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Abstract: Network reconfiguration is an effective way to avoid severe, large-scale power outages and
to improve the resilience of active distribution networks (ADNs). Furthermore, the rapid development
of distributed energy resources (DERs) provides new perspectives for network reconfiguration. In
this paper, the effect of network reconfiguration and DER collaboration on ADN’s resilient restoration
are studied. The applications of DERs are fully explored. In order to achieve a better resilient
performance, a detailed multiperiod model considering both reconfiguration and multiple DERs
is established. Some linearization techniques are used to simplify the proposed model. Then, we
build a rolling horizon optimization framework to solve the model. The framework eliminates the
adverse effect of prediction errors and speeds up the calculation. By introducing predictions into
strategy determination, the framework achieves a better restoration effect than the traditional greedy
method. The proposed framework is tested on a 33-bus system. The simulations verify the efficiency
of our work.

Keywords: rolling horizon optimization; active distribution network; network reconfiguration; resilience

1. Introduction

Recently, distributed energy resources (DERs), including energies of solar and wind,
have been widely integrated into active distribution networks (ADNs) to avoid infrastruc-
ture costs, improve resilience, and achieve low carbon emissions [1]. However, most DERs
are renewable energies, with a high degree of uncertainty and volatility. Their applications
may cause significant negative impacts on ADN’s operations.

Many technologies are being developed to deal with the problems caused by the DER
penetrations. Network reconfiguration attracts much attention due to its ability to optimize
operations by adjusting the system’s topology [2]. With advanced dispatchable switches
equipped in the ADN, the network can be changed flexibly to improve the operation
quality and eliminate the preceding effects. At present, there is some research on the
reconfiguration of the ADN. It has been already used in supporting voltage/frequency
control [3], energy management [4,5], and power outage recovery [6], etc.

In recent years, urban power grids have been facing the threats of extreme disasters.
Many scholars have noticed that the network reconfiguration can realize a regional power
supply of damaged grids. Therefore, it has also been widely applied in the field of system
resilience enhancement.

Ref. [7] established a basic reconfiguration model for ADNs equipped with a complex
communication system. An improved consensus algorithm is proposed to realize the joint
restoration for both systems. Ref. [8] designed a leader–follower control structure and
used the mixed-integer second-order cone programming to speed up the solution. Ref. [9]
formed a two-stage optimization considering the uncertainties before and after a disaster.
Ref. [10] studied the deployment strategy of remote switches to support further control
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when facing an emerging situation. Ref. [11] invented an identification method for critical
switches based on network reconfiguration by forming a two-stage robust optimization.
Ref. [12] applied multiagent soft actor–critic techniques on the reconfiguration of AC/DC
hybrid distribution networks to obtain better resilient performances.

As mentioned above, most of the research is focused on the system topology tech-
niques. Combined with local energy storage and diesel generators, these methods can
achieve rapid system recovery. Recently, the development of different energy forms has
provided more new insights [13]. Renewable energy is the first concern. The control
problem of wind turbines for network reconfiguration is analyzed in [14]. Ref. [15] further
considered photovoltaic sources in the system emergency operation. Ref. [16] designed
a resilient control strategy based on a power router with renewable generation and net-
work reconfiguration.

Mobile power sources have been introduced for resilient restoration. Ref. [17] com-
bines the mobile power sources and logistics resources to coordinate with the network
reconfiguration. Ref. [18] explored the potential of mobile sources on seismic resilience
of ADN. Transportation-electrification techniques can also improve a system’s resilience.
Ref. [19] designed a resilience-based architecture for joint distributed electric vehicles allo-
cation and hourly network reconfiguration. The feasibility of electric buses is discovered.
The preallocation [20] and post-disaster restoration [21] of electric buses were studied,
respectively.

In this work, we will focus on the resilient application of network reconfiguration with
multiple power sources. However, there still exist some research gaps, as follows:

• An ADN consists of more than one type of power source which can serve as an emer-
gency backup generator. The restoration problem considering network reconfiguration
still needs to be modeled in more detail.

• The multiperiod restoration problem needs lots of predictions, which introducing
prediction errors into the model. Additionally, the existence of a large number of
integral variables will limit its application.

In this work, we match the DERs and network reconfiguration to help the system
enhance its resilience. The key contributions of this work are twofold:

• We establish a detailed multiperiod resilient network reconfiguration model, which
considers different power supply sources (including DERs). The impacts of network
changes on power flow and voltage are fully studied. In addition, some linearization
techniques are adopted to reduce the complexity of the model.

• We develop a rolling-horizon-optimization-based framework for this multiperiod
problem in order to make effective use of predictions and speed up the model compu-
tation. This method can reliably solve the reconfiguration problem.

In the following, Section 2 establishes a detailed model for the resilient network re-
configuration in coordination with multiple sources. Section 3 proposes a rolling horizon
optimization framework to deal with the existence of prediction errors and low computa-
tional speed. Section 4 gives the numerical results. Section 5 concludes the work.

2. Multiperiod Network Restoration of Distribution Systems
2.1. Preliminaries

The distribution network is always modeled as a connected undirected graph G = 〈N, L〉,
where N is the set of distribution nodes, and L is the set of all distribution lines. The set
NS is defined to represent the power source nodes, including feeders, DERs, and energy
storage systems (ESSs). In daily operation, the topology of the distribution network should
maintain a radial structure in order to facilitate coordinations and protections.

When facing extreme events (e.g., earthquake, wildfire, meteorological disasters),
large-scale power outages may happen due to the distribution line damages. The network
reconfiguration problem aims to minimize the potential power losses by adjusting the
topology with intact equipment. The entire network may be divided into several discon-
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nected microgrids (MGs), and then the loads are powered by different sources in MGs
according to their priorities.

In the reconfiguration process, if we still use an undirected graph to model the distri-
bution network with a radial structure, a phenomenon of “pseudo-root” may occur and
influence the resilient effect [22]. Thus, in this work, we apply the theory of directed span-
ning trees on modeling to realize a better restoration and avoid the mentioned problems.
An illustration of applied theory on the DS is given in Figure 1.

Distribution node

S Source node

Closed lines

SS

Microgrid 1 Microgrid 2

Real power flow direction

Open lines

Figure 1. An illustration of the network reconfiguration.

In this figure, the arrows indicate the parent–child relationships between two adjacent
nodes. The reconfigured MGs are modeled as several spanning trees. Each distribution
node is assigned with one virtual unit demand. In addition, source nodes are treated as the
roots of different MGs and are the only sources of virtual demands. By defining the virtual
demands and sources, the connectivity and the radial structures of MGs can be strictly
guaranteed. Furthermore, we can further model the reconfiguration model and determine
the actual directions of power flows with these concepts.

2.2. Radiality Constraints

Maintaining the radiality of MGs should first be met in the resilient restoration. With
the predefined virtual demands (FL

i,t = 1), we have the following constraints.

sij,t ≤ uij,t, ∀(ij) ∈ L (1)

sij,t = sd
ij,t + sr

ji,t, ∀(ij) ∈ L (2)

sr
ji,t = 0, sd

ij,t = 1, ∀j ∈ NS (3)

zk,t ≤ ∑
i∈S(k)

sd
ik,t + ∑

j∈S(k)
sr

jk,t ≤ 1, ∀k ∈ N (4)

|zi,t − zj,t| ≤ 1− sij,t, ∀i, j ∈ N (5)

−zi,tFL
i,t = ∑

j∈S(i)
Fij,t, ∀i ∈ N (6)

|Fij,t| ≤ sij,t|N|, ∀(ij) ∈ L (7)

where uij,t ∈ {0, 1} reflects the impacts of extreme events on the distribution lines. Since
distribution lines are often exposed to the outdoors, they are vulnerable to extreme events,
such as hurricanes and wildfires, etc. When extreme events damage the line (ij) at t, we
set uij,t = 1; and when the extreme events do not cause damage to the line (i.e., the line
is intact), we set uij,t = 0. sij,t ∈ {0, 1} indicates the line states. sd

ij,t, sr
ji,t ∈ {0, 1} are two

auxiliary variables representing the power flow directions. zk,t ∈ {0, 1} represents the
power supply states of distribution nodes. Fij,t represents virtual power flow on line (ij).
|N| is the cardinality of set N. S(k) is the set of nodes connecting to node k.
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Constraint (1) states that the line states are restricted by the equipment states.
Constraint (2) indicates that the power flow on each line has only one direction. Con-
straint (3) expresses the root nodes only have out degree in the spanning tree (since they are
the source node of the virtual demands). Constraint (4) reflects the parent–child relation-
ships. Constraint (5) is the consistency constraint of line states and nodes states (on both
sides). Constraints (6) and (7) restrict the flow of virtual demands, exhibit the conservative
of the virtual flow, and guarantees the radiality structure.

2.3. Power Flow Constraints

The control and adjustment of the network topology will affect the power flow of
the ADN. In this section, we analyze the relations between reconfiguration and system
operation, then we give a detailed model.

2.3.1. Power Balance

In this work, we adopt the LinDistFlow [23] model to describe the power flow conver-
sation, which is listed as follows.

∑
(ij)∈L

Pij,t = PG
i,t − PL

i,t, ∀i ∈ N, t (8)

∑
(ij)∈L

Qij,t = QG
i,t −QL

i,t, ∀i ∈ N, t (9)

0 ≤ PL
i,t ≤ zi,t · PL,max

i,t , ∀i ∈ N, t (10)

QL
i,t = tan

(
cos−1 φi

)
PL

i,t, ∀i ∈ N, t (11)

PL
i,t ≤ PL

i,t+1, ∀i ∈ N, t (12)

(Pij,t)
2 + (Qij,t)

2 ≤ sij,t · (Smax
ij )2, ∀(ij) ∈ L, t (13)

where Pij,t, Qij,t are the active/reactive power flow on distribution line (ij) at time t. PG
i,t, QG

i,t
are the power output generation at node i. PL

i,t, QL
i,t represent the active/reactive load

demands at node i. φi is the power factor of load i.
Constraints (8) and (9) represent the active/reactive power flow balance on each line

and node. Constraints (10) and (11) reflect the range of restored loads. Constraint (12)
indicates that the picked-up loads will not be shut down again. Constraint (13) is the line
capacity constraints of each distribution line (ij).

2.3.2. Voltage Constraints

Except for the power-flow-related constraints, the change of nodal voltages should
also be considered. Therefore, we have the following constraints:

vt
i − vt

j ≤ M
(
1− sij,t

)
+

RijPt
ij + XijQt

ij

V0
, ∀(ij), t (14)

vt
i − vt

j ≥ M
(
sij,t − 1

)
+

RijPt
ij + XijQt

ij

V0
, ∀(ij), t (15)

vt
i = V0, ∀i ∈ NS, t (16)

zi,tvmin
i ≤ vt

i ≤ zi,tvmax
i , ∀i ∈ N\NS, t (17)

where vt
i is the voltage magnitude of node i at time t. Rij and Xij are the resistance and

reactance of the line (ij), respectively. M is a large enough positive number. V0 is the
reference value of nodal voltage. vmin

i and vmax
i are the lower/upper bounds of voltages,

respectively.
Constraints (14) and (15) reflect the relationships between nodal voltages and power

flows. The big-M theory is applied to ensure that there is a correct relationship between the
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two under the influences of line states. To better illustrate the use of M and the meaning of
Constraints (14) and (15), we have the following discussion.

When sij,t = 1, Constraints (14) and (15) can be transferred as:

vt
i − vt

j =
RijPt

ij + XijQt
ij

V0
, ∀(ij), t

Thus, we can see that the voltage relationship between two adjacent nodes can be
guaranteed. However, when there is a line disconnection between these two nodes (i.e.,
sij,t = 0), the equation no longer exists. There is no deterministic relationship between vt

i
and vt

j. Then, Constraints (14) and (15) can be transferred as:

vt
i − vt

j ≤ M +
RijPt

ij + XijQt
ij

V0
, ∀(ij), t

vt
i − vt

j ≥ −M +
RijPt

ij + XijQt
ij

V0
, ∀(ij), t

When M is large enough,
RijPt

ij+XijQt
ij

V0
can be neglected, while Constraints (14) and (15)

are relaxed. That is, −M ≤ vt
i − vt

j ≤ M.
Constraint (16) sets the voltages of root nodes. Constraint (17) sets the voltage range

for the rest of the nodes. With all these constraints, the power quality can still maintain at a
high level when facing extreme events.

2.3.3. Power Outputs

In this section, we study the sources of possible power supplies and their operation
characteristics. These sources cooperate with each other to achieve fast power supply in
the outage areas.

• Feeders: The feeders are the main source of power supply. For each nodes connecting
to the main grid, we have the following constraints:

PG,min
i,t ≤ PG

i,t ≤ PG,max
i,t , ∀i ∈ NF, t (18)

QG,min
i,t ≤ QG

i,t ≤ QG,max
i,t , ∀i ∈ NF, t (19)

where NF is the set of feeders. PG,min
i,t and PG,max

i,t are the lower and upper bound of

the active power supply at the feeder, respectively; QG,min
i,t and QG,max

i,t are the lower

and upper bound of the reactive power supply at the feeder, respectively. PG,min
i,t and

QG,min
i,t can be positive or negative.

• DER outputs: With the development of DERs, different forms of energies, such as
wind and solar, are integrated into the ADNs. In the post-event restoration, these types
of DERs can realize an emergency power supply through equipped smart inverters.
Their output ranges are:

PDER,min
i,t ≤ PG

i,t ≤ PDER,max
i,t , ∀i ∈ NDER, t (20)

QDER,min
i,t ≤ QG

i,t ≤ QDER,max
i,t , ∀i ∈ NDER, t (21)

where NDER is the set of nodes equipped with DERs. In this work, we focus on
renewable energies. Their output ranges can be obtained with accurate predictions.
It is noted that the damaged ADN in our work is separated into several islanded
MGs to realize an emergency power supply with DERs and storage. Under this
circumstance, the DERs should be operated in a Volt-Var (QV) response mode since
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the islanded MGs lack reactive power support. The DERs operating in QV mode can
maintain the voltage and distribution of active power by outputting reactive power.
As line repair progresses, DERs can switch their control strategy since the islanded
MGs are reconnected to the main grid. The system can obtain the reactive power
from the grid. Thus, DERs could choose strategies such as “Maximum Power Point
Tracking”, etc., to output more active power.

• ESS outputs: The ESS can keep the ADN in balance. Considering the process of
charging and discharging, we have the following constraints for the nodes (i ∈ NES)
equipped with ESS:

PG
i,t = Pdch

i,t − (1− sES
i )Pch

i,t , ∀i ∈ NES, t (22)

where NES is the set of nodes equipped with ESS; Pdch
i,t is the power discharged from

the ESS to the ADN; Pch
i,t is the power that the ESS can charge from the ADN. The

difference between Pdch
i,t and Pch

i,t calculated in Constraint (22) determines the power
that the ESS feeds into the system.

• Pure load nodes: As for pure load nodes, they cannot feed power back to the grid.
Hence, we set PG

i,t and QG
i,t as:

PG
i,t = 0, ∀i ∈ N\NS, t (23)

QG
i,t = 0, ∀i ∈ N\NS, t (24)

2.3.4. Power Load Model

Except for the power generation, it is also essential to give a detailed model for power
loads since they are always voltage-dependent. Static analyses often use ZIP load models,
which consist of constant impedance (“Z”), constant current (“I”), and constant power
(“P”) components.

The ZIP loads can be expressed as:

PL
i,t = a1i(vt

i)
2 + a2ivt

i + a3i (25)

QL
i,t = b1i(vt

i)
2 + b2ivt

i + b3i (26)

In Constraints (25) and (26), a1i, a2i, a3i and b1i, b2i, b3i are scalar parameters, where:

• a1i and b1i specify the constant impedance for active and reactive power demands on
bus i.

• a2i and b2i specify the constant current for active and reactive power demands on
bus i.

• a3i and b3i specify the constant power for active and reactive power demands on bus i.

In this work, we mainly focus on the restoration effect of the network reconfiguration
and DER operation. For simplicity, we just consider the constant power in the ZIP model
for the following simulations.

2.3.5. Ess Operation

In addition to the damaged ADN, the operation ESS should also be concerned. For
ESS connecting on node i ∈ NES, we have:

SOCi,t+1 = SOCi,t +

(
Pch

i,t ηch
i −

Pdch
i,t

ηdch
i

)
, ∀i ∈ NES, t (27)

where ηch
i /ηdch

i are charge/discharge efficiency. SOCi,t is the state-of-charge (SOC) of ESS
i at time t.

Since an ESS can only operate at charging state or discharging state, we define a binary
variable sES

i,t to represent the state of the ESS. When sES
i,t = 1, the ESS works in a discharging
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state; when sES
i,t = 0, vice versa. Constraints (28) and (29) restrict the output range of

discharging and charging power of the ESS.

0 ≤ Pdch
i,t ≤ sES

i,t Pdch,max
i,t , ∀i ∈ NES (28)

0 ≤ Pch
i,t ≤ (1− sES

i,t )Pch,max
i,t , ∀i ∈ NES (29)

It is noteworthy that the excessive charging and discharging of the ESS during the
restoration process may affect the lifetime of the ESS. In order to prolong and preserve
its lifetime, we can restrict the total charging/discharging power and the number of state
transitions. Hence, we have the following constraints:

T

∑
t=1
|Pch

i,t |+ |P
dch
i,t | ≤ Pmax

LT , ∀i ∈ NES (30)

T−1

∑
t=1
|sES

i,t+1 − sES
i,t | ≤ Nmax

i , ∀i ∈ NES (31)

where Pmax
LT is the maximum allowable operating power for a period of time TR; Nmax

i is
the maximum number of allowable state transitions in a period of time TR; TR could be a
predefined finite horizon.

In this work, we focus on the restoration effect of DERs and network reconfiguration.
The operation of ESSs is regarded as an assistant measurement. We will consider the impact
of the restoration process on the lifetime of the ESS in our future work.

2.4. Linearization Technique

We notice that there are quadratic terms (i.e., (Pij,t)
2 and (Qij,t)

2) in our model. Con-
straint (13) has strong nonlinearity, restricting the model solution. Thus, before forming
the complete multiperiod optimization model, we linearize the constraints to reduce the
computational efficiency.

In this work, the following two constraints are used to approximately substitute
Constraint (13):

−sij,t · Smax
ij ≤ Pij,t, Qij,t ≤ sij,t · Smax

ij (32)

−
√

2sij,t · Smax
ij ≤ Pij,t, Qij,t ≤

√
2sij,t · Smax

ij (33)

The feasible region of the decision variables Pij,t and Qij,t exhibits in the shaded area
of Figure 2. It can be seen that we use polygon to approximate the feasible circular region.
This technique transforms the problem into a linear form, which relieves the computational
burden greatly.

However, we need to point out that this linearization technique may have potential
risks since the line capacity constraints may be violated during operation. To deal with
this problem, more polygons can be used to realize an accurate approximation of the line
capacity constraints. In engineering applications, it is acceptable to use two rectangular
regions to approximate this constraint. Later, we further discuss the possible effects that
this linearization may cause.
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Pij,t

Qij,t

Smax

√2Smax

√2SmaxSmax

Figure 2. An illustration for linearization.

2.5. Multiperiod Reconfiguration Model

After modeling the post-event system operation, we can finally build the optimization
model. This model aims to reduce the extreme event-induced load losses, which can be
written as:

min ∑
t

ωi(PL,max
i,t − PL

i,t)∆t (34)

where ωi is the load value of node i. PL,max
i,t is the load forecast. ∆t is the time period. The

objective function can determine the total load losses by computing the difference between
the predicted loads and the real supplied loads.

With the preceding constraints, we have the following complete model:

• Objective function: (34)
• Network reconfiguration: (1)∼(7)
• Power system operation: (8)∼(12), (32) and (33), (27)
• Voltage constraints: (14)∼(17)
• Power output: (18)∼(24)

Remark 1. Unmentioned parameters are boundary parameters of corresponding variables.

The established multiperiod optimization model is a mixed-integer linear program-
ming (MILP) problem. In solving this model, a large number of integer variables are
involved. Furthermore, load predictions are required at the same time. The existence of
prediction errors will make the solutions deviate from the optimum. In order to further
speed up the solution and eliminate the adverse effects of prediction errors on the strategy,
we design a rolling-horizon-optimization-based framework.

3. Rolling Horizon Optimization Framework for Resilient Restoration
3.1. Basics of Rolling Horizon Optimization

The rolling horizon heuristic optimization is an advanced method to control a multi-
period process [24]. Its advantage is that it allows optimizing the operation in the current
period while considering the future periods simultaneously. This achieves by optimizing a
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finite horizon but only implementing the current period. The above optimization will be
repeated until the end of the problem.

Rolling horizon optimization can continuously obtain the latest predictions to update
the current control strategy, so it can reduce the impact of prediction errors on the optimality
of control. In addition, it only solves a finite-horizon optimization problem, which reduces
the problem scale greatly.

Take the model we studied as an example. The established model is the MILP problem.
Assuming that the restoration process lasts for T, the model will contain 4× |L| + |N|
integral decision variables, which tends to be a lot. However, if we only consider the
optimization problem of finite time TL, the number of integral variables that need to be
solved will become TL

T of the original. In Figure 3, we give the framework of rolling
horizon optimization.

Current t

Period t+1 currently being optimized, MILP Periods yet to be optimized

Future periods End of problem

Current t+1

Period t+2 currently being optimized, MILP Periods yet to be optimized

Future periods End of problem

Past

Past

R
o
ll

in
g

 H
o
ri

z
o

n
 O

p
ti

m
iz

a
ti

o
n

F
ro

m
 t

to
 t

+
1

Figure 3. Schematic representation of the rolling horizon optimization from time t to time t + 1.

3.2. Steps of Solving Restoration Strategy with Proposed Methods

With Figure 3, we can give the detailed solution steps for the resilient network restora-
tion. Let us assume that we are at the end of the t-th period, so the states of the system,
including SOC of storage and line states over the past period 1, · · · , t − 1 are already
known. With this information, we aim to determine the network reconfiguration and
system operation strategy for future periods.

• Step 1: Update predictions of user’s load, DER outputs from t to t + tL; update SOC
of storage and the line states with line maintenance plan over 0 to t− 1.

• Step 2: Solve the optimization problem established in Section 2.5 with updated predictions.
• Step 3: Apply the solved operation strategy at period t; record the system states at the

beginning of period t + 1.

4. Case Study

The case study is performed on a modified 33-bus system [25] to validate the effec-
tiveness of the proposed resilient network restoration problem and the rolling horizon
optimization framework. Our research is implemented using C++ 11 and solved by CPLEX
12.80. Our testbed is a personal computer with an Intel Core 2.5 Hz processor and 16 GB
memory. The MIP gap is set as 0.1%.

4.1. System Parameters
4.1.1. System Configurations

The test system contains three DERs and three ESSs, which are located at bus #13, #21,
and #31. The situation of line damages is shown in Figure 4. Because the repair process is
quite essential in the restoration process, we set a maintenance schedule for each damaged
line. The schedule is shown in Table 1, which is from [25].
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1718

19 20 21
22

252423 26 27 28 29 30 31 32 33

Active Distribution Network

Distribution line

DER and ESS Initial damaged lines

Distribution nodes Disconnected line

Figure 4. The situation of damaged lines for the test system.

Table 1. Restored time of damage equipment [25].

Distribution Line

Index 23–24 19–20 9–15 6–7 6–26 9–10 12–13 29–30
min 240 300 360 420 480 540 600 660

4.1.2. Predictions of Loads and DER Outputs

In this case, the restoration process is supposed to last for 12 h (from 6:00 a.m. to
6:00 p.m.). Considering that the DERs are applied to raise the resilience level of the system
and try to help recover the outage loads, we use the following curves in Figures 5 and 6
that reflect the load and DER fluctuations. The time interval is set as 15 min. In this case,
we use five periods of forward predictions to solve the rolling horizon optimizations.
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Figure 5. Load curve between 6:00 a.m. and 6:00 p.m.
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Figure 6. DER outputs curve between 6:00 a.m. and 6:00 p.m.
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The curve inferred that DERs are important to the ADN that is disconnected from the
main grid. However, the high intermittent limits their applications.

4.2. Restoration Effect
4.2.1. The Process of Network Reconfiguration

At first, we exhibit the change of network reconfiguration in the whole process. During
restoration, the number of disconnected lines fluctuates in the range of [8, 18].

The reconfiguration process is in coordination with the output of renewable energies,
which realizes a high-speed restoration. The damaged ADN is split into different areas
with remote switches and is powered by the DERs.

4.2.2. Restoration Effect of Proposed Method

We compare the restoration effect of ADN with greedy and proposed methods. The
former one (greedy method) is a simple, intuitive method that is widely used in optimiza-
tion. This method determines the optimal decisions at each period. Then, it tries to explore
the overall optimal way of the entire problem.

In Figure 7, comparing two methods, the rolling horizon method can restore more
outage loads than the greedy method. The former can achieve full load recovery earlier
than the latter. This is because more energy is stored in ESS with a control strategy obtained
by the rolling horizon optimization. We find that when t ∈ [166, 405], the load recovery
rate has decreased since the DER outputs turn to 0. However, with the existence of ESSs,
the disconnected ADN can still maintain a certain load recovery rate.
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Figure 7. The comparison of load restoration between the greedy method and the proposed framework.

Furthermore, we can figure out from Figure 7 that the load restoration curve obtained
by the proposed method is smoother, thereby avoiding the violent interruptions and
fluctuations of loads during the recovery process.

The reason for this phenomenon is that the predictions of loads and DERs’ outputs are
neglected, while the rolling horizon methods introduce the future information into current
decisions, thus having a better performance.

4.2.3. Role of Energy Storage in Recovery

Storage is necessary for the process of recovery. We notice that the control of ESS con-
tains time-coupling constraints. From this perspective, the SOC changes of the two methods
are further compared. The SOC changes of each storage are shown in Figures 8 and 9.
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Figure 8. The change of each ESS’s SOC using greedy method.
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Figure 9. The change of each ESS’s SOC using proposed rolling horizon method.

Compared with the greedy method, the SOC curve obtained by the proposed method
is more periodic. When the DER output is large, the excess energy is stored in the ESS. When
the DER output is not enough to restore the power failure load, the ESS will provide an
emergency power supply to the system. Since it introduces predictions in the optimization
model, it can solve a better control strategy.

4.3. Analysis of Linearization

Our work involves two linearization techniques. Both of them are used for simplifying
our model and accelerating the computational speed. In this section, we discuss the possible
error that may be introduced.

4.3.1. Linearization of Power Flow Conversation Constraints

LinDistFlow is a used to linearize the power flow conversation constraints. It neglects
the line losses. For a radial distribution network, the line losses are relatively small and
have little effect on the results. In the tested 33-bus system, the ratio of line losses is less
than 2%.

We further compare the results between LinDistFlow and AC power flow model for
accuracy analysis. The mean value of absolute deviation (MAD) given in (35) is used to
evaluate the differences between the two models.
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MAD =
1
n

n

∑
i=1

∣∣∣vt,AC
i − vt,LDF

i

∣∣∣
vt,AC

i

(35)

where n is the number of restored loads at each bus; vt,AC
i and vt,LDF

i are the voltages
calculated by the AC model and LinDistFlow model, separately.

We implement different models on the same case. The results show that the average
voltage deviation MAD at each time t does not exceed 4%. Hence, it is acceptable to use
LinDistFlow model in the restoration process.

4.3.2. Linearization of Line Capacity Constraints

The line capacity constraint is linearized to simplify the model and eliminate the
strong nonlinearity. Usually, the line will not be overloaded through proper distribution
network planning. That is, the line capacity constraint will not be violated. In the process
of distribution network restoration, only part of the loads are picked up, so it is even less
likely to violate the line capacity constraints. Therefore, the linearization technique is only
used to improve the computational efficiency and speed up the model’s solution. It will
not introduce errors to the results.

5. Conclusions

This paper investigates the coordination of network reconfiguration and DERs in
the resilient restoration of damaged ADNs. When faced with extreme events, such as
meteorological disasters, ADNs may be disconnected from the main grid and thus lose
power supply. As a flexible form of energy, DERs can be used as an emergency power
supply for the restoration of an ADN. Therefore, we establish a detailed multiperiod
restoration model taking account of multiple DERs to deeply explore their potential on
resilient restoration. The operation of ESS is also considered in the modeling process. It
is used to smooth the fluctuations of loads and DER outputs. Then, we propose a rolling
horizon optimization framework to solve this multiperiod model. The framework utilizes
the predictions and avoids the influence of prediction errors on the optimal restoration
strategy as much as possible.

The simulation results demonstrate the effectiveness of the proposed model. Com-
pared with the traditional greedy method, the performance of network reconfiguration
with multiple DERs has significantly improved. During the system restoration process, the
load recovery rate at each moment has been significantly improved. At some moments,
the load recovery rate increases by 20% compared with the traditional greedy method. In
addition, due to the introduction of future forecast information, the strategy obtained by
the rolling horizon optimization is closer to the optimal global solution, and all loads can
be picked up within 420 min. However, the greedy strategy can only restore all loads at
660 min.
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