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Abstract: Encouraged by the European Union, all European countries need to enforce solutions to
reduce non-renewable energy consumption in buildings. The reduction of energy (heating, domestic
hot water, and appliances consumption) aims for the vision of near-zero energy consumption as
a requirement goal for constructing buildings. In this paper, we review the available standards,
tools and frameworks on the energy performance of buildings. Additionally, this work investigates
if energy performance ratings can be obtained with energy consumption data from IoT devices
and if the floor size and energy consumption values are enough to determine a dwellings’ energy
performance rating. The essential outcome of this work is a data-driven prediction tool for energy
performance labels that can run automatically. The tool is based on the cutting edge kNN classification
algorithm and trained on open datasets with actual building data such as those coming from the
IoT paradigm. Additionally, it assesses the results of the prediction by analysing its accuracy values.
Furthermore, an approach to semantic annotations for energy performance certification data with
currently available ontologies is presented. Use cases for an extension of this work are also discussed
in the end.

Keywords: near-zero energy buildings; energy efficiency; semantic technology; knowledge graphs;
energy performance certificates; energy performance certification

1. Introduction

Driven by the increasing concerns regarding climate change, the European Union
developed a legal framework for energy efficiency measures [1], in the form of directives,
to lower the impact on our environment. According to the statistics published in the
“European Energy Efficiency Directive” almost 50% of the European Union’s final energy
consumption is used for heating and cooling, of which 80% is used for residential and
non-residential buildings [2]. This makes the building sector an important energy consumer.
These numbers motivate the European Union to promote actions for the refurbishment of
the European building stock to achieve higher energy efficiency values. The current Euro-
pean directives encourage near-zero energy consumption as a future essential requirement
for construction. It has been proven, e.g., with the Passive House standard, that buildings
can use much less energy.

The term energy efficiency stands for “using less energy inputs while maintaining an
equivalent level of economic activity or service” [1]. In other words, efficiency is the ratio
between a costly input and the desired outcome. In the case of buildings, desired outcomes
may be:
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• thermal comfort,
• adequate light levels, and
• air quality,

Whereas costly inputs may be:

• the amount of gas used by boilers,
• the amount of electricity used for lighting, and
• the amount of electricity used for mechanical ventilation systems.

This work along with the resulting application aims at helping building occupants,
building owners and municipalities in properly classifying homes based on the available
data of their buildings. The goal of this work is to create data-driven models, which help
owners and future tenants to control their buildings. In order to reach this state, first
of all, buildings must be investigated paying special attention to heating (heating and
domestic hot water—DHV), electric energy consumption and possible solar energy gains
(e.g., gathered from photovoltaic solar panels [PV] or passive solar systems).

These considerations have a significant influence on three main aspects:

1. limitation of environmental impact,
2. becoming more self-sufficient, and
3. awakening the inhabitants’ awareness in terms of energy consumption.

They have an impact on each other and should be treated holistically. This research
aims at finding a solution for these challenging problems.

In this regard, we analyze two aspects:

1. Is there a correlation between building data and energy performance rating?
2. Based on the available data, is it possible to predict a rating for an unknown, not yet

rated dwelling?

According to the European Energy Efficiency Directive, each member state must
renovate 3% of its building stock yearly to improve energy consumption. The goal by 2050
is to renew the building stock into near-zero energy buildings [2]. The above-mentioned
considerations aim at aiding these initiatives of the European directives.

The paper is organized as below:

a. In Section 2, the available standards, tools, and frameworks on the energy perfor-
mance of buildings are reviewed comprehensively.

b. Section 3 lays the groundwork for the research problem—if energy performance
ratings are directly correlated to the energy consumption data and if the floor size
and energy consumption values are enough to determine a dwellings’ energy perfor-
mance rating. This follows the proposal of a data-driven kNN classification-based
prediction tool for energy performance labels.

c. In Section 4, an approach to semantic annotations for energy performance certification
data with currently available ontologies is offered.

d. In Section 5, results of proposed approach are presented emphasizing data analysis
and prediction metrics.

e. In Section 6, conclusions are made based on observations and future scope is provided
for research community to follow.

2. Background and Related Work

Smart Buildings and the Smart Readiness Indicator are the current flagship towards
energy-efficient buildings. With the usage of machine learning techniques and semantic
modelling, the performance of the Smart Building’s technical equipment can be improved.
The latter is shown by the projects SESAME [3] and Entropy, and the building modelling
and simulation tools presented in this section.
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2.1. Ontology and IoT

An ontology is a description of concepts for a specific knowledge domain and their
relationship to each other. A semantic model uses these concepts and relations to describe
the content and meaning of data. Semantic models enable semantic reasoning, meaning
asking and answering questions about data in a natural way. Instead of thinking in queries
by matching ids and table names, we reason in relations and links between data objects.
The SESAME [3] project incorporates semantic models for the advance metering systems
of Smart Buildings. The Entropy project tries to sensitize tenants to the consumed energy
of their building by providing detailed information on their energy consumption. The
Entropy project also shows that occupant behavior is crucial for the energy performance
of dwellings. The latter leads to the question: if energy performance ratings are closely
related to the energy measurements, then is the energy performance rating influenced by
the tenants’ behavioral patterns?

By looking at the state-of-the-art, we can see the complexity of the topic of energy-
efficient buildings. The Internet of Things (IoT) jumps on board in lowering the impact of
human actions on the environment. One such technique that is already being exploited is
home automation. Buildings incorporating smart meters, alongside sensors and actuators,
record and even optimize the dwellings’ energy consumption. Smart meters drive auto-
mated measurement of the energy consumption of a building, thus providing capability to
provide accurate and frequent billing details. In the European Energy Efficiency Directive
on building energy, a minimum of 80% of energy consumers should be equipped with smart
metering systems by 2020 [4]. In the future, artificial intelligence and machine learning
technologies might enhance and create knowledge from data sourced from the smart meters
to handle and improve energy consumption levels of buildings autonomously [5]. The
interconnection of homes, offices, data centers, warehouses and the public infrastructure
has made Smart Cities a reality. Major European cities are working on ideas and prototypes
in an active manner to accomplish the vision of Smart Cities. An example is the city of
Innsbruck, where “the vision of a holistic energy identity in 2050 is only possible by an
overall consideration of the city as a system in which energy, buildings, supply networks,
mobility, information and people are viewed in an integrated manner” [6].

2.2. Frameworks

Smart Homes are dwellings technically equipped to monitor and improve their en-
ergy consumption and provide smart services to their occupants. Extending this idea to
buildings, we have the term Smart Buildings. Smart Buildings are energy-efficient, safe,
technically integrated, and sustainable buildings that are constituents of larger energy grids.
The following sub-sections discusses the existing frameworks/indicators in more detail.

2.2.1. Smart Readiness Indicator

The Smart Readiness Indicator (SRI) is a rating that reflects the capacity of a building
to operate energy-efficiently, to be a valuable component of smart energy grids, and to
adapt to the occupant’s needs. The SRI concept was introduced in the EU directive of
2018 [2] and enhanced in 2020 [7]. The SRI assessment procedure considers all the smart
ready services available in a building. Each of these services is analysed and graded
according to its smartness (integration, flexibility, performance). Some services might
function better regarding the occupant’s needs or the grid situation, and some services
might perform worse. These functionality levels describe how smart a service is. Therefore,
the Smart Readiness Indicator is an addition to the already available energy performance
ratings [8]. Further, a proposal for a methodology was presented in a technical study [8]
commissioned by the EU. Eight viable criteria for determining the SRI were found to be of
most significance, these are:

• saving capabilities (for instance—better control of room temperature settings),
• flexibility towards the energy grid,
• self-generation of energy,
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• occupant’s comfort (thermal, acoustic, visual),
• convenience (e.g., less manual settings needed to be done by users),
• a healthy indoor climate,
• maintenance and fault detection, and
• user-friendly feedback to occupants.

2.2.2. Integration Framework for Smart Homes

The SESAME project facilitates an energy-aware home automation system by offering
a plug-and-play solution enabling features such as integrating building automation systems
with the advanced metering systems of a building [3]. Semantic Rules are exploited to depict
how appliances within the environment will be operated. These rules enable reasoning on
the measured data. For the SESAME Project, a total of three ontologies were designed [9]:

1. The Meter Data Ontology facilitates communication protocols for data exchange with
the metering equipment.

2. The Automation Ontology comprises general concepts such as Resident and Loca-
tion, but also concepts in the automation and the energy domain, such as Device
(with consumption per hour, power on-of status, peak power), and Configuration
(of appliances).

3. The Pricing Ontology facilitates the optimal tariff model for a specified time and
energy load by providing a weighted criteria which can then be used by the reasoning
engine for choosing the best tariff model.

2.2.3. Energy Consumption Awareness Framework

The Entropy Project aims to sensitize occupants to the consumed energy of their
dwellings. These dwellings are supplied with smart sensors that collect energy consump-
tion data. A specially developed software helps tenants to be informed about their energy
consumption. The project focuses on the tenants’ dynamic behaviour and suggested
lifestyle changes to reduce energy consumption via their services by providing a user-
friendly experience. As described in the article [10], the Entropy services collect and
process real-time data from sensor nodes while managing previously sourced sensor data.
Semantic Web technologies such as semantic models and ontologies are utilized for a uni-
fied data representation of the historical sensor data. On the one hand, the Energy Efficiency
Semantic Model represents the energy consumption data collected from the sensors and on
the other hand, the Behavioural Semantic Model has its focus on the energy consumption
profile of end users. These two models facilitate the further management and exploitation
of the collected sensor data. Using a LinDA workbench, the semantically annotated data
from the semantic models are transformed into semantically linked data [11]. This method
is useful to the building sector because it compares the collected data in exchange with
other open linked data like meteorological data. The data is serialized in JSON-LD format,
which is a lightweight linked data format. The recommender engine behind Entropy is
based on the Drools framework [12]: a rule-based management system, where a rule is
expressed by a condition element and a recommendation template.

2.2.4. Energy Consumption Prediction Framework

Building thermodynamics are complex non-linear phenomena, which are strongly
influenced by building operating modes, building fabrics, weather conditions as well
as occupant schedules [13]. There is a need for better prediction algorithms and tools.
Some predictive data-driven models are presented in [13], which are formulated with
machine learning (ML) techniques. The ML models are trained on a selected set of data and
tested on another mutually exclusive set, and consequently, the algorithm applies what
they learn during the training process. The predictive models are of two categories: on
one side, the black-box [14], in contrast to white-box [15] models (e.g., SVR, Regression
Forest [16]) and on the other side, the grey-box models (e.g., Gaussian). The mentioned
research work proves that the black box model predictions, applied to temperature values
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outperform the grey-box models, which are applied to energy consumption values because
the first ones captured human behaviour. Human behaviour has a greater impact on the
energy consumption than the envelope of the building. Among the black-box methods, the
Random Forest algorithm has the best prediction results as per conclusions in [13].

2.3. Tools

Some of the models and frameworks mentioned before are integrated into comprehen-
sive set of tools and applications as discussed below:

2.3.1. Building Energy Simulation Software

A building energy simulation tool creates “a digital model representing a virtual
building where the user can select and specify in detail the parameters that influence the
building performance, with resulting performance predictions that are as close to reality
as possible” [17] Most of the energy simulation software e.g., EnergyPlus [18] and the
Transient System Simulation Tool (TRNSYS [19]), are based on white-box simulation. They
simulate a building based on the explicitly introduced building details and calculate the
building energy consumption by using complex mathematical formulae [13]. EnergyPlus
is a mature and elaborated simulation software for buildings. It is targeted at expert
users, engineers, architects, and researchers. EnergyPlus was used for evaluation of results,
e.g., in the paper [20] and many more. With the help of EnergyPlus, a free, open-source,
cross-platform software, expert users can model energy and water consumption, lighting,
air quality and much more. The most important feature of EnergyPlus is that its use is
possible in machine-to-machine communication. The building data are fed to the program
with the help of input files, and the results of the program calculations are produced in
output files [20]. TRNSYS is a wildly used simulation environment, developed mainly for
thermal and electrical control systems, but it can also be used for other transient systems.
In contrast to EnergyPlus, TRNSYS is a commercial tool. TRNSYS is a versatile component-
based software system. Component models may be selected from the built- in libraries or
written by the user and linked to the main TRNSYS simulation model. It also supports
machine- to-machine communication since it can connect to the interface of other systems
or simulation tools [21]. The most important capabilities of a simulation tool are accuracy,
usability, data-exchange, and database support [22]. This kind of system requires detailed
information of the simulated building, information that is not always available [13]. The
lack of complete information is one of the causes of the so-called performance gap in
buildings [23].

2.3.2. Building Certification Software

A building certification software calculates energy performance and ratings based on
annual energy use, e.g., annual kilowatt-hours used per square meter (kWh/m2/year) or
related CO2 emissions, measured in kilograms of CO2 per square meter (kgCO2/m2/year).
Certification software ensures the quality of the certification as it facilitates standardised
calculations. A comprehensive software system may also provide recommendations for
upgrading the building to improve efficiency [24]. As an example, the EDGE-App is a
comparative software and a certification utility. This application is location and climate
aware. Additionally, it suggests possible certification companies, including their contact
data, after the user enters the available building measurement values.

2.3.3. Building Management Systems

The information gathered from smart meters and the information displayed on the
energy bills might be too technical for normal users; therefore, researchers are trying to find
solutions for improved visualization methods which are more appealing to the end-user,
with the end goal to motivate the user to save energy. The technical equipment is not aware
of the interests or the technical expertise of the user.
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Researchers have investigated which kind of visualization type tenants react to the
most. As reported in [25], the behavior of tenants was observed in the form of a virtual
game, where users could see the energy consumption of their virtual flats and define some
rules (e.g., shut down the light after 22 o’clock). These rules were automatically applied to
the virtual flat, and their effects on the energy consumption were inspected.

Among the researched visualizations for the consumed energy, some were:

• the amount of generated CO2,
• the number of trees needed to absorb the generated CO2,
• the amount of money spent, and
• comparison to other users of the game.

2.3.4. Energy Efficiency Testing Framework

Intending to increase the quality and the accuracy of energy analysis tools, the Na-
tional Renewable Energy Laboratory (NREL) in the US developed the Building Energy
Simulation Test for Existing Homes (BESTEST-EX) [26]. It is a test method whereby an en-
ergy performance software program is tested against itself for its performance in modelling
and prediction of energy consumption.

BESTEST-EX offers two types of test cases: building physics [27] and utility bill
calibration [28].

In the building physics test cases, the model inputs, which includes the building
data, is fixed by the test case. The resulting predictions for energy consumption are then
compared to the NREL predictions.

The utility bill calibration test case uses empirical data from energy bills of buildings in
the US. The software under test receives as input such data and then predicts energy savings.
Again, the results are then compared to the NREL reference predictions. These reference
predictions are calculated with state-of-the-art simulation tools such as EnergyPlus.

The tests comprised in BESTEST-EX are included in the ANSI/ASHRAE Standard 140,
“Method of Test for the Evaluation of Building Energy Analysis Computer Programs”.
BESTEST-EX can help diagnose why energy performance software has errors. The data
format specially developed for this kind of energy data is called Home Performance
Extensible Markup Language (HPXML). HPXML is an open data standard published
by the Building Performance Institute (BPI) that makes it easier to collect and transfer
home energy data among software tools [28]. HPXML comprises a standardized data
dictionary and a standardized data transfer protocol [29], as presented in the following
two paragraphs.

2.3.5. Building Assessment Simulation Software

Building simulation tools models include the important aspects of the physical be-
havior of buildings. A classification of building simulators can be found in [30]. The
classification criteria are:

• How is the model created?
• What is the level of dynamism of the model?
• What is the complexity of the model?

The weather and the occupants’ behaviour significantly impact the comfort level of
buildings; however, they are hard to predict. The designs that consider these uncertainties
are more reliable [30]. Uncertainties are categorized as:

• environmental: climate variability;
• quality of building materials and the quality of finishes; and
• occupancy dynamics: windows openings, the use of appliances, heating and cooling

preferences or occupancy.

The more detailed the recommendation, the better the chances that the owners would
implement the advice. Recommendations provided by building professionals are costly
as they require a building inspection. However, human interaction and details for the



Energies 2022, 15, 3155 7 of 22

upgrading measures might motivate owners to act on the recommendations. The costs can
be reduced if the recommendations are automatically generated by assessment software.
However, such recommendations could be less specific, which could weaken the impact of
the advice [24].

2.3.6. Collaboration on Energy Performance

The European Commission funded the BUILD UP platform to promote and facilitate
energy consumption saving measures in buildings. This platform offers information on
best practices, available technologies, and the current legislation for energy reduction. The
BUILD UP platform is open to building professionals, local authorities, and citizens, who
are encouraged to share their knowledge.

A complex collaboration research project funded by the International Energy Agency,
the European Union and the European Interreg Alpine Space Project ATLAS namely,
IEA-SHC Task 59, focuses on exchanging knowledge about energy and CO2 saving meth-
ods specifically in historical buildings. The outcome of this project will be the Historic
Building Atlas, a database for best practice examples of energy performance measures in
historical buildings.

2.4. Semantic Models

There are some gaps in the interoperability of Building Information Modelling (BIM)
tools. Semantic Enrichment Engine for Building Information Modeling (See BIM) is a
framework for enriching Industry Foundation Class (IFC) exchange files with semantic
concepts, which are inferred by semantic rule-engines from the building model’s infor-
mation [31]. The latter process is called semantic enrichment, where the semantics of a
building object are composed of three components: their form, function, and behavior. The
inference rules condense the subject matter knowledge of domain experts. The rules are
defined as IF-THEN statements using a predefined set of object types and operators. The
operators include functions for reading the existing building model, testing for geometrical
and topological relationships, and for creating new objects, properties, and relationships.
The rules are defined in a format understandable to domain experts [31]. These rules use
two types of IF clauses:

1. Clauses that test for features of a single object and
2. Clauses that test for topological relationships between pairs of objects.

Rules used to identify object types often depend on the prior identification of other
relevant, related objects. If the ruleset is set up improperly, some objects will not be
identified, and the semantic meaning will be partially lost. Sometimes, interdependency
within the rules can result in infinite loops. A method to define proper rule sets is presented
in [31].

The rich data sets can be analysed, explored, and processed by a formal query lan-
guage including geospatial languages [32], e.g., GeoSPARQL [33] or Spatial SQL [34],
handling spatial data. However, these languages are not suited for 3D representations,
specifically for the qualitative spatial predicates [35]. Consequently, a BIM query language
was developed named QL4BIM (Query Language for 4D Building Information Models) [30].
QL4BIM includes new domain- specific operators for expressing topological, directional,
and temporal aspects.

The semantic enrichment engine (SEE) uses forward chaining to infer new facts about
a model.

As presented in Figure 1, the components of the semantic enrichment engine include
the following [31]:

(1) a parser, which reads IFC model instance files exported from BIM tools.
(2) an internal run-time database that stores parsed objects, relationships, and their

attribute values.
(3) inference rules, which are edited by domain expert users and kept in a file storage system.
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The rule processor uses forward chaining. In this way, a derivation of any new fact can
trigger further new inferences. The processing ends when no further facts can be inferred.
Rule-sets are described using a three-tiered architecture [31]:

Tier 1—the rule statements. The lexical components are logical and relational operators,
constants (defined in Tier 2), domain-specific concepts and relationships and product model
schema entities.

Tier 2—the vocabulary. It consists of concepts, properties, and relationships. It
comprises the operators used for compiling the rules in Tier 1.

Tier 3—the machine-readable code of the Tier 2 operators.

3. Methodology

The purpose of our methodology is to offer predictions of energy efficiency ratings
for dwellings. This is possible with the help of machine learning techniques (K-Nearest
Neighbors classification method). For the prediction, the idea is to group the available
dwelling data into 7 clusters (i.e., from A to G), according to the number of currently
possible EPC ratings. Then, for each new dwelling, represented by the input tuple t, the
closest cluster centre c is computed. The label of the closest cluster centre is then the EPC
rating label r, appointed to the input tuple t (1).

t = (floor_area, energy_consumption)
d(t): t→ c
r(t): d(t)→ c.label

(1)

Clustering methods group a set of data into subsets, called clusters. The data entries
grouped inside a cluster should be as similar as possible to each other. However, they
should be as different as possible compared to other clusters’ data entries. The similarity
in clustering methods is determined by the distance of the data points to each other. The
data entries are represented as data points in an n-dimensional space. In our case, the data
points were tuples (floor area and energy consumption) represented in a 2-dimensional
space. The number of clusters (often marked as k) is called the cluster cardinality. For
clustering methods, finding the right cardinality might be a wild guess, but there exist
fitness methods (e.g., silhouette method) that approximate the right number of clusters.
In both clustering methods, the goal is to find good centroids (cluster centers). The two
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clustering methods that were tried out were k-means and k-medoids. In k-means the aim is
to minimize the average squared Euclidean distance [17] of each data point to its computed
centroid, where the centroid is not necessarily one of the actual data points.

The k-medoids is a variant of k-means, but instead of computing the centroids, a data
point is designated as the centroid to which the distance to the other data points in the
cluster is kept minimal. K-medoids is less sensitive to outliers than k-means. In the case
of predicting energy performance ratings, the above methods did not help us to achieve
results and they were replaced by a different machine-learning method. Nevertheless, for
the case of proving that fewer rating labels are appropriate, we continue with presenting
the workflow and the data analysis performed at this stage.

Fitness methods measure how well the data points fit into the designated cluster. For
calculating the optimal number of clusters, rating labels, the following fitness metrics [13]
are used:

• the elbow method;
• the Silhouette Coefficient;
• the Calinski-Harabasz score.

The Silhouette Coefficient shows how similar a data point is to its own cluster. The
higher the value, the more the data point fits into the assigned cluster. For each data point,
the Silhouette Coefficient [18] is

(b− a)
max(b− a)

where

a: mean intra-cluster distance
b: mean nearest cluster distance.

The Calinski-Harabasz Score [11] or Variance Ratio is the ratio between the within-
cluster dispersion, and the between-cluster dispersion, where the dispersion is the sum of
distances squared.

3.1. The Prediction Algorithm

In order to predict energy performance ratings, the kNN (k-Nearest Neighbours)
classification algorithm is used in this work.

The kNN classification algorithm consists of assigning a new unseen data point to the
majority classification class of its k nearest neighbours. The neighbours themselves are
already classified and are part of the training data. The neighbours are computed using a
similarity measure, representing the distance between data points; the smaller, the better.

The computing power is quite high, and a long response time for requests triggered
by the user interface or by the REST calls is not feasible. In consequence, the prediction
algorithm is split into two parts. These are presented in the next paragraphs.

In the first part of the prediction algorithm, we load the data from the database and
prepare it. The preparation consists of:

a. Feature scaling, where the data point values are transformed to the same value range.
For this purpose, the StandardScaler is used, which subtracts the mean and scales it
to unit variance, meaning it divides all values by the standard deviation.

b. Splitting the data into training data (80%) and testing data (20%).

A classification model is created with the scikit-learn’s kNN algorithm, based on
the prepared data. For calculating the similarity, the Euclidean distance is used. The
resulting classification models are kept to be used on-demand in the second part of the
prediction algorithm.
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3.2. Semantic Annotation

The data model developed for the prediction algorithm may be used as a data model
for energy performance certificates. Additionally, this data model can be enriched with
semantic annotations and serve as the base for semantic reasoning. With a LinDA Work-
bench, data can be annotated with standard vocabularies and visualised as linked data.
After some difficulties importing the needed dependencies and deploying the source code,
the idea of using this promising tool was dropped, due to technical difficulties in setting up
the application. We pursued a manual annotation instead.

At the time of writing, no dedicated ontology was available for energy performance
certificates. Nevertheless, we tried two approaches:

I the schema.org vocabulary, and
II the PXL open standard.

4. Implementation

This section presents details about the implementation for our energy efficiency rating
application including the data importer and the prediction logic.

The Data Import

For the basis of the prediction system, we looked for datasets that include energy
performance data. Of particular interest were datasets with energy consumption measures
and EPC ratings.

There were some open datasets available with energy consumption data; however,
just a few of them included EPC rating data. For this work, we settled on the governmental
open datasets containing energy consumption measures and EPC ratings from

• England
• France
• Scotland
• Ireland

These datasets are offered as CSV data files that contain a variety of building properties
(e.g., building type, address, floor area, carbon emissions). Only the properties relevant
to our purpose were extracted and imported into the applications’ database. A custom
CSV-Importer accomplished the extraction, selection, and persistence of the data. This
importer read each CSV file and imported the required fields into the database as a JSON
formatted object. The database is a NoSQL MongoDB database, hosted on the MongoDB
Cloud platform.

Since each country implements a different EPC rating scheme, i.e.,

a Scotland: RdSAP
b Ireland: BER, Dwelling Energy Assessment Procedure (DEAP)

it was considered appropriate not to mix the data and handle each country separately to
have a better chance for a valid rating prediction.

Additionally, each country collected data for different dwelling properties. Conse-
quently, this meant that for each country, a dedicated data mapper had to be implemented.
As part of the importing algorithm, these mappers selected the required properties and
mapped them into a global data structure. As a comparison, the number of building
properties available in the original datasets for each country was:

1. England: 83
2. France: 21
3. Scotland: 49
4. Ireland: 202



Energies 2022, 15, 3155 11 of 22

In the first version of the application, the selected data field values for floor area and
energy consumption were imported in a one-to-one ratio, meaning that the double values
for floor area (e.g., 71.25 m2) and energy consumption (e.g., 228.78 kVh/m2/year) were
imported as such. In a later iteration, to improve the prediction calculations, these values
were converted into integer values (e.g., 71 resp. 228). The data accuracy was lowered to
achieve a better prediction. Therefore, approximately 20% more data entries fit into the
database than with the first version. The increase of imported data did not improve the
prediction considerably, indicating that the originally imported data was representative of
the whole dataset.

Additionally, further adjustments were made while importing the original data. For
example, in the case of Ireland, the BER rating scheme offered granular ratings (i.e., A1,
A2, A3, B1, B2, B3, C1, C2, C3, D1, D2, E, F, G). Consequently, our importer needed to map
the granular ratings to the more generally used ones (i.e., A, B, C, D, E, F, G) as an effort to
standardise the input data.

To sum up, for each country, an individual importer was developed to read the
country-specific CSV files. For each country, a separate database was created to preserve the
correlation between the rating values and the rating methodology and train the prediction
model individually for each country and consequently offer country- specific predictions.

There were a few reasons why not all the original data were imported into the database:

A The freely available storage on the MongoDB Cloud platform is finite (i.e., 512 MB);
in the case of England, this resulted in fewer imported data entries (Table 1).

B The importer excluded dwellings with missing values for floor area, energy consump-
tion, or EPC rating; this decreased the number of valid entries for France, Scotland,
and Ireland.

C To achieve an evenly distributed dataset, sequentially every 3rd or every 10th valid
entry (depending on the country) was imported (Table 2).

Table 1. Imported data amount.

Country Imported Entries Original Entries Storage (Actual/Total)

England 759,460 7,000,000+ (in 163 files) 512/512 MB
France 368,127 3,584,241 (in 36 files) 214/512 MB

Scotland 300,871 872,442 (in 18 files) 217/512 MB
Ireland 268,208 902,255 (in 1 file) 241/512 MB

Table 2. Imported data distribution.

Country Import Distribution

England every 10th entry
France every 10th entry

Scotland every 3rd entry
Ireland every 3rd entry

An overview of the number of imported dwellings is displayed in Table 1 below.
Although we have for each country a separate database, all databases have the same

database schema based on our newly developed model. This model consists of 60 data
fields and its data structure is presented as a UML class diagram in Figure 2. Our model
comprises most of the information displayed on an energy performance certificate.
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A list of the most important classes of our EPC model, grouped by domain is as follows:

1. Energy Performance Certificate—modelled as the top-level class i.e., EPC, contains
information such as identification details and the certification’s validity. It is linked to
all other subclasses that represent details about the dwelling, the issued rating level,
or the issuing authority.

2. Energy Performance Rating—modelled as three classes: Rating, Rating Methodology
and Software. On some certificates (e.g., for Ireland), the rating comprises two values:
the rating label and the corresponding rating points. Additionally, the details of
the used rating methodology or software are available in the open data (for Ireland
and Scotland). Our database contains rating labels for each dwelling since they are
essential for this work.
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3. Issuing Authority—modelled as classes: Assessor, Organization, Person, and Contact
Details. A certified assessor issues an energy performance certificate. The information
about the assessor (identification, contact data, and affiliation) are mandatory on an
energy performance certificate; however, this data is mostly closed data and is not
available in our imported datasets.

4. Dwelling—details about the rated dwelling such as identification, construction year,
type (e.g., house, flat), address, photograph, etc. Some datasets (e.g., France) offer
geographical and climate data; this is useful, e.g., for future use cases where solar
energy can be of importance.

5. Energy Consumption—modelled as class ThermalData. It comprises measured or
predicted energy consumption data. Some open datasets offer measurements for
general energy consumption, whereas other datasets offer differential data for water
and space heating energy and even electrical energy. Additional details such as
heating fuel type or carbon footprint can be used for future use cases.

6. Floor Area—is part of the class SpatialData. For our purpose, the dwellings’ floor
area is of importance; nevertheless, we also modelled data for volume space and
geographical orientation since it can be useful for future use cases.

The data structures for each domain are listed as an overview in Table 3.

Table 3. EPC details mapped to the modelled data structure.

Domain Data Structure/UML Classes

Energy Performance Certificate EPC
Energy Performance Rating Rating, RatingMethodology, Software
Issuing Authority Assessor, Person, ContactDetails, Organisation
Dwelling Dwelling, BuildingAddress, ClimateData, Photo
Energy Consumption ThermalData
Floor Area SpatialData

For our particular use case, the EPC rating prediction, the following listed properties
(Table 4) were used in our prediction algorithm:

Table 4. Dwelling properties used for estimating the energy performance rating.

Property Database Field Name Type Measuring Unit

Country Country String N/A

Floor Area totalFloorArea Long m2

Energy
Consumption

primaryEnergyDemand (Scotland)
finalEnergyConsumption (France)

finalEnergyDemand (England)
finalEnergyDemand (Ireland)

Long

kWh/m2/year (Scotland)
kWh/year (France)

kWh/m2/year (England)
kWh/year (Ireland)

Rating ratingLevel String N/A

Our machine-readable data structure can be used for data exchange purposes and
other use cases and applications. Some certificates offer recommendations for dwelling
improvements. Our data structure can be easily extended to cover this topic as well.

For the data import, some technical users are needed (one user per country/-database).
During the import process, these users have written access, each user to its designated
database. When the import has finished, all technical users receive read-only access for the
further process (e.g., prediction calculation). They have no permission for CRUD operations
on the database and cannot alter the permission matrix. The credentials for the technical
users are available in cleartext in the applications’ source code. Since the imported data is
open data, the credentials’ visibility is not considered a security issue.
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The small number of dwellings in the A, F and G groups raises the question of having
too many labels in use. Since the A rating label is a goal to which the building sector aims,
this rating needs to be kept. However, by putting labels F and G together as F, the latter label
G could be dropped and in time even the F rating label. Judging by the clustering methods
and frequency plot results, 5 labels are best. Moreover, it might make things even easier for
the assessors of buildings, since the rating E, F and G are in the same “underperforming”
category, and the European Union aims at enabling building renovations to achieve the
best rating, A. Figure 3 below depicts idea of decreasing the number of clusters would have
also come into the mind by analyzing the frequency plots below.
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Further use of k-means is the visualization of clusters. Two preprocessing steps are
conducted to improve the clustering. The first step is scaling the values to standardise the
range. This is useful, especially in a situation like ours, where the values are measured in a
different unit of measure (floor area: m2; energy consumption: kVh/m2). As a result, the
values for floor area and energy consumption are scaled values. An example of actual and
scaled values is presented in Table 5 below.

Table 5. Actual versus scaled values.

Actual Value Scaled Value

Floor area 73 −0.269161

Energy consumption 428 1.026007

The second pre-processing step is removing the outliers that influence the clustering
algorithms. We removed the outliers in three steps: first, we plotted the clusters with all
input data; secondly, we identified and removed the outliers from the input set; finally,
we plotted the clusters again, only this time with the reduced input set. The clustering
result is presented in (Figure 4a), where each cluster has a different colour, and the cluster
centres are marked with red. Similar results can be obtained with the k-medoids method
(Figure 4b). However, the k-medoids algorithm requires more computing memory than
k-means, which resulted in reducing the input data considerably (only 19,998 dwellings in
comparison to 100,000 dwellings used for other metrics and plots presented in this work).

The effectiveness metrics of our algorithm for England are displayed in Table 6 where
Rating Label D indicates highest F1-score and support values. This also indicates that
predicted classes for rating Label D is highest in confusion matrix for England as depicted
in Table 7.
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Table 6. Effectiveness metrics for England.

Rating Label Precision Recall FI-Score Support

A 0.80 0.29 0.42 42
B 0.73 0.73 0.73 1538
C 0.67 0.69 0.68 5229
D 0.68 0.76 0.72 8261
E 0.63 0.58 0.61 3688
F 0.38 0.17 0.24 969
G 0.32 0.06 0.10 273

Accuracy 0.67

Table 7. Confusion matrix for England.

Predicted Classes

A B C D E F G

ac
tu

al
cl

as
se

s

A 12 19 4 7 0 0 0
B 3 1121 393 20 0 1 0
C 0 390 3629 1187 21 1 0
D 0 15 1273 6282 655 36 0
E 0 0 51 1291 2146 188 12
F 0 1 30 256 494 165 24
G 0 0 16 138 64 38 17

Accuracy: How often is the prediction correct? 67% of the time.
Precision: How many data points are correctly predicted, out of all the predicted

labels of a given class? Out of the times A was predicted, the algorithm was correct 80% of
the time.

Recall: How many data points are correctly predicted, out of all the instances with the
given label? Out of the data points with label A, 29% were correctly predicted.

F1-score: Combines the precision and recall into one measure
((2∗Precision∗Recall)).
Support: How many correctly labelled instances are in the class.
Since the prediction calculations consume quite some computing resources, not the

whole database could be used as a base for the predictions. Nevertheless, the number of
classified database entries were enough for a decent prediction. An overview of the number
of imported entries versus the classified entries is displayed in Table 8.
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Table 8. Imported versus analysed entries.

Country Imported
Entries

Entries Used
for Prediction

England 759,460 100,000
France 368,127 100,000

Scotland 300,871 100,000
Ireland 268,208 90,000

The property mappings used in our annotated examples are listed in Table 9. The
energy performance certificate properties, which did not find a correspondence in the
schema.org vocabulary, are annotated as “additionalProperty” (marked with blue in Table 9)
and are defined with the schema.org type “PropertyValue”.

Table 9. EPC properties as schema.org classes.

EPC Properties Schema.org Properties

EPC Thing.CreativeVork or
Thing.Review

EPC.identificationNumber Thing.Property.identifier

EPC.creationDate Thing.CreativeWork.dateCreated
Thing.additionalProperty

EPC.awardedRating Thing.Intangible.Rating.AggregateRating
Thing.IntangibleRating

EPC.potentialRating Thing.Intangible.Rating.AggregateRating
Thing.Intangible.Rating

EPC.purpose Thing.potentialAction

EPC.ratedDwelling
EPC.ratedDwelling.type.HOUSE
EPC.ratedDwelling.identificationNumber
EPC.ratedDwelling.buildingAddress
EPC.ratedDwelling.spatialData.totalFloorArea
EPC.ratedDwelling.finalEnergyDemand
EPC.ratedDwelling.mainHeatingFuelType
EPC.ratedDwelling.carbonFootprint

Thing.Property.about
Thing.Place.Accomodation.House
Thing.Property.identifier
ContactPoint.PostalAddress
Thing.Property.floorSize
Thing.additionalProperty
Thing.additionalProperty
Thing.additionalProperty

The resulting annotated data represents an energy performance certificate model,
presented as linked data in JSON-LD format. The annotated data can be used, among
other uses, as rich content in websites for search engine optimisation. The validation was
conducted with online tools such as JSON- LD Playgroundl2 and Google Rich Results
Testl2l. These tools validated the example annotated with the Review type (however, not the
example with the CreativeWork, due to issues for the type “AggregateRating”). This is fine
since our model does not match conceptually to the currently available schema.org types.

The second approach was to format the EPC data with the open data standard HPXML.
This standard leverages the exchange of energy performance data on buildings and appli-
ances. The HPXML Data Dictionary comprises the concepts and constraints of building
properties. A mapping of EPC properties to HPXML concepts [23] is presented in Table 10.
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Table 10. EPC properties as HPXML terms.

EPC Properties HPXML Properties

EPC GreenBuildingVerification

identificationNumber
creationDate Assessor

GreenBuildingVerification.SystemIdentifier
GreenBuildingVerification.Year
GreenBuildingVerification.Assessor

EPC.ratedDwelling Building

identificationNumber
type buildingAddress
spatialData.orientation
spatialData.totalFloorArea
thermalData.finalEnergyDemand
thermalData.mainHeatingFuelType

Building.BuildingID
BuildingConstruction.ResidentialFacilityType
Building.Site.Address
Building.Site.OrientationOfFrontOfHome
BuildingConstruction.NetFloorArea
BuildingDetails.ModeledUsage.AnnualConsumption
BuildingDetails.ModeledUsage.EnergyType

EPC.awardedRating.ratingLevel GreenBuildingVerification.Rating

There are some EPC properties that were not matched to concepts of the PXL Data
Dictionary, such as purpose, used methodology and carbonFootprint. The class Green-
BuildingVerification is not a perfect match for our use case. Our EPC model is not restrictive
on a specific certification type, and Green Building Certifications are a subtype of certifications.

5. Results

For the human user, the most interesting part and the main goal of the application is
the rating prediction.From the perspective of the data analysis and prediction, the following
results are of interest:

• the rating distributions of the datasets,
• the similarity scores of k-means and k-medoids, and
• the accuracy of the prediction algorithm kNN.

The frequency plots or distribution plots represent the number of dwellings assigned
for a specific label. According to the plots displayed in Figure 5, most dwellings are rated
as C or D in England, Scotland and Ireland; and D or E in France. The least of the dwellings
are rated with label A. This fact supports the demand of the European Union to improve
the energy performance of buildings.

Next, we observed the k-means and k-medoids and at the metrics elbow plot, Sil-
houette Coefficient and Calinski-Harabasz Score. These metrics are used to compute the
optimal number of clusters. The theoretical details are presented in Section 3. Below, we
looked at the results for all the four countries, presented in Table 11 and in Figure 5:

We used these results for the optimal number of clusters as a basis for the discussion if
the currently valid number of rating labels (a total of seven) was longer feasible.

Reducing the rating labels to k = 3, values (A, B, C), is extreme from the practical view
of the EPC rating schemes and is not usable in the real world, but according to the data
analysis, this small number of labels would also be fine.

The number of rating labels of k = 5 could work in the real world, having rating
levels from A to E, by dropping F and G, or in other works by creating a new label E+
that comprises the old E, F and G ratings. This approach could make the EPCs easier
to understand by the end user. Additionally, the assessor would not have to distinguish
between E, F and G dwellings by fine-tuning their calculations for this category of dwellings,
since this type of building is underperforming. For this category of building, a clear need
for an energy performance upgrade is needed. If this endeavour is estimated to be too
costly, demolition can be considered. However, this is for the owners of the buildings
to decide. Here we try to present the idea of making the EPC rating schemes easier, by
reducing the number of rating levels from seven to five. This approach aligns with the
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European Union’s endeavour to push the energy efficiency of buildings towards the best
performing rating level A.
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Table 11. Cluster fitness score for countries.

k Silhouette CH Score k Silhouette CH Score

3 0.45 53,382.05 3 0.58 116,054.94
4 0.34 51,612.25 4 0.57 139,134.83
5 0.36 54,010.00 5 0.51 174,678.36
6 0.31 52,076.15 6 0.49 206,350.63
7 0.31 52,177.72 7 0.49 235,340.24
8 0.31 51,580.49 8 0.48 269,832.81

a. Cluster Fitness England b. Cluster Fitness France

k Silhouette CH Score k Silhouette CH Score

3 0.62 79,998.00 3 0.57 66,935.38
4 0.46 82,373.95 4 0.48 64,643.67
5 0.47 95,541.71 5 0.48 61,104.66
6 0.39 101,310.40 6 0.48 60,011.44
7 0.35 103,399.89 7 0.41 62,973.35
8 0.35 106,897.49 8 0.40 63,865.31

c. Cluster Fitness Scotland d. Cluster Fitness Ireland

In the next figures and tables, we display the computed optimum number of clusters
k for each country:

• England, optimum k ∈ {3, 5};
• France, optimum k ∈ {3, 4};
• Scotland, optimum k ∈ {4, 5}; and
• Ireland, optimum k ∈ {3, 4}.
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Using the feasible number of clusters for each country, we visualised the clusters for
the k-means clustering method (Figure 6). Since k-means is sensitive to outliers, as an
optimization step, we removed some outliers from the dataset before applying the k-means
algorithm. Each cluster is presented with a different colour, whereas the cluster centres are
marked with red.
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We skipped the k-medoids plot generation for each country due to computing mem-
ory issues.

The machine learning algorithm that finally led us to a result is the kNN classification
method. The energy performance rating was predicted based on the input data: floor area
and energy consumption. As a piece of additional information, five of the most similar
dwellings were also computed. The similarity was based on two criteria, floor area and
energy consumption.

Lastly, we present the prediction algorithms’ accuracy metrics for each country in the
below in Table 12:

Table 12. Effectiveness metrics for the prediction algorithm across countries.

Rating Label Precision Recall FI-Score Support

A 0.80 0.29 0.42 42
B 0.73 0.73 0.73 1538
C 0.67 0.69 0.68 5229
D 0.68 0.76 0.72 8261
E 0.63 0.58 0.61 3688
F 0.38 0.17 0.24 969
G 0.32 0.06 0.10 273

Accuracy 0.67

a. The effectiveness metrics for England
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Table 12. Cont.

Rating Label Precision Recall FI-score Support

A 0.94 0.46 0.61 127
B 0.96 0.67 0.79 558
C 0.94 0.97 0.96 3073
D 0.95 0.99 0.97 7030
E 0.96 0.99 0.97 5780
F 0.97 0.95 0.96 2464
G 1.00 0.72 0.84 968

Accuracy 0.96

b. The effectiveness metrics for France

Rating Label Precision Recall FI-score Support

A 0.50 0.11 0.18 37
B 0.71 0.47 0.57 616
C 0.85 0.86 0.86 7339
D 0.75 0.86 0.80 8442
E 0.66 0.54 0.59 2641
F 0.38 0.14 0.20 744
G 0.32 0.08 0.12 181

Accuracy 0.77

c. The effectiveness metrics for Scotland

Rating Label Precision Recall FI-score Support

A 0.60 0.19 0.29 135
B 0.45 0.29 0.36 2072
C 0.54 0.78 0.64 6667
D 0.54 0.53 0.53 4523
E 0.45 0.30 0.36 2133
F 0.43 0.20 0.27 1011
G 0.51 0.23 0.31 1459

Accuracy 0.52

d. The effectiveness metrics for Ireland

6. Conclusions and Future Work

By using the near-zero energy building concept, we can lower energy consumption.
Smart energy devices are not yet clever enough to address building context or personal

motivations. Nevertheless, the comfort of users should not be compromised in the desire
to lower the carbon footprint of buildings [13,26].

This work aimed at providing a solution for reducing the demand for primary energy
(heating, domestic hot water, and electric energy consumption) by offering a self-assessment
tool for building tenants. This tool offers an approximation of the EPC rating of a dwelling,
based on two properties: floor area and energy consumption. The prediction tool does not
replace an EPC rating scheme or an energy performance certificate; it informs the users
before they dive into a possibly costly certification. Simultaneously, the self-assessment
tool can sensitize the users regarding their energy consumption. It can trigger thoughts
about the renovation of their dwellings and enable tenants to lower their carbon footprint.

With regards to future work, the following ideas and use cases can be considered:

1. More state-of-art similarity metrics and clustering algorithms can be researched and
incorporated based on suitability with regard to available data.

2. Semantic models for energy performance certificates (EPC) can be further integrated
with semantic tools, which can help in reconciliation and alignment with cross domain
semantic models. These tools can then be used for applying reasoning on EPC data.
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3. A tool for automated annotation of EPC data based on a newly developed ontology
can be implemented further.
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