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Abstract: The acceptance of hybrid energy storage system (HESS) Electric vehicles (EVs) is increasing
rapidly because they produce zero emissions and have a higher energy efficiency. Due to the nonlinear
and strong coupling relationships between the sizing parameters of the HESS components and the
control strategy parameters and EV’s performances, energy consumption rate, running range and
HESS cost, how to design the HESS EVs for different preferences is a key problem. How to get
the real time performances from the HESS EV is a difficulty. The multiobjective optimization for
the HESS EV considering the real time performances and the HESS cost is a solution. A Li-ion
battery (BT) semi-active HESS and optimal energy control strategy were proposed for an EV. The
multiobjectives include energy consumption over 100 km, acceleration time from 0–100 km per hour,
maximum speed, running range and HESS cost of the EV. According to the degrees of impact on the
multiobjectives, the scaled factors of BT capacity, the series number of Li-ion BTs, the series number
of super-capacitors (SCs), the parallel number of SCs, and charge power of the SCs were chosen as
the optimization variables. Two sets of different weights were used to simulate the multiobjective
optimization problem in the ADVISOR software linked with MATLAB software. The simulation
results show that some of the multiobjectives are sensitive to their weights. HESS EVs meeting
different preferences can be designed through the weights of different objectives. Compared with the
direct optimization algorithm, the genetic algorithm (GA) has a stronger optimization ability, and the
single objective is more sensitive to its corresponding weight. The proposed optimization method is
practical for a Li-ion BT and SC HESS EV design.

Keywords: multiobjective optimization; genetic algorithm; battery; supercapacitor; hybrid energy
storage system; electric vehicle

1. Introduction

Due to advantages such as energy conservation, environmental protection, and low
charging cost, EVs have been gradually accepted by the market [1,2]. EVs have been
considered as a good approach to reduce carbon dioxide emissions, for EVs can overcome
the shortcomings of traditional fuel vehicle exhaust pollution. At the same time, EVs
can save energy because they can be charged when the power consumption of the power
grid is low [3]. The BT is one of the most expensive components of the EV and has a
decisive impact on EV’s price and some of their performance [4]. In current EVs, the BTs
are always oversized in order to improve power performance and acceleration capability.
Such challenges as power performance, running range, lifetime of the BT, and cost of the
EV with a sole energy storage system limit the EV’s wider use.

The SC has the advantages of high-power density, short charge and discharge time,
and long service life and is less affected by the temperature, but the energy density is
small [5]. The Li-ion BT and SC HESS can make up for the advantages of both sides while
avoiding their disadvantages [6].
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The BT and SC HESS is widely used in different objects and occasions. The BT and
SC HESS in smart phones extends the service life of Li-ion BTs [7]. The lead-acid BT and
SC HESS in trucks reduces carbon dioxide emissions [8–10]. The BT and SC HESS reduces
the power fluctuation of fuel cell and wind energy in the HESS with fuel cell and wind
energy [11–16].

The performance of BT and SC HESS depends on an appropriate energy management
strategy. The wavelet analysis method is used to identify the road conditions; then, the neu-
ral network is used to learn the conditions data, and the fuzzy energy management strategy
is used to distribute the power of the HESS, which improves vehicle performance [17]. The
HESS real-time energy management strategy based on SC voltage detection has achieved
good results. By improving the topology of HESS, flexible control of lithium BT current
is realized, and the effect of energy management is improved. The power performance
of HESS is improved by the fuzzy predictive control method [18]. A HESS energy man-
agement strategy based on dynamic programming considering lithium BT degradation is
proposed [19].

Compared with the BT, the HESS not only improves the performance but also leads
to the increase of system complexity and cost. Therefore, the evaluation and optimization
of HESS should be carried out with multiple objectives. The purpose of HESS EV is to
improve the performances of the EV while taking into account the economy of the EV.

The GA algorithm is widely used in the field of EV optimization [20–24]. The GA
algorithm is used to optimize the multi objectives of fuel cell current, lithium BT current,
lithium BT’s SOC change, SC’s SOC change, and hydrogen consumption cost by the control
of the powers of the BT and SC and the load in the fuel cell, BT, and SC hybrid EV [20]. The
multi-objective GA algorithm is used to optimize the automotive electric transmission [21].
The GA algorithm is used to optimize the location and power of EV charging stations [22,23].
The multi-objective GA algorithm is used to optimize the driving paths and powers of
multi depot vehicle [24].

The above studies focus on comparing HESS performance with BT or SC performance
or, for specific HESS, using an intelligent control method to optimize the energy manage-
ment strategy and improve the HESS performance, with less consideration of the influence
of the sizing parameters of components in HESS and less consideration of the optimal
design based on the EV’s specific performance indicators in the optimization. At the same
time, how to get the real time performances of the HESS EV is a difficulty. In this paper, a
multiobjective optimization on a BT and SC HESS EV using both GA algorithm and ADVI-
SOR software will be studied. The real time performances of the HESS EV are obtained
by the ADVISOR software. The EV’s energy consumption over 100 km, acceleration time
from 0–100 km per hour, maximum speed, HESS cost, and running range are considered in
the objective function. The structure of the paper is as follows: The fundamentals of a BT
semi-active HESS EV, the scheme of the multiobjective optimization and an optimal energy
management strategy are designed in Section 2. Section 3 focuses on the multiobjective
problem analysis. In Section 4 the GA algorithm optimization based on ADVISOR software
and MATLAB software is carried out. The study discussion is also presented in Section 4.
The conclusions are presented in Section 5.

2. Fundamentals of a BT Semi-Active HESS
2.1. HESS Components

ADVISOR software is a popular advanced vehicle simulation software, which is
especially suitable for vehicle performance evaluation, testing, and optimization. A variety
of vehicle structures such as traditional fuel vehicles, pure EVs, and fuel cell and Li-ion
BT hybrid vehicles are available in the ADVISOR software, but there is no BT and SC
HESS EV model available [25]. The new BT’s semi-active HESS EV model is specially
developed in the ADVISOR software. The semi-active HESS architecture is reasonable
for EVs considering the HESS cost, efficiency, and reliability. The BT’s semi-active HESS
structure is easy to lead to unstable motor voltage, but it is still within a range of voltage
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fluctuation that the motor can withstand. The Li-ion BT pack is connected to the input of
the motor controller through a DC/DC converter, and the SC pack is directly connected
to the input of the motor controller. The BT semi-active HESS scheme in the ADVISOR
software is shown in Figure 1.

Figure 1. A BT semi-active HESS scheme in the ADVISOR software.

The SC pack consists of Nsc,p strings in parallel and Nsc,s SCs in series. The BT pack
consists of Nbt,s BTs in series. Phess,r is the required power of the HESS. Phess,a is the
available output power of the HESS. Pbt,r is the required power of the Li-ion BT pack. Pbt,a
is the available output power of the Li-ion BT pack. Psc,r is the power required of the SC
pack. Psc,a is the available output power of the SC pack.

A midsize EV’s parameters are listed in Table 1. A Saft VL45E LiFePO4 BT is used,
whose parameters are listed in Table 2 [25]. A Maxwell BACP3000 SC is chosen for the
HESS, whose parameters are listed in Table 3 [25]. A Westinghouse AC75 motor model is
used with the parameters listedin Table 4 [26].

Table 1. EV’s model parameters.

Parameters Value

Cargo mass/kg 200
Glider mass/kg 680
Wheelbase/m 2.7

Frontal area/m2 2.6

Table 2. SAFT VL45E Li-ion BT parameters.

Parameters Value

Capacity/Ah 44
Internal resistance/mΩ 3.6

Stored energy/Wh 140
Mass/kg 0.91

Table 3. BACP3000 SC parameters.

Parameters Value

Rated capacitance/F 3000
Internal resistance/mΩ 0.29

Stored energy/Wh 3.04
Mass/kg 0.51

Usable power/W·kg−1 5900
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Table 4. Motor parameters.

Parameters Value

Max. power/kW 75
Max. voltage/V 375
Min. voltage/V 120

2.2. The Scheme of the Multiobjective Optimization for the HESS EV

The scheme of the multiobjective optimization for the HESS EV is as in Figure 2.
The optimal energy control strategy of the HESS will be designed in the HESS EV in the
ADVISOR software by secondary development at first. Then, the relationships between the
sizing parameters of the HESS components and the control strategy parameters and EV’s
real time performances, energy consumption rate, running range and HESS cost, etc., can
be obtained by the HESS EV performance simulation in the ADVISOR software. According
to the degrees of impacts between them, the optimization variables and multiobjects are
selected. Then, a multiobjective optimization in the ADVISOR software linked with the
MATLAB software can be carried out with two sets of weights. The conclusion and
discussion will be presented at the end.

Figure 2. The scheme of the multiobjective optimization for the HESS EV.

2.3. The Optimal Energy Control Strategy of the HESS

An optimal energy control strategy is proposed for the BT semi-active HESS. The
optimal energy control strategy distributes the output powers of BT and SC according to
the required power of the HESS and the SOC of the SC pack. The available output power
of the Li-ion BT pack is limited within the rated value of high efficiency to extend the life of
the BT, but the available output power of the SC pack can fluctuate greatly for the good
performance of the SC pack. The power fluctuation of the EV is large and frequent, and
therefore, the SC pack is used as an energy buffer. The SC pack adopts the charge sustaining
energy management strategy to meet the power demand of the HESS and maintain the
state of charge (SOC) of the SC pack near the target value as far as possible. The optimal
control strategy is shown in Figure 3.

Figure 3. Optimal energy control strategy.
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SOCsc is the SOC of the SC pack. SOCsc,cs,hi is the high SOC of the SC pack. SOCsc,cs,lo
is the low SOC of the SC pack. SOCsc,goal is the goal value of SOCsc. The optimal control
strategy works on the following rules:

(a) In normal cases, in order to improve the efficiency and service life of lithium BT,
Pbt,r is limited by the minimum control power Pbt,cs,min and the maximum control
power Pbt,cs,max.

(b) When Phess,r∈[0,Pbt,cs,max] and SOCsc∈[0,SOCsc,goal], as the mode 1 in Figure 3, the SC
pack is charged by the BT pack, and SOCsc approaches SOCsc,goal.

(c) When Phess,r ≥ Pbt,cs,max, as the mode 4 in Figure 3, both the BT pack and SC pack
provide power to the EV.

(d) When Phess, r∈ [0,Pbt,cs,max] and SOCsc∈[SOCsc,goal, 1], as the mode 2 in Figure 3, the
SC pack discharges, and SOCsc approaches SOCsc,goal.

(e) When Phess,r ≤ 0, as the mode 3 in Figure 3, the SC pack recovers all regenerative
braking power.

When Phess,r ≤ 0, Pbt,r is shown in Equation (1).

Pbt,r = Pbt,cs,min (1)

When Phess,r > 0, Pbt,r is shown in Equation (2).

Pbt,r = Phess,r + Padditional (2)

Esc,cs,hi is the energy of the SC pack when SOCsc is SOCsc,cs,hi. Esc,cs,lo is the energy of
the SC pack when SOCsc is SOCsc,cs,lo. Esc,goal is the energy of the SC pack when SOCsc is
SOCsc,goal. Esc,goal is the average value of Esc,cs,hi and Esc,cs,lo, as in Equation (3).

Esc,goal = 0.5 × (Esc,cs,hi + Esc,cs,lo) (3)

According to the SC’s energy formula, Esc,goal and Esc,cs,hi, Esc,cs,lo are as in Equations (4)–(6),
respectively.

Esc,goal = 0.5 × C × V2
sc,goal = 0.5 × C × V2 × SOC2

sc,goal (4)

Esc,cs,hi = 0.5 × C × V2
sc,cs,hi = 0.5 × C × V2 × SOC2

sc,cs,hi (5)

Esc,cs,lo = 0.5 × C × V2
sc,cs,lo = 0.5 × C × V2 × SOC2

sc,cs,lo (6)

C is the SC’s capacitance; V is the SC’s voltage. SOCsc,goal is obtained from Equations (3)–(6),
which is shown in Equation (7).

SOCsc,goal =

√
SOC2

sc,cs,hi + SOC2
sc,cs,lo

2
(7)

Padditional is the additional power needed to maintain SOCsc near SOCsc,goal. Padditional
is shown in Equation (8).

Padditional =
SOCsc,goal − SOCsc

0.5× (SOCsc,cs,hi − SOCsc,cs,lo)
· Pcharge (8)

Pcharge is the charge power of the SC pack.
Psc,r is as shown in Equation (9).

Psc,r = Phess,r − Pbt,a · ηDC/DC (9)

ηDC/DC is energy conversion efficiency of the DC/DC converter.
The parameters of the optimal energy control strategy are in Table 5.



Energies 2022, 15, 2821 6 of 13

Table 5. The optimal energy control strategy parameters.

Parameters Value

Pbt,cs,min/kW 1.5
Pbt,cs,max/kW 12

ηDC/DC 0.95
SOCsc,init 0.9
SOCsc,goal 0.74
SOCsc,cs,hi 0.95
SOCsc,cs,lo 0.45

SOCsc,init is the initial value of SOCsc.

3. Multiobjective Optimization Analysis

The HESS EV performance simulation results [26] of the HESS EV in the ADVISOR
software show that both the sizing parameters of the HESS components and the control
strategy parameters have a certain impact on EV’s performances, energy consumption
rate, running range, and HESS cost. When kbt increases, t100, Q100, l, and Chess increases,
and Vveh,max decreases. When Nbt,s increases, Vveh,max, t100, l, and Chess increase, and Q100
increases or decreases. When Nsc,s increases, Vveh,max, Q100, and Chess increase, and t100
and l decrease. When Nsc,p increases, Vveh,max, l, and Chess increase, and Q100 and t100
decrease. When Pcharge increases, Vveh,max and Q100 increase, and t100, l and Chess decrease.
Therefore, the relationships between the sizing parameters of the HESS components and
the control strategy parameters and EV’s performances, energy consumption rate, running
range, and the HESS cost are nonlinear and strong coupling.

The HESS EV performance simulation results show that, among the sizing parameters
of HESS’s components and the control strategy parameters, the scaled factors of BT capacity
kbt, Nbt,s, Nsc,s, Nsc,p, and Pcharge have a greater impact on the five objectives, while other
parameters have less impact on the five objectives. Therefore, kbt, Nbt,s, Nsc,s, Nsc,p, and
Pcharge are selected as the optimization variables.

The semi-active HESS EV evaluation focuses on the energy consumption over 100 km
Q100, the acceleration time from 0–100 km per hour t100, the maximum speed Vveh,max, the
running range l, and the HESS cost Chess, which are essentially contradictory. The variables
of the multiobjective optimization problem for the HESS EV contain kbt, Nbt,s, Nsc,s, Nsc,p,
and Pcharge, as shown in Equation (10).

f (x) = [kbt, Nbt,s, Nsc,p, Nsc,s, Pcharge] (10)

The HESS EV performance simulation results and the HESS EV performance con-
straints reduce the amount of calculations during the optimization. The varied ranges of
the variables are described in Equation (11).

x1 ∈ [1, 4], x2 ∈ [50, 150], x3 ∈ [1–4], x4 ∈ [75, 135], x5 ∈ [6000, 9000] (11)

The multiobjective function is given by Equation (12). The optimization objective is to
maximize the value of F(x).

F(x) = w1·(1− t100·norm) + w2·Vveh,max,norm + w3·lnorm + w4·(1−Q100·norm) + w5(1− Chess,norm) (12)

t100,norm,Vveh,max,norm, lnorm, Q100,norm, and Chess,norm are the normalization value
of t100, Vveh,max, l, Q100, and Chess, between zero and one, based on the maximum and
minimum values obtained.

t100,norm is shown in Equation (13).

t100,norm =
t100 − t100,min

t100,max − t100,min
(13)
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t100,min is the reference minimum value of t100, and t100,max is the reference maximum
value of t100.

Vveh,max,norm is shown in Equation (14).

Vveh,max,norm =
Vveh,max −Vveh,max,min

Vveh,max,max −Vveh,max,min
(14)

Vveh,max,min is the reference minimum value of Vveh,max, and Vveh,max,max is the maxi-
mum value of Vveh,max.

lnorm is shown in Equation (15).

lnorm =
l − lmin

lmax − lmin
(15)

lmin is the reference minimum value of l, and lmax is the reference maximum value of l.
Q100,norm is shown in Equation (16).

Q100,norm =
Q100 −Q100,min

Q100,max −Q100,min
(16)

Q100,min is the reference minimum value of Q100, and Q100,max is the reference maxi-
mum value of Q100.

Chess,norm is shown in Equation (17).

Chess,norm =
Chess − Chess,min

Chess,max − Chess,min
(17)

Chess,min is the reference minimum value of Chess. Chess,max is the reference maximum
value of Chess.

The optimization constraints parameters are shown in Table 6. mveh is the weight of
the HESS EV.

Table 6. The optimization constraints parameters.

Parameters Value

t100(s) <10
Vveh,max/(kmph) >100

l/(km) >100
mveh/(kg) <1600

The weights w1, w2, w3, w4, and w5 are chosen to indicate the importance of the five
objectives. The sum of w1, w2, w3, w4, and w5 is 1.

4. Optimization Results

The GA algorithm has been shown to be an effective strategy to solve complex and non-
linear engineering optimization problems. The GA algorithm is written in the ADVISOR
software in the MATLAB environment. The GA algorithm parameters are as in Table 7.

Table 7. GA algorithm parameters.

Parameters Value

Number of termination evolution generations 40
Crossover probability 0.95
Mutation probability 0.08

The HESS optimization flowchart diagram based on the ADVISOR software and GA
algorithm is as in Figure 4. The optimized variables kbt, Nbt,s, Nsc,s, Nsc,p, and Pcharge are
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encoded by binary method. w1, w2, w3, w4, and w5 are 0.2, 0.2, 0.2, 0.2, and 0.2, respectively.
The equivalent fuel economy of the HESS EV under UDDS driving condition is good.
Therefore, two consecutive UDDS (Urban Dynamometer Driving Schedule) drive cycles
are used in the simulation.

Figure 4. The flowchart diagram of the HESS optimization.

The HESS cost is evaluated by considering a BACP3000 super-capacitor cost as USD
50 and a SAFT VL45E Li-ion BT cost as USD 40. The Li-ion BT packs are replaced once in
the cycle lifetime, so the cost of a BT is USD 80. Chess is presented as Equation (18).

Chess = 80 · kbt · Nbts + 50 · ksc · Nscs · Nscp (18)

The objection function F(x) convergence process is as in Figure 5, basically stable after
nearly 15 generations.
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Figure 5. Objective function F(x) convergence process.

The t100 convergence process is as in Figure 6, basically stable after near 20 generations.

Figure 6. t100 convergence process.

The Vveh,max convergence process is as in Figure 7, basically stable after near 25 generations.

Figure 7. Vveh,max convergence process.

The Q100 convergence process is as in Figure 8, basically stable after near 25 generations.
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Figure 8. Q100 convergence process.

The Chess convergence process is as in Figure 9, basically stable after near 30 generations.

Figure 9. Chess convergence process.

The l convergence process is as in Figure 10, basically stable after near 30 generations.

Figure 10. l convergence process.

The simulation results are as in Table 8. It is clear that the optimization results meet
the constraints of the optimization. The GA algorithm can find the optimal value. The
optimization results are reasonable taking into account the five objectives, such as t100,
Vveh,max, l, Q100, and Chess.

Two sets of weights are used to study their influences on the results of multiobjective
optimization. The two sets of weights are as in Table 9. The five weights of the five ob-
jectives are the same in the first set of weights. This means that these five objectives are
equally important. In the second set of weights, w1, w2, and w5 change, but w3 and w4
remain unchanged comparing the first set of weights. The results are shown in Table 10.
It can be seen from Tables 9 and 10 that when w1 decreases from 0.2 to 0.15, the corre-
sponding objective t100 increases from 8.2 to 9.5. When w2 decreases from 0.2 to 0.15, the
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corresponding objective Vveh,max decreases from 133.28 to 108.85. When w5 increases from
0.2 to 0.3, the corresponding objective Chess decreases from 30,800 to 19,800. Some of the
multi objectives are sensitive to their weights. The weight of each objective can be selected
according to the importance of each objective.

Table 8. Simulation results.

Generation
Number kbt Nbt,s Nsc,s Nsc,p Pcharge/W t100/s Vveh,max l/km Chess

(USD) Q100/(L/100 km)

1 1.59 91 104 1 5015 9.4 108.32 102 16,400 1.9391
5 1.68 93 130 1 6500 9 109.76 110.2 23,400 1.9265

20 1.94 109 114 4 7600 8.4 125.6 150.4 32,100 1.8566
40 2.01 111.2 109 4 8100 8.2 137.5 155.1 30,800 1.7695

Table 9. Two sets of weights.

No. W1 W2 W3 W4 W5

1 0.2 0.2 0.2 0.2 0.2
2 0.15 0.15 0.2 0.2 0.3

Table 10. The results with two sets of weights.

No. kbt Nbt,s Nsc,s N sc,p
P charge

(W) t 100(8)

V
veh,max
(km/h)

L (km) C hess
($)

Q 100
(L)

1 2.01 111.2 109 4 8100 8.2 155.1 151.8 30800 1.7695
2 2 110.9 109.1 2 8061 9.5 108.85 154.9 19800 1.7708

The optimization of HESS EV in ADVISOR software is realized by the direct optimiza-
tion algorithm, which directly uses a large number of simulations and compares the results,
so as to obtain the optimal solution or approximate optimal solutions. Compared with GA
algorithm optimization, the direct optimization algorithm of the HESS EV takes longer time,
but the optimization effect is poor, and it is difficult to find a better solution. Compared
with direct optimization algorithm, the GA algorithm has a stronger optimization ability,
and the single objective is more sensitive to its corresponding weight.

5. Conclusions

Due to the nonlinear and strong coupling relationship between BT and SC HESS EV
sizing parameters and control strategy parameters and the EV’s performances, driving
range, and price, as well as the different preferences of different consumers, the GA algo-
rithm is used to study the multiobjective optimization of an HESS EV. A Li-ion semi-active
HESS and optimal energy control strategy were presented for the EVs. A multiobjective
optimization problem is analyzed based on the ADVISOR software in the MATLAB envi-
ronment. The multi objectives include energy consumption over 100 km, acceleration time
from 0–100 km per hour, maximum speed, running range, and HESS cost of an EV, and
the ADVISOR software is used to obtain them. The scaled factors of BT capacity, the series
number of Li-ion BTs, the series number of SCs, the parallel number of SCs, and charge
power of the SCs are chosen as optimization variables. The optimization results show that
the weights are sensitive to their objectives. The proposed optimization method is practical
for a Li-ion BT and SC HESS EV.
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