segment to preserve a suitable ZT
value. However, the performance is significantly susceptible to the segment configuration.
The combination of γ = 0.4 and δ = 0.6 exhibits the highest power, while the case of γ = 0.8
and δ = 0.9 presents the lowest. The temperature profile and the appropriate segmented
pattern are mutually influenced. This justifies the necessity to optimize the parameters of γ
and δ to find an optimal segment structure.

As shown in Figure 5, the output power varied with current for different IVCS designs
is compared with the rectangular structure. Three pairs with different material volumes
(each pair contains an IVCS and a rectangular design with the same volume) are compared.
In Pair 1, the volume is 3.00 mm3 for the P-leg and 2.82 mm3 for N-leg; In Pair 2, the volume
is 3.17 mm3 for the P-leg and 2.98 mm3 for the N-leg; In Pair 3, the volume is 3.08 mm3 for
the P-leg and 2.45 mm3 for the N-leg. The corresponding design parameters determining
the cross-section patterns of the designs are listed in Table 2. It is found that the IVCS
design is superior to the rectangular one for each pair. The performances are also distinct
for different volumes with the cross-sectional areas very different. Thus, a particular cross-
sectional area significantly influences the output power. To design an optimal cross-section
pattern with a certain material volume remains unknown. Consequently, finding out the
most suitable cross-section pattern is another critical issue.

Based on the above analysis, the coupling of IVCS and segmented material together
is expected to further improve the performance. As shown in Figure 6, the only IVCS
design presents the lowest I-P performance. The segmented design holds a larger power
and an expanded working regime, and it also presents a more appreciable influence
on the performance than IVCS. However, neither of these two designs enables optimal
performance. When simultaneously considering the segment and the IVCS (i.e., the S-IVCS
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design), the performance can be further improved. However, not all the S-IVCS cases are
superior to the separated designs, which is significantly dependent on the cross-sectional
pattern. As evidenced in Figure 6, the performance of S-IVCS 1 outperforms the segmented
design, while S-IVCS 2 presents a degraded performance. It can be concluded that, although
the idea of S-IVCS has the potential to further improve the performance, the appropriate
design is unknown and sometimes it can also deteriorate the power. Accordingly, an
optimization of IVCS coupled with the segment design is necessary.
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uniform material structure.
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Based on the above analysis, the coupling of IVCS and segmented material together 
is expected to further improve the performance. As shown in Figure 6, the only IVCS de-
sign presents the lowest I-P performance. The segmented design holds a larger power and 
an expanded working regime, and it also presents a more appreciable influence on the 
performance than IVCS. However, neither of these two designs enables optimal perfor-
mance. When simultaneously considering the segment and the IVCS (i.e., the S-IVCS de-
sign), the performance can be further improved. However, not all the S-IVCS cases are 
superior to the separated designs, which is significantly dependent on the cross-sectional 
pattern. As evidenced in Figure 6, the performance of S-IVCS 1 outperforms the seg-
mented design, while S-IVCS 2 presents a degraded performance. It can be concluded 
that, although the idea of S-IVCS has the potential to further improve the performance, 

Figure 5. Unit power as a function of current with various cross-sectional designs compared with the
rectangular structure.
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Table 2. Design parameters of the three IVCS patterns shown in Figure 5.

Volume (mm3) Design P1 (mm) P2 (mm) P3 (mm) P4 (mm) P5 (mm) P6 (mm) P7 (mm)

P-leg

3.00
IVCS 1 0.40 0.35 0.30 0.25 0.20 0.15 0.10

Rect. 0.25 0.25 0.25 0.25 0.25 0.25 0.25

3.17
IVCS 2 0.35 0.25 0.15 0.05 0.15 0.25 0.35

Rect. 0.22 0.22 0.22 0.22 0.22 0.22 0.22

3.08
IVCS 3 0.30 0.35 0.30 0.25 0.20 0.10 0.15

Rect. 0.24 0.24 0.24 0.24 0.24 0.24 0.24

Volume (mm3) design N1 (mm) N2 (mm) N3 (mm) N4 (mm) N5 (mm) N6 (mm) N7 (mm)

N-leg

2.82
IVCS 1 2.00 2.05 2.10 2.20 2.25 2.30 2.35

Rect. 2.18 2.18 2.18 2.18 2.18 2.18 2.18

2.98
IVCS 2 2.00 2.10 2.20 2.30 2.20 2.10 2.00

Rect. 2.15 2.15 2.15 2.15 2.15 2.15 2.15

2.45
IVCS 3 2.30 2.10 2.20 2.30 2.25 2.30 2.35

Rect. 2.24 2.24 2.24 2.24 2.24 2.24 2.24
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Figure 6. Comparison of the unit power as a function of current with various designs of only
segmented, only IVCS, S-IVCS 1, and S-IVCS 2. Here, the material volume of the different designs
keeps the same.

Two factors are essential for performance improvement. One is the segment pattern
and the other one is the leg shape, which are mutually coupled under different conditions.
The improved performance of the new design can be demonstrated through the temperature
distribution shown in Figure 7. Here, the temperature contours for I = 0.6 and I = 1.2 A are
plotted. Both the modified cross-section and re-allocated material volume along the leg
length change the Seebeck effect and Fourier heat conduction, leading to a more suitable
temperature profile. It is evidenced that S-IVCS 1 exhibits the largest temperature gradient,
followed by the only-segmented, and then S-IVCS 2. The only IVCS design presents the
smallest temperature gradient. A larger temperature difference enables a better output
power. This justifies the necessary optimization of the whole device both considering the
segmented and the irregularly variable cross-sectional parameters. According to the above
analysis, multiparameters optimization is necessary to achieve better performance.
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Figure 7. Temperature distribution of the four different designs at different current: (a–d) at current
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3.2. Optimization of the S-IVCS Design

A genetic algorithm described in Section 2.4 is employed to perform the optimization.
The cases of IVCS and S-IVCS are both optimized for comparison. Tables 3 and 4 list
the design parameters (P1–P7 for P-leg and N1–N7 for N-leg) as well as the operational
parameters (I, γ, and δ) for the two optimized structures. As shown in Figure 8, the
output power as a function of generation number during optimization is presented. The
design of IVCS shows modest improvement in output power (from 33.34 to 41.48 mW),
which is outperformed by the S-IVCS design (from 48.50 to 59.90 mW). It is evidenced
that only using variable cross-section has its limitation in power boosting. However, when
segmented and irregularly variable cross-section are both considered, the power can be
further significantly enhanced.

Table 3. The design parameters of the S-IVCS optimization.

P1 (mm) P2 (mm) P3 (mm) P4 (mm) P5 (mm) P6 (mm) P7 (mm)

0.41 0.48 0.49 0.26 0.44 0.23 0.31

N1 (mm) N2 (mm) N3 (mm) N4 (mm) N5 (mm) N6 (mm) N7 (mm)

2.27 2.32 2.39 2.40 2.28 2.40 2.29

I (A) γ δ Popt (mW) Prect (mW)

0.66 0.56 0.76 59.91 39.49
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Table 4. The design parameters of the IVCS optimization.

P1 (mm) P2 (mm) P3 (mm) P4 (mm) P5 (mm) P6 (mm) P7 (mm)

0.14 0.27 0.50 0.49 0.44 0.27 0.14

N1 (mm) N2 (mm) N3 (mm) N4 (mm) N5 (mm) N6 (mm) N7 (mm)

2.40 2.29 2.40 2.40 2.37 2.40 2.13

I (A) Popt (mW) Prect (mW)

0.48 41.48 38.56
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Table 4. The design parameters of the IVCS optimization. 

P1 (mm) P2 (mm) P3 (mm) P4 (mm) P5 (mm) P6 (mm) P7 (mm) 
0.14 0.27 0.50 0.49 0.44 0.27 0.14 

N1 (mm) N2 (mm) N3 (mm) N4 (mm) N5 (mm) N6 (mm) N7 (mm) 
2.40 2.29 2.40 2.40 2.37 2.40 2.13 
I (A) Popt (mW) Prect (mW)     
0.48 41.48 38.56     
The corresponding optimized structures are shown in Figure 9. The IVCS and the S-

IVCS design are compared with their rectangular counterparts with the same volume, re-
spectively (For the IVCS design, the volume is 2.38 mm3 for the P-leg and 1.75 mm3 for the 
N-leg. For the S-IVCS design, the volume is 2.21 mm3 for the P-leg and 1.75 mm3 for the 
N-leg). It is evidenced that the materials are re-distributed along the leg length. The shape 
of the P-leg is different from the N-type one. The segmented pattern of the P-type is also 
distinct from the N-type one. Compared with their rectangular ones, the output power 
increases from 38.56 to 41.48 mW for the IVCS, and from 39.49 mW to 59.91 mW for the S-
IVCS. The betterments are enhanced by 7.57% and 51.71%, respectively. This result evi-
dently verifies the superiority of the S-IVCS design concept. 

Figure 8. The output power as a function of generation number during the optimization.

The corresponding optimized structures are shown in Figure 9. The IVCS and the
S-IVCS design are compared with their rectangular counterparts with the same volume,
respectively (For the IVCS design, the volume is 2.38 mm3 for the P-leg and 1.75 mm3 for
the N-leg. For the S-IVCS design, the volume is 2.21 mm3 for the P-leg and 1.75 mm3 for
the N-leg). It is evidenced that the materials are re-distributed along the leg length. The
shape of the P-leg is different from the N-type one. The segmented pattern of the P-type
is also distinct from the N-type one. Compared with their rectangular ones, the output
power increases from 38.56 to 41.48 mW for the IVCS, and from 39.49 mW to 59.91 mW for
the S-IVCS. The betterments are enhanced by 7.57% and 51.71%, respectively. This result
evidently verifies the superiority of the S-IVCS design concept.

Furthermore, the I-P curves for the two optimized designs are shown in Figure 10. It
is found that the performances are improved for both the two designs compared with their
rectangular counterparts. In particular, the S-IVCS improves the power sharply than the
only IVCS design. Moreover, the optimized current is larger for S-IVCS than IVCS. This
optimal value is around 0.65 A, almost the same as that obtained by GA, justifying the
accuracy of the optimization results. The consequential working regime also expands from
1.18 to 1.32 A. Once again, it justifies that the best output power cannot be achieved only by
shape optimization, but can be realized by S-IVCS design concept. It is easy to understand
that material property is critical to boost performance. The material profile along the leg
is distinctly different for the two designs, which causes different thermal and electrical
resistances. The resultant modification of Joule heat and electric potential contribute the
improved performance. The underlying physics will be illustrated in Section 3.3.
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Thermal boundary conditions will influence the optimized performance. Besides
Tc = 300 K, the optimizations of IVCS and S-IVCS are also performed at other Tc. The
optimized structures for S-IVCS and IVCS at Tc = 280 K, 300 K, and 320 K are shown in
Figure 11. The corresponding output powers are plotted in Figure 12. For comparison,
the output power of rectangular shape designs (with the same volume to each optimized
structure) are also shown. The optimized structure changes significantly for different Tc.
For each Tc, the new design S-IVCSopt holds the best performance, sharply outperforming
other designs. Compared with the rectangular counterparts, the improved degree for the
S-IVCS is strikingly higher than the IVCS, further indicating the advantage of the proposed
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design. At Tc = 300 K, in particular, the material volume needed for S-IVCSopt (3.96 mm3) is
smaller than that for IVCSopt (4.13 mm3). It can be also found that, at higher Tc, the optimal
output power is decreased caused by the smaller temperature difference across the device.
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3.3. Physics behind the Advantageous Performance

How does the integration of segmented material with irregularly variable cross-section
strengthen power generation? The temperature and electric potential fields are mutually
coupled with each other. The segmented design renders the materials suitable for the
right temperature regime, and also influences the temperature and potential distribution.
The thermal and electrical resistances are significantly influenced by the geometry, which
resultantly causes the changed Peltier heat, Joule heat, and thermal conduction. It is a
strong coupling phenomenon and it is not easy to clarify the effect of a particular factor.
The optimized topography not only renders the thermal resistance re-distributed but also
alters the electrical resistance profile, which results in the best temperature and potential
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distributions. Figure 13 shows the temperature and potential distributions through the leg
to provide evidences for the above judgment.
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Figure 13. Temperature and electric potential distribution comparison between the four designs: (a) 
temperature of N-leg; (b) temperature of P-leg; (c) potential of N-leg; (d) potential of P-leg. 

Figure 13a,b show the temperature of the optimized S-IVCS and IVCS designs com-
pared with their rectangular counterparts, respectively. Here, Figure 13a for the N-leg and 
Figure 13b for the P-leg. It is apparent that the optimized structures hold a higher temper-
ature and a larger temperature difference. For the conventional designs, the two temper-
ature profiles keep almost the same. After optimization, both two designs elevate the tem-
perature. The temperature also changes from a linear to a curved one caused by the irreg-
ularly changed shape. For the optimized P-leg, the temperature is lower at the bottom 
segment and higher at the upper segment. However, the increase degree of temperature 
in the S-IVCS presents a higher rate than the IVCS. The temperature becomes higher 
across the whole leg by the optimization of S-IVCS. The reason is that the low-temperature 
material occupies a larger leg volume. To compensate the performance of the high-tem-
perature material, the algorithm needs to elevate the temperature. 

Figure 13c,d show the electric potential for the two optimized designs compared with 
the rectangular ones. It is found that the potential changes slightly after optimization for 
the IVCS design, but changes strikingly for the S-IVCS design. The reason may be at-
tributed to the different materials with the distinct property of electrical and thermal re-
sistances, which strongly changes the internal resistance. This is consistent with the results 
reported by Ge et al. [35], where it is demonstrated that variable cross-section may cause 
internal resistance variation. The corresponding temperature and potential contours are 
shown in Figures 14 and 15, respectively. It shows that the temperature and the potential 
change significantly after optimization. 

Figure 13. Temperature and electric potential distribution comparison between the four designs:
(a) temperature of N-leg; (b) temperature of P-leg; (c) potential of N-leg; (d) potential of P-leg.

The following items will change during the optimization procedure: (1) There is a
temperature gradient along the leg length. γ and δ are changed to allocate suitable volume
to each material according to the temperature regime. (2) A larger cross-section area means
a larger volume. The changed cross-section area at different heights also contributes to
volume distribution. At a suitable temperature regime, more material should be allocated.
(3) When the above two factors are optimized, the thermal and electrical resistances are
updated. Because a TEG has a working curve of output power versus applied current,
the current also changes to meet the suitable resistance. Remember that the top surface of
the TEG unit is fixed as Q = 0.5 W and the bottom surface is set as Tc = 300 K. Thus the
changed thermal resistance will alter the temperature profile along the leg length.

Figure 13a,b show the temperature of the optimized S-IVCS and IVCS designs com-
pared with their rectangular counterparts, respectively. Here, Figure 13a for the N-leg
and Figure 13b for the P-leg. It is apparent that the optimized structures hold a higher
temperature and a larger temperature difference. For the conventional designs, the two tem-
perature profiles keep almost the same. After optimization, both two designs elevate the
temperature. The temperature also changes from a linear to a curved one caused by the
irregularly changed shape. For the optimized P-leg, the temperature is lower at the bottom
segment and higher at the upper segment. However, the increase degree of temperature in
the S-IVCS presents a higher rate than the IVCS. The temperature becomes higher across the
whole leg by the optimization of S-IVCS. The reason is that the low-temperature material
occupies a larger leg volume. To compensate the performance of the high-temperature
material, the algorithm needs to elevate the temperature.

Figure 13c,d show the electric potential for the two optimized designs compared with
the rectangular ones. It is found that the potential changes slightly after optimization for the
IVCS design, but changes strikingly for the S-IVCS design. The reason may be attributed
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to the different materials with the distinct property of electrical and thermal resistances,
which strongly changes the internal resistance. This is consistent with the results reported
by Ge et al. [35], where it is demonstrated that variable cross-section may cause internal
resistance variation. The corresponding temperature and potential contours are shown in
Figures 14 and 15, respectively. It shows that the temperature and the potential change
significantly after optimization.
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Additionally, the average figure of merit of the optimized S-IVCSopt are compared
with others to evidence the superior performance, which is calculated as

M =
1
V

∫ H

0
ZTAdh (8)

where V is the leg volume, H is the leg height, ZT is the figure of merit as a function of h,
and A is the cross-sectional area as a function of h. The value of M for each leg is shown in
Table 5. It is confirmed that either for the P-leg or the N-leg, the proposed design holds the
highest M.

Table 5. The average figure of merit of the four designs.

Designs Average Figure of Merit ZT

P-leg

S-IVCSopt 0.86575
S-IVCSrect 0.53359
IVCSopt 0.50990
IVCSrect 0.52500

N-leg

S-IVCSopt 1.05570
S-IVCSrect 0.87312
IVCSopt 0.87913
IVCSrect 0.86025

The S-IVCSopt design is also compared with other studies. Ibeagwu [36] compared
TEG geometries such as trap-leg, Y-leg, and X-leg. It is found that the X-leg generates about
19.13% more power than the convectional geometry. Al-Merbati [37] propsed a trapezoidal
shape TEG and investigated the effect of geometric parameter RA on device performance
(RA = AH/AL), where AH is the cross-sectional area of the top leg end and AL is that of
the bottom leg end). It is found that the design with RA = 2 has reduced thermal stress
and improved thermal efficiency. Thus, above two design are selected to compared with
the present S-IVCSop. For fair comparison, the volumes are kept as 3.96 mm3 for all the
three designs. As shown in Figure 16, the S-IVCSopt design is the optimal one, further
demonstrating its advantages. The reason is attributed to the improved temperature
profile across the device. Only in S-IVCSopt can the materials operate in their own suitable
temperature regime.
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It should be indicated that although the performance is significantly improved by the
novel S-IVCS design, some limitations also remain. (1) From a fabrication point of view,
it is not easy to construct an irregular cross-section by conventional method. However,
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with the development of advanced method such as 3D print, the fabrication maybe viable
in future. (2) The optimal structure is limited to a specific boundary condition, when the
thermal load or cooling temperature are changed, the optimal structure design should be
modified. Finding all the optimal structures under different conditions is time-consuming.
However, it could be realized by coupling machine learning technology in future.

4. Conclusions

In this work, the feasibility and advantage of a TEG coupled with segmented material
and irregularly variable cross-section design was examined. The performance is found to
be superior to the already reported structures. The main conclusions and contributions are
summarized as follows:

(1) It is demonstrated that neither only segmented design nor only variable cross-section
design could reach the optimal performance for a TEG with certain volume. Coupling
segmented material and irregularly variable cross-section design together is feasible
to further boost the output power.

(2) The optimization results confirm the advantage of the proposed S-IVCS design. Com-
pared with the conventional ones, the output power increased from 39.49 mW to 59.91
mW for the S-IVCS design, and from 38.56 to 41.48 mW for the only variable cross-
section design. The betterments were enhanced by 51.71% and 7.57% respectively.

(3) There is complex coupling between the appropriate segmented pattern and the ir-
regularly variable cross-section shape. The optimized topography not only rendered
the thermal resistance re-distributed but also altered the electrical resistance profile,
leading to improved temperature and potential distribution.

(4) The optimized structure by S-IVCS design strategy reaches a higher average figure
of merit than conventional designs. It provides a promising method to enhance TEG
performance without an increase in the cost of manufacturing.
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