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Abstract: The rational use of energy systems is one of the main discussions in sustainability in the
21st century. Water pumping systems are one of the most significant consumers of electricity in
urban systems, whether for urban water supply, sewage, or use in vertical buildings. Thus, this
work aims to present Industry 4.0 (I4.0) technologies applied in buildings’ water pumping systems,
focusing on energy efficiency, supervision, and control of the pumping system. The work involves
four steps: (i) identifying the existing I4.0 technologies and (ii) mapping the possibilities of applying
Industry 4.0 technologies in building pumping systems. The study includes the analysis of (16) articles
published in journals between 2018 and June 2021 to identify I4.0 technologies cited in the publications.
It identified and grouped eighteen (18) technologies based on twenty-two (22) terms observed in the
papers. The study classified the identified technologies into three possible applications in a building
water pumping system. The applications include: (i) directly applicable, (ii) partially applicable, and
(iii) application not yet identified. Therefore, the study presents the advantages of I4.0 technologies
developed primarily for the industry sector, also applicable in residential building water pumping
systems. These technologies’ benefits include energy efficiency, user control, a reduction from periods
of failure of the pumping system (maintenance), water quality, and moving towards Intelligent
Pumping or Pumping 4.0.

Keywords: Intelligent Pumping; buildings; Internet of Things; sustainability

1. Introduction

In ancient times, access to water was a limiting factor in human development and
quality of life. The development of water pumps allowed humans to overcome this
challenge [1]. From hunter-gatherers to early farmer-herders, energy sources for pumping
power included human labour (manual pumping), animal labour, and forces of nature
(wind and water, i.e., gravity). Thus, since ancient times, the quest for efficiency in water
and energy use has been important for human development [2].

According to the United Nations (2019), 55% of the world’s population concentration
is in cities [3]. It is estimated that 2.5 billion people will be added to the urban population
by 2050, leading to a greater than 50% increase in people living in urban areas. In this sense,
society’s need/energy demand will increase.

The building construction sectors combined are responsible for almost one-third of
total global final energy consumption and nearly 15% of direct CO2 emissions, and energy
demand from buildings and building construction continues to rise [4]. Given this, it is
observed that the need for infrastructure, such as water pumping in buildings, can intensify.
For example, in vertical buildings, one of the sources of energy consumption is water
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pumping systems. Urban water supply systems consume between 1 and 4% of a munici-
pality’s electricity; they are usually the most significant single electricity consumer, and
from capture to final use in homes, urban pumping systems can consume 3.3 kWh/m3 [5].

In this context, continuous urban growth will lead to an increase in megacities with
more than 10 million inhabitants and the number of vertical multifamily housing buildings,
making this type of building an attractive option [6,7]. Therefore, high energy demand be-
comes one of the answers to the verticalization of buildings, as there is a direct relationship
between the height of the building versus population density versus the pumping system.
Thus, these systems must be efficient and have low amounts and frequencies of failures, to
fit into essential equipment for residential buildings.

There are two indicators to advance pumping system energy efficiency—the minimum
standard called the Minimum Energy Performance Standard (MEPS) and the equipment
efficiency labels, which inform consumers about the equipment’s energy efficiency level [8].

MEPS and labels are updated over the years according to improvements in materials
and equipment designs, making it possible to manufacture on a commercial scale with
increasing efficiency. Electric motors and hydraulic pumps are the equipment with the
most significant reductions in energy losses in pumping systems [9]. However, the effi-
ciency indicators of this equipment tend to stabilize due to the theoretical limits of the
technologies [10,11]. Thus, in the short term, there is no prospect that new technologies for
electric motors and pumps will present for a significant increase in efficiency [11].

In this way, the following performance gains are in the optimal dimensioning of the
installation and the search for the pumping system operation in the best performance
region [12]. Thus, the subsequent advances will be in process management and pre-
identification of problems that cause a pumping system to stop.

Since 2011, the management of an industrial process has changed significantly from
the technologies of Industry 4.0 (I4.0), with a strong tendency towards computerization of
the manufacture and manufacture of products, concepts of safety, efficiency, and sustain-
ability [13], in addition, to be in line with the need to improve efficiency in water pumping
systems. I4.0 advances and trends point to cities and buildings becoming intelligent,
efficient, and sustainable [14–17], with pumping systems becoming important.

The central question of this research is to answer the following question: What are
the technologies to be implemented in building water pumping systems so that they
are considered Intelligent Pumping? From this perspective, this work aims to map the
application possibilities of I4.0 technologies, which can be applied to water pumping
systems in buildings, and to propose a flexible architecture for the application.

2. Methodology

The proposed methodology includes: (i) identification of the leading technologies
of I4.0 and (ii) mapping of application possibilities of the I4.0 technologies, as shown in
Figure 1.
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A typical pumping arrangement in a building system is composed of an upper and
lower reservoir, pump motor set, suction, and discharge pipes. The water originates from
the public supply system and is then conducted to the reservoir units, and later flows by
gravity to the housing units of the building. To see more details of the typical building
pumping system considered in this study, consult the model available in [18].

Traditional pumping systems are activated based on two conditions: (i) the presence
of water in the lower reservoir unit and (ii) a low level of water in the upper reservoir unit.
With these conditions, a float switch in each reservoir interconnected in a series turns the
pumping system on and off by an electromagnetic switch (contactor), as shown Figure 2.
The system can be energized during the day and activated only by the two conditions.
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Figure 2. A traditional electrical schematic of the pumping system.

2.1. Identification of the Main Technologies of I4.0

Identifying the leading I4.0 technologies depended on a review of the literature and
considered publications from 2018 to June 2021. The Scopus scientific base was used, ap-
plying the keyword, and review and industry 4.0 was restricted to English-language titles.

The concept of I4.0 comprises a variety of technologies that often cannot be distin-
guished clearly. There are several solidly defined methods to apply I4.0 technologies in
manufacturing processes in small, medium, and large companies. Then, sixteen (16) papers
were selected, as presented in Table 1.

Through the identification of the leading I4.0 technologies, six most common grouped
terms were obtained, namely: Intelligent Sensors, Big Data & Data Mining, Cloud & Edge
Computing, Machine Learning & Artificial Intelligence, Internet of Things (IoT), Human
Machine Interface (HMI), Systems Integration & Network Operation, and Cyber Security,
which were mapped in selected papers and their application possibilities discussed in
relation to building pumping systems.
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Table 1. I4.0 review papers published between 2018 and 2021.

# Title Journal Year Reference

1
From technological development to social
advance: A review of Industry 4.0 through

machine learning

Technological Forecasting and
Social Change 2021 Lee and Lim [19]

2 Industry 4.0 as a data-driven paradigm: a
systematic literature review on technologies

Journal of Manufacturing
Technology Management 2021 Klingenberg et al. [20]

3
Industry 4.0: A technological-oriented

definition based on bibliometric analysis
and literature review

Journal of Open Innovation:
Technology, Market, and

Complexity
2021 Rupp et al. [21]

4

Evolutions and revolutions in
manufacturers’ implementation of industry

4.0: a literature review, a multiple case
study, and a conceptual framework

Production Planning & Control 2021 Calabrese et al. [22]

5 Industry 4.0 triggered by Lean Thinking:
insights from a systematic literature review

International Journal of
Production Research 2020 Bittencourt et al. [23]

6
Maintenance transformation through

Industry 4.0 technologies: A systematic
literature review

Computers in Industry 2020 Silvestri et al. [24]

7 Industry 4.0 in the port and maritime
industry: A literature review

Journal of Industrial
Information Integration 2020 De la Peña Zarzuelo et al. [25]

8 Industry 4.0 and its impact in plastics
industry: A literature review

Journal of Industrial
Information Integration 2020 Echchakoui and Barka [26]

9
Information and digital technologies of

Industry 4.0 and Lean supply chain
management: a systematic literature review

International Journal of
Production Research 2020 Núñez-Merino et al. [27]

10
The sustainable manufacturing concept,

evolution and opportunities within
Industry 4.0: A literature review

Advances in Mechanical
Engineering 2020 Sartal et al. [28]

11 The role of crowdsourcing in industry 4.0: a
systematic literature review

International Journal of
Computer Integrated

Manufacturing
2020 Vianna et al. [29]

12 The smart factory as a key construct of
industry 4.0: A systematic literature review

International Journal of
Production Economics 2020 Osterrieder et al. [30]

13
Industry 4.0: A bibliometric review of its

managerial intellectual structure and
potential evolution in the service industries

Technological Forecasting and
Social Change 2019 Mariani and Borghi [31]

14 Industry 4.0 in management studies: A
systematic literature review Sustainability 2018 Piccarozzi et al. [32]

15
Sustainable Industry 4.0 framework: A

systematic literature review identifying the
current trends and future perspectives

Process Safety and
Environmental Protection 2018 Kamble et al. [13]

16 Industry 4.0 framework for management
and operations: a review

Journal of Ambient
Intelligence e Humanized

Computing
2018 Saucedo-Martínez et al. [33]

2.2. Mapping of Application Possibilities of I4.0 Technologies in Building Pumping Systems

The discussion of possibilities and the presentation of possible gains were developed
by explaining the positive and negative points derived from applying appropriate I4.0
technologies to the case. Subsequently, the discussion of the implementation of the leading
I4.0 technologies is presented in the research so that the pumping system can be considered
Intelligent Pumping (4.0 Pumping) in a building system. The objective is to verify the
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possibilities of classifying the I4.0 technology, aiming at the gain in the useful life of the
water pumping system, the connectivity with the user, and the increase in the energy
efficiency of the building pumping system.

After surveying the leading I4.0 technologies (Table 1), 18 technologies are currently
linked to I4.0 (Table 2), as the study identified and grouped according to the 22 terms found.

Table 2. Overview of I4.0 pillar concepts found in literature review papers.

Item Technologies Linked to I4.0 Application in Building
Water Pumping Systems

References
Analyzed

1 Smart Sensors • [17,34–38]
2 Big Data & Data Mining • [17,39]
3 Cloud & Edge Computing • [39,40]
4 Machine Learning & Artificial Intelligence (AI) • [39–45]
5 Internet of Things (IoT) • [35,40]
6 Human Machine Interface (HMI)
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The technologies linked to I4.0 were classified into three possibilities based on the
reading of the analyzed references: directly applicable, partially applicable, and still uniden-
tified application. In Table 2, the 18 technologies linked to I4.0 are classified according to the
current possibilities (2022) of application in building water pumping systems to implement
Pumping 4.0 or Intelligent Pumping.

3. Industry 4.0: Applications in Systems and Intelligent Building Pumping

This section discusses I4.0 technologies that can be considered viable applications
for building pumping systems, that is, technologies linked to I4.0 aimed at building the
concept of Intelligent Pumping.

The identification of the possibilities of application of I4.0 technologies in pumping
building systems took place through the analysis of compatibility, comparison, and feasi-
bility of I4.0 technology versus pumping building systems. Also presented are successful
applications of I4.0 technologies used in pumping systems in industry and sanitation.

3.1. Mapping and Identification of I4.0 Technologies Applicable in Building Pumping Systems
3.1.1. Smart Sensors

The use of sensors is essential for inserting a process in I4.0. The sensors can also
monitor the system’s energy efficiency and production of indicators that allow monitoring
parameters and preventive maintenance programming to avoid downtime due to failure.
The equipment (e.g., electric motor and centrifugal pump) can emit signs indicating ac-
celeration of degradation. Therefore, evaluating the degradation throughout the life span
of the equipment is essential. This way, machines and equipment’s operating condition
and integrity are monitored. Figure 3 is a typical degradation pattern of electrical and
mechanical equipment.
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The point of functional failure is when the equipment fails to provide its intended
function. Condition-based maintenance aims to detect the potential failure before the
actual failure occurs. In this case, maintenance actions can be planned before the functional
failure, with advantages such as reducing downtime, eliminating unexpected production
stops, maintaining downtime, eliminating unexpected production stops, maintaining
optimization, and reducing spare parts inventory.

Sensors for Hydraulic Measurements and Water Quality

A smart water network would integrate sensors, controls, and analytical components
to ensure quality and efficient water supply. Smart meters and end-use detection devices
can aid in leak detection. For example, continuous data from a smart residential meter can
reveal a leak, showing a positive water flow when all accessories are off [17].

A theoretical smart water network starts at water harvesting, where smart meters,
smart valves, pumps, and smart sensors are installed, with continuous monitoring along the
water path, through the water treatment steps with more meters, valves, and smart pumps.

Within the city’s water distribution system, water contaminant sensors are applied.
End-use sensing devices, smart irrigation controllers, contaminant sensors, and smart
meters can be used at end-user sites. Finally, the water goes through the sewage system
to treat effluents, and the same technologies used at the beginning of the system are also
used [34].

The quality of the water consumed by users can be affected by several factors, such
as various contaminants, materials from corrosion of the pipe, distribution, accidents, and
even terrorism. Contaminant sensors in a smart water network can alert consumers to
potential problems before consumption [34].

The persistent storage of measured data allows for monitoring possible changes in
water quality parameters (physical, chemical, and biological parameters). It can even
prevent a series of diseases transmitted by water via analyzing data from measures of
domestic water. (Potential of hydrogen; Turbidity; Temperature; Reduction of oxidation
potential; Electrical conductivity), providing a preliminary laboratory analysis if necessary.
The data collected can indicate deviations in standards and anomalies and predict future
water quality trends using machine learning techniques. If the water is not within acceptable
standards, the pumping system is not activated [35].
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Sensors for Measuring Mechanical Quantities

Analyzing mechanical vibration data from electric motors is universally accepted
as an excellent technique for detecting mechanical failures, especially among the most
common failures, such as alignment defects, bearing failure, mechanical load breakdown,
and ventilation [36].

Using smart sensors for vibration, acoustic, and flow measurements makes it possible
to identify pump parameters variations. The set of sensors makes it possible to predict
cavitation problems, one of the leading causes of pump downtime. Sensing can guarantee
the optimal functioning of the centrifugal pump at different operating points [37].

Vibration sensors (accelerometers), in addition to being low cost, are reliable for
early detection of failures of both the electric motor and the centrifugal pump, enabling
optimization and maintenance planning and reducing the probability of failure [38].

Sensors for Measuring Electrical Quantities

Changes in the form of the electric current wave, also known as the electrical signatures
of electric motor currents, are an essential way of applying methodologies to detect rotor
problems, stator asymmetries, defects in the cooling system, and faults in the bearings
or the coupling system. These failures reduce the efficiency of the electric motor before
bringing the equipment to a complete stop [53].

Electronic current waveforms are collected by current sensors installed in the electrical
panels or as part of the electric motor’s Variable Speed Drives (VSDs). Figure 4 illustrates
the topology with the primary sensors highlighted in the discussion in Section 3.1.1.
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The temperature sensors in the electric motor and the centrifugal pump are essential
for evaluating the operating condition of this equipment. Upper and lower reservoir level
sensors must assess pumping system turn-on moments. The speed transducer (tachometer)
to measure the speed of the motor-pump assembly assists in determining the loading of the
electric motor and the operating of the pump point. Figure 4 presents items related to cloud
computing, big data, and Systems Integration that will be discussed in subsequent topics.

3.1.2. Big Data & Data Mining

The implementation of new sensor monitoring and control technologies, combined
with the availability of high computational power, changed the traditional approach to
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designing and managing water systems and enabled the development of new data-based
techniques powered by Big Data [17]. Big Data is already a reality for water supply
companies in large cities, but it can also become a reality for water pumping building
systems. When smart metering becomes more present in systems, a large amount of data
will be collected, stored, and processed to make decisions aimed at improving supply [39].

With the use of smart meters in each consumer unit, it is possible to perform the
automatic collection of consumption, self-diagnosis of the system, and monitor the status
of the quantity and quality of water, enabling remote management and saving decisions by
the user. With this technology applied on a large scale, it will be possible to provide meter
readings instantly, generate domestic leak reports for each user, and even send smartphone
alerts [39]. In addition to this term, others such as Cloud & Edge Computing, Machine
Learning & Artificial Intelligence, Internet of Things IoT, Human Machine Interface (HMI),
Systems Integration & Networking, and Cyber Security, are linked to the monitoring and
previous solutions of possible system failures and problems.

3.1.3. Cloud & Edge Computing

In pumping systems, cloud computing allows data from sensors and meters installed
in the electrical and hydraulic network to be readily available to various stakeholders
responsible for asset maintenance or even users. The mass of measurement data is uploaded
to the cloud computing facility for continuous analysis [39].

3.1.4. Machine Learning and Artificial Intelligence

The optimization of the water pumping system, aiming at the lowest consumption
of electricity, and meeting the need for water supply, can be carried out using Variable
Speed Drives (VSDs). Combining machine learning and Artificial Intelligence (AI) to
make decisions based on data from pressure and flow sensors in pipes and electricity
consumption enables the system to perform at the best efficiency point [41].

Artificial intelligence through machine learning makes it possible to generate algo-
rithms to identify long-term trends that analyse historical data collected from sensors.
Long-term trends can inform the maintenance period and enable action before failure
occurs. For example, the vibrations of the motor-pump set are one of the leading failure
indicators of both the electric motor and the pump [43].

The manufacturer’s performance curve of a hydraulic pump shows the region with
the best operational efficiency. Pump performance simulations can be carried out using
machine learning techniques, thus making it possible to operate at the points or in the best
efficiency region, reduce electrical energy consumption, avoid vibrations and excessive
wear, improve maintenance, and timely maintenance downtime [44].

In a sanitary sewage pumping system, the flow decreases with the increase in the size
of the contamination particle or sludge, for example. With the pressure and flow reading
and using a machine learning algorithm, through the knowledge of the system’s operating
patterns, it is possible to identify the high effort of the system for significant impurity, and
to act by turning off the pumping system [45].

3.1.5. Internet of Things (IoT)

In the more general framework of Industry 4.0, the recent development of IoT tech-
nologies applied to smart grids has opened up new opportunities in the management of
water network systems [17]. Monitoring water quality is critical to consumer health. In
this perspective, recently developed systems based on smart sensor technology combined
with recent advances in the IoT can contribute to drinking water quality management. It
will also inform building users, in real-time, of access to the leading quality indicators of
water [35], according to the topology in Figure 4.

Figure 5 presents a simplified schematic of the IoT process for water quality monitoring.



Energies 2022, 15, 3319 9 of 17

Energies 2022, 15, x FOR PEER REVIEW 9 of 17 
 

 

3.1.5. Internet of Things (IoT) 
In the more general framework of Industry 4.0, the recent development of IoT 

technologies applied to smart grids has opened up new opportunities in the management 
of water network systems [17]. Monitoring water quality is critical to consumer health. In 
this perspective, recently developed systems based on smart sensor technology combined 
with recent advances in the IoT can contribute to drinking water quality management. It 
will also inform building users, in real-time, of access to the leading quality indicators of 
water [35], according to the topology in Figure 4. 

Figure 5 presents a simplified schematic of the IoT process for water quality 
monitoring. 

 
Figure 5. Simplified schematic of the IoT process for water quality monitoring. 

The same topology presented in Figure 5 can be applied to several other sensors 
presented in item 3.1.1. For example, the application of vibration sensors can be applied 
in centrifugal pumps for diagnostics of the pump’s operating state and in avoiding 
failures. With data being stored in the cloud, patterns of behaviour are processed and 
analyzed by Machine Learning and expressed by IoT [40]. 

3.1.6. Human Machine Interface (HMI) 
From the perspective of I4.0, the HMI is a device that mediates the interaction 

between an operator/user and a pumping system, where the user can give operating 
commands and visualize the process. Viewing on computers, smartphones, and even 
displays is entirely possible in this concept. The pumping system visualization process is 
commonly visualized through a SCADA system (Supervisory Control and Data 
Acquisition), providing users with an interactive layout of the system. 

3.1.7. Systems Integration & Network Operation 
The rapid growth of large urban residential areas necessitates the expansion and 

modernization of existing water pumping facilities. The process automation system based 
on the use of integration via network operation through industrial protocols, 
Programmable Logic Controllers (PLC), and Supervisory Control and Data Acquisition 
(SCADA), represents the best way to improve the technological process of distribution of 
water [47]. 

The automation of the pumping system using systems integrated with a network 
with the support of PLCs that may even be available in VSDs being visualized by SCADA 
can provide several gains. Such benefits include: general supervision and remote control 
of all equipment, reliability of measurement data by monitoring, continuity of water 
distribution and protection of water quality, reduction of water resource losses, detection 

Figure 5. Simplified schematic of the IoT process for water quality monitoring.

The same topology presented in Figure 5 can be applied to several other sensors
presented in Section 3.1.1. For example, the application of vibration sensors can be applied
in centrifugal pumps for diagnostics of the pump’s operating state and in avoiding failures.
With data being stored in the cloud, patterns of behaviour are processed and analyzed by
Machine Learning and expressed by IoT [40].

3.1.6. Human Machine Interface (HMI)

From the perspective of I4.0, the HMI is a device that mediates the interaction between
an operator/user and a pumping system, where the user can give operating commands and
visualize the process. Viewing on computers, smartphones, and even displays is entirely
possible in this concept. The pumping system visualization process is commonly visualized
through a SCADA system (Supervisory Control and Data Acquisition), providing users
with an interactive layout of the system.

3.1.7. Systems Integration & Network Operation

The rapid growth of large urban residential areas necessitates the expansion and mod-
ernization of existing water pumping facilities. The process automation system based on the
use of integration via network operation through industrial protocols, Programmable Logic
Controllers (PLC), and Supervisory Control and Data Acquisition (SCADA), represents the
best way to improve the technological process of distribution of water [47].

The automation of the pumping system using systems integrated with a network with
the support of PLCs that may even be available in VSDs being visualized by SCADA can
provide several gains. Such benefits include: general supervision and remote control of all
equipment, reliability of measurement data by monitoring, continuity of water distribution
and protection of water quality, reduction of water resource losses, detection of water leaks
made by monitoring online consumption or pressure drop, real-time alarms triggered by
any equipment failure in the pumping system, optimization of exploration and maintenance
costs, and preparation of an automated database [48].

3.1.8. Cyber Security

From abstraction to end-use management, evolution in water supply systems through
computing hosts, smart sensors, IoT layers, edge computing, wireless networks, and artifi-
cial intelligence has increased and will increase the possibilities of cyber-attacks because
they operate in a network. Tuptuk et al. (2021) [49] highlighted the importance of protecting
water infrastructure from malicious entities that may carry out industrial espionage and
sabotage against these systems.
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3.2. Implementation of I4.0 Technologies in Building Pumping Systems

Based on the characterization of the technologies linked to I4.0, its implementation is
directly related to electronic and computational resources. Thus, one of the main elements
of this application is using VSDs to drive and control the pump motor set, enabling the drive
and control of the system electronically. VSDs are typically used in applications that need
to control the flow of the pumping fluid, and this system has also become advantageous in
applications that do not require speed control.

With the implementation of new electric motor technology, VSDs have become even
more present in motor systems, as they are mandatory for the operation of motors, such as
Permanent Magnet Synchronous Motors (PMSM) and Synchronous Motors. Reluctance
Motors (SynRM) should assume a more significant role in the coming years, as they reach
higher efficiency levels than the traditional Squirrel Cage Rotor Induction Electric Motors
(SCIM) traditionally used in pumping systems [54].

According to Huse et al. 2020 [55], the significant productivity gains with the applica-
tion of VSDs in electric motors that drive hydraulic pumps to pump water are mainly:

1. Pump speed control maintaining a pressure requested by the system.
2. Applying VSDs reduces motor wear due to reduced speed, vibration, and torque.
3. Soft start of the motor and gradual accelerations to reduce large electrical transients

where high-starting currents can cause voltage drops in the electrical network.
4. Soft start of the motor and gradual accelerations, reducing the mechanical stress of

the shaft, as well as the thermal stresses in the windings and mechanical stresses in
the couplings and belts.

5. Reduction of sudden changes in water speed (transients), which may result in water
hammer, cavitation, and vibration of the pump motor assembly [42].

6. A small reduction in speed or flow can significantly reduce energy usage.
7. Reduction in the maintenance fee of the motor-pump set.
8. A total of 20 to 40% energy consumption, a typical 38% water leakage reduction, 53%

reduced breakdowns, and extended motor pump life.

A pumping system using VSD is shown in Figure 6.
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Figure 6. Pumping system using VSD. Source: Adapted from [18].

As one of the pillars of I4.0 is network operation, the role of VSDs in this context
is not that of a simple electronic trigger. In addition to being power processors, VSDs
have become elements of the information chain, increasingly used as sensors or intelligent
controllers. For the application of technologies linked to I4.0, VSDs play a fundamental
role, characterized by intelligent action through various resources aimed at continuous
connectivity with the various devices, and performing electrical data acquisition and
electric motor control [56].

The electrical energy savings achieved are remarkable when controlling the speed
of the pumping system using the VSDs. Opportunities to improve the energy efficiency
of the water pumping system fall into three distinct categories: (i) component selection,
(ii) dimensioning of the pumping system, and (iii) variable speed control of the pumps.

In the context of I4.0, for the formation of Intelligent Pumping, the various elements of
the system, such as motors, drives, sensors, and controls, are interconnected and connected
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to the cloud—where data is stored, processed, and analyzed, and decisions are made as
discussed in Section 3.1. After the decision is made, the intelligent equipment that acts
as the operation of the Intelligent Pumping System is the VSDs. For this reason, it is the
central equipment for the conception of this new concept, as shown in Figure 7.
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3.2.1. Operation at the Point of the Best Performance

To achieve the maximum performance of the motor pump set during its operation
(i.e., the different demands from pressure and flow throughout the day), VSDs are com-
monly used in industrial pumping systems and the sanitation sector. However, the appli-
cation is still not widespread in pumping systems installed in residential or commercial
buildings.

In a building water pumping system, the motor-pump set is designed to meet a
specific value of rotations, with this value reaching pressure and flow, providing a specific
performance. This is considered the operating point of the system.

The motor-pump set is desired to work with pressure and flow values to meet the
variable demand typical of user requests. For this, the VSD controls the speed of the set,
seeking operational optimization so that the system operates in the region known as the
Best Efficiency Point (BEP). This is when the ratio between the system flow (m3/h) and the
electrical energy consumed (kWh) is the maximum possible.

The location of the operating point is mandatory to optimize the energy efficiency of
the pumping system. A VSD-powered pumping application is achieved using an algorithm
already available in most current VSDs. Modern VSDs are equipped with conventional
flow vs. head (QH) and (QP) to determine pump flow [57].

3.2.2. Demand Side Management (DSM) Using VSD

The DSM is a set of forecasting techniques and demand services based on the balance
between supply and demand. Its application has significant success records for industrial
pumping stations and the sanitation sector. There are expectations of applicability and
success also for the cases of water pumping building systems.

Figure 8 shows operating ranges when the VSD is present. The operating ranges are
delimited by the pump curves with nominal speed (N1) and minimum viable speed (N3),
and can be explored to reach the best performance point (BEP) of the motor-pump set.
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In the building pumping system, the flow demanded by the piping system is modified
according to the population’s immediate needs (Figure 8; points A, B, and C).
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The without of VSD means that the head (H), the flow (Q), the yield (η), and the cavi-
tation indicator (NPSH) are kept constant (Figure 8a; point C), disregarding the immediate
need of the population. For example, the population’s immediate need is at point A, but
the motor-pump assembly operates only at point C; or, the population’s immediate need is
at point B, but the motor-pump assembly operates at point C.
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In these cases, the population’s immediate needs are served by numerous starts/stops
of the motor-pump set (Figure 8a; N1) with short operating times. This reduces the life
of the equipment due to the excessive number of starts/stops and the operation with
low efficiency, as can be seen in Figure 8b. On the other hand, the presence of the VSD
associated with I4.0 and DSM techniques allows the effective use of the operating range
(Figure 8a; points A, B, C with curves N1, N2, N3; yields h1, h2, h3, as per Figure 8b; NPSH1,
NPSH2, NPSH3, as per Figure 8c). Therefore, increasing equipment life span and reducing
operating/maintenance costs (better yields, fewer starts/stops, and operation without
cavitation) is important. Essential gains in equipment life span and energy efficiency are
obtainable with the right combination of VSD, I4.0, and DSM.

Already, several optimization methods are widely known in the industry and are in
use in water pumping building systems, such as Multiobjective optimization [58], Genetic
algorithm [20], Mixed-integer nonlinear programming [6], multi-criteria analysis [51],
Multi-Objective Mixed Integer Linear Programming [58], and Mixed-Integer Nonlinear
Programming [59]. Table 3 shows some optimization methods applied in building water
pumping systems.

Table 3. Traditional optimization methods that can be applied in the building water pumping system.

Item Method Paper Journal Year Reference

1 Multi-objective
optimization

An Updated Survey of GA-Based
Multiobjective Optimization

Techniques

ACM Computing
Surveys 2020 Coello [60]

2 Genetic Algorithm
Decision support for sustainable

option selection in integrated urban
water management

Environmental
Modelling &

Software
2008 Klingenberg et al. [20]

3
Mixed-integer

nonlinear
programming

Optimization and validation of
pumping system design and
operation for water supply in

high-rise buildings

Optimization and
Engineering 2021 Müller et al. [6]

4 Multi-criteria
analysis

An Analysis on Optimization of
Living and Fire Water Supply
Systems of Small High-Rise

Residential Blocks

Earth and
Environmental

Science
2017 Yuan [51]

5

Multi-objective
mixed integer

linear
programming

Integrating energy and water
optimization in buildings using

multi-objective mixed-integer linear
programming

Sustainable Cities
and Society 2020 Emami Javanmard

et al. [58]

6
Mixed-integer

nonlinear
programming

Optimization of Pumping Systems
for Buildings: Experimental

Validationof Different Degrees of
Model Detail on a Modular Test Rig

Operations
Research

Proceedings 2019
2019 Müller et al. [59]

3.3. Research Limitations

• The research was limited to evaluating the possibilities of application of I4.0 technolo-
gies in a building water pumping system, but these technologies could be applied in
other types of drives such as: compression, elevation, ventilation, etc.

• The research did not delve into the discussion of communication protocols between
the various systems.

• We recommend continuing the research with the construction of an IoT architecture for
application in a pumping system using I4.0 technologies, enabling the experimental
validation of the proposal.
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4. Conclusions

The building water pumping system is an integral and fundamental part of the services
for the proper functioning of the buildings. With the new paradigms of I4.0, buildings also
point to integrated and increasingly autonomous intelligence systems.

This research presented some of the technologies of I4.0 that can already be used in
water pumping systems for buildings. With the application of the concepts, the improve-
ments are structured into four pillars: (i) increase in the energy efficiency of the system,
(ii) increase in the useful life of the system, reducing failures, (iii) improvement in the
control and predictability of the system, and (iv) possibility of monitoring.

Most of the research activities on pumping systems focus on water supply systems,
heat pumps and irrigation systems in agriculture. There are few concerns in the literature
about building water pumping systems, which calls for the need to continue researching
the subject.

The application of I4.0 technologies seeking to form intelligent pumping systems will
reduce water loss, waste, quality of water consumed, user control, and improvements
in energy efficiency and service continuity, moving towards an intelligent and flexible
pumping system.

Intelligent sanitation is a fundamental component of the formation of Smart Cities.
However, it is necessary to move toward intelligent building systems, promoting the
incorporation of Intelligent Sensors, Big Data, IoT, etc. This wave of data brings new
possibilities in building water design and management and economic prospects.

For advances in research, more coordination between academia, industry, and gov-
ernment is needed to guide the deployment of smart building systems in the real world.
The publications date of the references used in this research demonstrates the current
concept of I4.0 and the broad field of application of technologies for the construction of a
connected society.
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