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Abstract: In these days, when complex, IT-controlled systems have found their way into many areas,
models and the data on which they are based are playing an increasingly important role. Due to the
constantly growing possibilities of collecting data through sensor technology, extensive data sets are
created that need to be mastered. In concrete terms, this means extracting the information required for
a specific problem from the data in a high quality. For example, in the field of condition monitoring,
this includes relevant system states. Especially in the application field of machine learning, the quality
of the data is of significant importance. Here, different methods already exist to reduce the size of data
sets without reducing the information value. In this paper, the multidimensional binned reduction
(MdBR) method is presented as an approach that has a much lower complexity in comparison on
the one hand and deals with regression, instead of classification as most other approaches do, on the
other. The approach merges discretization approaches with non-parametric numerosity reduction via
histograms. MdBR has linear complexity and can be facilitated to reduce large multivariate data sets
to smaller subsets, which could be used for model training. The evaluation, based on a dataset from
the photovoltaic sector with approximately 92 million samples, aims to train a multilayer perceptron
(MLP) model to estimate the output power of the system. The results show that using the approach,
the number of samples for training could be reduced by more than 99%, while also increasing the
model’s performance. It works best with large data sets of low-dimensional data. Although periodic
data often include the most redundant samples and thus provide the best reduction capabilities, the
presented approach can only handle time-invariant data and not sequences of samples, as often done
in time series.

Keywords: numerosity reduction; histogram; big data; discretization; neural network; training data;
regression

1. Introduction

It has become common practice to use data-driven models for condition monitoring of
assets and systems in many domains [1,2]. Accordingly, there are already numerous data
analytics applications for monitoring, e.g., wind turbines [3], photovoltaic (PV) plants [4],
power transformers [5], electrical machines (generators and motors) [6], transmission
lines [7], power electronic devices [8] and power quality disturbances [9].

To create data-driven models, however, a data set is first required as a basis, which
can be used for training. Due to the increasing digitalization of almost all sectors, a rising
number of parameters and measured values are being recorded by sensors and stored in
databases. These data sets often serve as a basis for training data extraction. The size of the
training data set depends on the use case and can vary between a few samples and several
million samples. However, since large data sets do not only offer advantages, the old motto

Energies 2022, 15, 3092. https://doi.org/10.3390/en15093092 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15093092
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-0728-0071
https://orcid.org/0000-0001-7203-2202
https://doi.org/10.3390/en15093092
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15093092?type=check_update&version=1


Energies 2022, 15, 3092 2 of 13

for training machine learning models, “the more data, the better”, began to tremble in
recent years [10,11].

In addition to increased storage space, a large data set usually leads to a significantly
higher computational effort, facilitating the need for either more processing time or more
powerful computers. Computer clusters or cloud environments are ways to provide
sufficient computational power [12]. However, the upkeep of these is often expensive.

More data, and hence more samples, does not simultaneously increase the information
content and thus the value of the data for model training. For example, two identical sam-
ples provide the same informational value but require more memory than a single sample.

More important than the size of the data set is that it contains the essential features
and represents the crucial system states. In large data sets, the essential features and events
are often hidden or buried by other events. This can lead to models not learning these
imbalanced events correctly, causing a deterioration in prediction accuracy. This process is
called over-fitting [13–15].

The choice of model also depends on the data set. For example, the computational
cost of training an support-vector machine (SVM) scales quadratically with the number of
samples, rendering it infeasible for large data sets [16]. Likewise, to optimize models, many
models are not trained only once, but often dozens of models are trained and compared to
find the optimal hyperparameters [17,18].

In summary, even though the resources for storing and processing data are becoming
more affordable each year, it is often advisable to reduce data to make processing easier,
cheaper, and more understandable.

Several methods for data reduction already exist, most of which can be roughly
divided into five approaches (Figure 1) [19]: data aggregation, feature selection, numerosity
reduction, dimensionality reduction, and discretization. All these methods aim to obtain a
reduced representation of the data set without reducing the information value.

data reduction

data
aggregation

feature
selection

numerosity
reduction

dimensionalty
reduction discretization

parametric
methods

non-parametric
methods

top-down
methods

bottom-up
methods

samplingclustering binning entropy-basedhistograms

Figure 1. Taxonomy of data reduction approaches (based on [19,20]). Marked in red are the ap-
proaches from which principles are integrated into the presented multidimensional binned reduction
(MdBR) procedure.

Data aggregation describes the process of gathering data and presenting it in summa-
rized form. This includes, for example, the summation of monthly data when only annual
data are required, as well as the merging of multiple data sources.

Feature selection aims to identify and remove irrelevant, weakly relevant, or redundant
features from the data set.

Numerosity reduction aims to reduce the number of samples in the data set (e.g., by
deleting samples). Likewise, data can be replaced with alternative smaller representations
or estimated.

Dimensionality reduction aims at reducing the amount of dimensions/features. Hereby,
it is attempted to filter out features with a low informational value for the model or to
aggregate several features. The most popular method of dimensionality reduction is the
principal component analysis (PCA).
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Data discretization refers to methods of reducing the number of data values by con-
verting continuous data into a finite set of intervals. In order to simplify the original data,
labels can then be used to replace the actual values.

In this paper, an approach called multidimensional binned reduction (MdBR) is pre-
sented. With respect to the presented data reduction taxonomy (Figure 1), it merges
top-down discretization approaches with a non-parametric numerosity reduction via his-
tograms. MdBR has linear complexity and can be facilitated to reduce large multivariate
data sets to smaller subsets, which could be used for model training. The approach works
best for large data sets of low-dimensional and periodic data. In addition to less data
storage space and a faster training time, the approach also renders the need for extra
under/over-sampling strategies of imbalanced data sets superfluous. The approach is
based on discretizing the data using the bins of a multidimensional histogram. Afterwards,
numerosity reduction is achieved by reducing the number of samples in each bin.

The MdBR approach is validated by reducing an extensive PV generation data set of
about 92 million samples. The reduced data set is subsequently used to train a multilayer
perceptron (MLP) model to estimate the output power of the system.

The results show that using the approach, the number of samples for training could
be reduced by more than 99%, while also increasing the model’s performance. Using the
MdBR training sets, the training time was reduced from several hours to just a few minutes,
rendering the approach valuable for applications where multiple models have to be trained,
such as hyperparameter searches [21].

The remainder of the paper is structured as follows: In Section 2 an overview of the
related work is presented. Section 3 introduces the proposed MdBR approach in detail,
followed by a proof of concept in Section 4 demonstrating its efficiency on a use case. In the
concluding Section 5, the results are summed up; including a future outlook of the paper.

2. Related Work

In order to extract a smaller training set from a larger data set, the most straightforward
approach is to use probabilistic methods, which initially came from statistics.

One easy way is using sampling techniques such as Simple Random Sampling, where
a fixed amount of samples is randomly picked from the larger set. Other approaches such
as Separate Sampling [22], Balanced Sampling [23] or Stratified Ordered Selection [20] can
also be applied but need the data to be structured in the form of classes, clusters or labels.
However, most real measurement sets are not structured.

Another difficulty of real data sets is that they often have a strong class imbalance,
which can lead to over-fitting when training the model [13,15]. A possible approach to
counteract over-fitting is to remove the imbalance by over-sampling the minority samples.
A common approach is the Synthetic Minority Over-sampling Technique (SMOTE) [24].
Furthermore, it is possible to solve the imbalance by under-sampling the majority samples.
For this purpose, it is convenient to delete the duplicate or uninformative sample and
thus reduce the redundancy [14,15]. However, which sample can be deemed as redundant
is usually not easy to determine, especially if the data are not segmented into classes or
discrete values.

Another approach to reduce the training data is the use of coresets. Coresets are
weighted subsets of the full data set, which guarantee that solutions found on the coreset
are competitive with solutions found on the full data set [25]. They can be constructed in
various ways, but often, they rely too greatly on the aforementioned sampling approaches.
Because coresets are guaranteed to represent the statistical properties of the full data set,
their formation can be arbitrarily complex. Coresets are mostly used for classification tasks.

Instead of using a subset of the original data set, it is also possible to use a much smaller
synthetic set facilitating a procedure called data set distillation [26]. With data set distillation
it is possible to construct very small synthetic data sets, albeit to the disadvantage of a large
computational overhang and poor generalization properties of the data set.
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To reduce the number of samples, ref. [27] proposed a method called Principal Sample
Analysis (PSA). In PSA, all samples in the set are ranked with regard to how well they
could be used to discriminate between classes in the data. In each iteration of the algorithm,
the lowest-ranked samples are removed. Another sample ranking scheme is presented
in [11]. Here, several models are trained using different subsets in order to extract the
samples proving to be most useful for the model. However, both methods do not scale well
with large data sets, need already labeled data and are designed for classification tasks.

To find clusters in data sets, many other approaches are based on the k-nearest-
neighbor (kNN) [28] or k-means method [15,29]. Both approaches are used to assign similar
samples to a cluster. Samples in the same cluster could then be combined to reduce the
data set. However, kNN and k-means have a complexity that increases super-linearly with
the number of samples and are thus only usable with great effort for large data sets [28].

Another possibility to cluster samples are top-down methods such as discretizing
data via histograms. In contrast to bottom-up methods such as kNN, these clusters are
not representative. However, at the same time, top-down methods are often significantly
faster. Ref. [30] used educational data that were discretized by a histogram to train an
ensemble of models for classification. Ref. [29] compared several discretization techniques
(among others interval binning and k-means clustering) to discretize continuous clinical
data. Afterward, classification models were trained with each approach, yielding that
interval binning provided the worst model, whereas k-means proved to be more accurate.
An evaluation of discretization techniques has also been performed by [31,32], concluding
that the use of discretized data often yields an increased model accuracy after training,
compared to undiscretized data. However, in both publications, the models are limited to
classification tasks and data sets including a maximum of 2200 samples.

3. Methodology

In the following, the developed method of multidimensional binned reduction (MdBR)
is presented. The method aims at particularly large, multivariate data sets with continuous
and periodic data. However, it is also applicable for discrete or classified data. The method’s
goal is to reduce the number of samples significantly in the data set for training models,
without degrading the quality of the model.

3.1. Multidimensional Bin Reduction

The initial setup is an extensive data set consisting of F features and N samples. Each
continuous feature f of the data set was first discretized individually. Similar to a histogram,
for each feature, the number of bins B was determined, and then it was calculated in which
bin b the respective value s of the sample n and feature f was located. In this way, each
sample was converted from its raw form sn, f into a binned form bn, f (see Equation (1)).
For already discrete features, no binning was necessary:


s1,1 s1,2 . . . s1, f

s2,1 s2,2 . . . s2, f
...

...
. . .

...
sn,1 sn,2 . . . sn, f

 convert to
=======⇒
binned form


bsingle

1,1 bsingle
1,2 . . . bsingle

1, f

bsingle
2,1 bsingle

2,2 . . . bsingle
2, f

...
...

. . .
...

bsingle
n,1 bsingle

n,2 . . . bsingle
n, f

 (1)

Afterward, the bins of each sample are aggregated to a multidimensional bin (MdB),
which could be understood as a value-dependent sample identifier (ID):

bsingle
1,1 bsingle

1,2 . . . bsingle
1, f

bsingle
2,1 bsingle

2,2 . . . bsingle
2, f

...
...

. . .
...

bsingle
n,1 bsingle

n,2 . . . bsingle
n, f


convert to
=====⇒
MdB form


bMdB

1
bMdB

2
...

bMdB
n

 (2)
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As each sample MdB is value-dependent, samples with identical bins were assigned
to the same MdB. Assuming that each feature has been divided into a sufficiently large
number of bins B f , the number of samples in each MdB corresponds to the number of
samples, which can be assumed to be equal and hence redundant.

Although, theoretically, many different discretization techniques could be used for
intervalizing the data, many are not suitable for large data sets. Due to the size of the
training set and the computational effort involved, a top-down method such as a histogram
is most appropriate.

The N samples of the first feature are divided into B1 bins, B2 bins for the second
feature and, similarly, B f bins for the last feature. For making the MdB, we need the
combination of the bins for each feature. So, the maximum number of different MdBs
is equal to B1 × B2 × · · · × B f . However, the MdBs in the data set are only uniformly
occupied if all samples in the data set are uniformly distributed, which is not the case for
most real-world data sets. Especially in the case of periodic data, it is therefore unlikely
that the number of MdBs represented in the data set will even come close to the maximum
number of possible MdBs. Dependent on the size of the data set, is it also likely that the
maximum number of possible MdBs is several orders of magnitude higher than the number
of samples in the data set.

Since all samples assigned to the same MdB are redundant to each other, these samples
do not add any value in terms of new information in the training set and can therefore be
removed. Thus, only one sample per MdB is used for the training set.

Instead of removing redundant samples, it is also conceivable to calculate a represen-
tative sample for each MdB, e.g., by a clustering procedure or simple calculation of the
mean value. Again, the number of samples in the training set is equal to the number of
MdBs found.

A full example of the process can be seen in Figure 2.

Start

Input dataset of sn, f

Discretize n samples of
the f ′th feature in B f bins

Constuct the binned
form dataset using (1)

Print the binned form with
their corresponding frequencies

Construct the MdB
form dataset using (2)

Print the MdB form with
their corresponding frequencies

Chose reduction method
(e.g., random selection)

Reduce dataset using the
thosen reduction method

Save the
reduced dataset

Stop

Figure 2. Process flowchart of the multidimensional binned reduction (MdBR).
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3.2. Data Set Test

By using top down discretization methods such as histograms, MdBR has a linear
complexity, which makes the method particularly suitable for large data sets. Furthermore,
the method works best with low-dimensional data sets that exhibit periodic behavior.
The periodic behavior leads to the fact that individual system states are reached recurrently.
Exactly such states often lead to redundant information, which can be reduced with MdBR.

To test if a data set is usable, it is often sufficient to look at a small part of the set.
However, the part should extend over several periods. For the test, first the MdBs of the
samples of the selected section are calculated as explained in Section 3.1. Afterwards,
the commonness of the individual MdBs in the section is evaluated. In the optimal case,
the plotted commonness shows an exponential behavior (see Figure 3). This indicates that
the majority of the samples is concentrated on a few MdBs. Theoretically, MdBR can be
applied as soon as two or more samples are assigned to the same MdB. The more samples
belonging to the same MdB, the more effective the reduction.

0 20,000 40,000 60,000 80,000 100,000
MdB

100

101
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103

104

N
um
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of
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dB

Figure 3. Plotted results of the feasibility test using the data of May 2017. The MdBs are sorted
by prevalence.

4. Numerical Study

In the following chapter, a proof of concept of the MdBR is presented. For this purpose,
an multilayer perceptron (MLP) model was trained to estimate the AC output power of a
PV system.

All tests were run on a virtual machine using 16 GB RAM and 2 vCPUs of an Intel
Xeon Gold 6246 processor.

4.1. Data Set

A subset of the NIST Campus Photovoltaic data set was used as the basis to train the
model. The whole data set is open source and publicly available at [33].

The data set includes real measured values from several PV systems located in Gaithers-
burg, Maryland, USA. For the proof of concept, the subset of the roof tilted array system in
the period from 1 January 2015 to 31 December 2017 with a second-by-second resolution
was selected. The considered system consists of 312 PV modules with a rated DC output
power of 73.3 kW, feeding a single indoor inverter. Since the data set contains various
channels that are not relevant for estimating the AC output power of the inverter, only a
selection of channels were used (see Table 1).
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Table 1. Used Channels from the Roof tilted Array PV System subset.

Features/Channels Abbreviation

AC real power PwrMtrP_kW
Outdoor ambient temperature SEWSAmbientTemp_C

Module Temperature SEWSModuleTemp_C
Plane of array irradiance SEWSPOAIrrad_Wm2

Inverter heatsink temperature InvTempHeatsink_C
Inverter operating status InvOpState

To work with the data, as a first step, the set was cleaned by removing samples
with missing or malicious values. In addition, since most neural networks show superior
performance using normalized data, all features were scaled to a range between zero and
one. All preprocessing resulted in a data set containing 6 features with 92,787,245 samples.

4.2. Feasibility Test

After cleaning the set, a test was performed to see if the data set was usable for MdBR
at all (see Section 3.2). For this purpose, a small section of the data set was selected, and the
MdBs were calculated. May 2017 and a number of 50 bins per feature were arbitrarily
chosen. The goal was to see how the samples are distributed across the MdBs. The results
of the feasibility test can be seen in Table 2.

Table 2. Properties and results of the feasibility test.

Artifact Value

Period May 2017
Number of samples 2,671,113

Number of bins per feature 50
Number of possible MdB 1.56× 1010

Number of found MdB 108,733
Max. sample in one MdB 13,545

When sorting the MdBs of the test by prevalence (see Figure 3), it can be seen that the
vast majority of samples are located in only a small amount of MdB, reaching up to 13,545
samples in a single MdB. Therefore, considering the distribution of the sample in the data
set, MdBR seems to be a good approach for reduction.

4.3. Neural Network

To ensure good comparability, the same neural network topology is used throughout
the whole experiment.

The network consists of an input layer of 5 neurons (1 for each input feature) followed
by 2 dense hidden layers of 20 neurons with a dropout rate of 10%. Finally, the hidden
layers are followed by an output layer consisting of a single neuron. To allow the network
to map nonlinear behavior, the second hidden layer and the output layer are provided
with a ReLu activation function. An Adam optimizer with a batch size of 20 was chosen
for training.

Each time the network is generated, it is initialized with a random set of weights. This
could cause the network to converge differently during training. In order to account for
this random factor, each training set is used to train 20 models to calculate an averaged
prediction error.



Energies 2022, 15, 3092 8 of 13

4.4. Training Set Generation Using MdBR

To generate the training and test set, the preprocessed data set was first shuffled and
then split using 90% of the data for training and 10% of the data for testing/validation.
Resulting in a training set of 83,508,520 samples and a test set of 9,278,725 samples.

To test the efficiency of the MdBR, the training set was then processed further to
generate several reduced training sets. As mentioned before (see Section 3), a top-down
method such as a histogram is most appropriate for the discretization process, due to the
size of the training set and the computational effort involved. In [34], fixed bin width
histograms were compared to adaptive histograms whose bin width is derived from a
fixed number of samples per bin. It was found that fixed-bin-width histograms for a large
number of samples seem to have better performance. Therefore, for each reduced data set,
the training data were discretized using a different number of fixed-width bins.

After the data for each training set are discretized, it comes to the reduction step.
To reduce the training sets, two methods of MdBR were tested: reduction by random
selection and reduction by representation using the mean. In the reduction by random
selection sets, for each MdB, one of the samples assigned to the respective MdB is selected
randomly. The rest of the samples are discarded. In the following, these data sets will
be referred to as Random Selection In the reduction by representation sets, for each MdB,
a representative sample is calculated using the mean value of all samples belonging to
the respective MdB. Again, the reduced sets are thus formed by just one sample per MdB.
In the following, these data sets will be referred to as Representative. The used number of
bins and the size of the resulting training sets can be seen in Figure 4.
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Figure 4. Size of the reduced training sets with a different number of bins per feature. The number of
different MdBs per data set is equal to the number of samples in the training set.

In total, 50 subsets were generated. One large unreduced baseline training set, one
unreduced testing set, 24 reduced sets using the Random Selection method and 24 reduced
sets using the Representative method.

Figure 5 shows the distribution of the normalized output power in some of the reduced
training data sets. It can be seen that the distribution varies strongly depending on the
number of bins, resulting in the training not providing the same sample distribution as the
original data set if a small number of bins is used.
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Figure 5. Distribution of the normalized output power in the training set after reducing with the
respective number of bins per feature.

4.5. Training Results

The full/unreduced data set was first used to train models to obtain a baseline for
comparability. As a performance metric the root-mean-square error (RMSE) was used,
which (as the output is normalized between zero and one) can be rendered as the deviation
in percent using the normalized root-mean-square error (NRMSE).

The average result of the baseline models can be seen in Table 3.

Table 3. Results of the generated baseline, averaged over 20 models.

Artifact Value

Number of training samples 83,508,520
NRMSE 3.63± 0.12%

Training Time 4 h:24 m ± 1 h:42 m

In the further course, tests were carried out using the reduced training data sets. First,
an extensive range of bins was considered. Figure 6 shows the results from 10 to 80 bins per
feature. It can be seen that already, with a relatively small number of 20 bins per feature,
the average accuracy of the models is at least comparable to the accuracy of the baseline
models. At a number of 40 bins, the maximum accuracy is reached. If the number of bins
is increased further, it is not reflected in a further increase in accuracy. However, the time
required for training increases as the data are segmented into more MdB, increasing the
training set size.

A more detailed view of the model accuracy for the reduced data sets of 3–20 bins is
shown in Figure 7. Along with a plot of the number of MdBs that make up each training set.
It can be seen that for a data set reduced by MdBR using 13 bins per feature, the accuracy
of the model is equal to the baseline accuracy. In addition, the performance of data sets
formed by the representative procedure seems to be slightly better than that of the random
selection procedure.
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Figure 6. Comparison of the model average accuracy (a) and training time (b) using 10 to 80 bins per
feature for reducing the training data set. Each model has been trained 20 times.
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Figure 7. Comparison of the model average accuracy using 3 to 20 bins per feature for reducing the
training data set. The number of different MdBs per data set is equal to the samples. Each model has
been trained 20 times.

4.6. Discussion

The proof of concept demonstrated that, in addition to a significant reduction in
the training set, the model’s accuracy could also be constantly improved. Thus, a model
comparable to the baseline could be trained with only 13 bins per feature. This corresponds
to the use of 11,869 samples, which is 0.14% of the entire training data set. The best models
could be trained using about 40 bins, corresponding to 0.48% of the data set.
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Starting from a size of 20 bins, models could be trained consistently better than the
baseline model. This effect was also observed by [31,32] using discretized data (without
reduction) for classification tasks and by [11] (image classification) and [35] (language
processing) after removing redundant or duplicate samples from the training sets. Most
likely, it can be explained with the model having better generalization capabilities after
being trained with a reduced or non-redundant data set.

When looking at Figure 6, it is also noticeable that the error increases again with a
further increase in the bins if more then 40 bins are used. This could be caused by the model
losing its superior generalization ability when confronted with larger training sets. Whether
this behavior is systematic would have to be investigated using several data sets. However,
since the variances in the trained models are overlapping, it is also conceivable that this is a
statistical fluctuation due to the randomized initialization of the models. Therefore, it could
be possible that the better model with 40 bins is rather to be interpreted as an outlier in the
context of the natural model variance instead of being a constant minimum. In general, it
must be assumed that the optimal number of bins depends on the particular data set as
well as the individual feature.

Furthermore, since for comparability reasons, all models were trained using the same
hyperparameter (e.g., network size, optimizer, batch size). It has to be assumed that there
is room for further improvement of the models.

Considering the two tested reduction methods, there seemed to be no significant dif-
ference between a training set of randomly selected samples of each MdB or representative
samples using the mean of each MdB.

5. Conclusions

In this paper, the numerosity reduction procedure MdBR was presented. The pro-
cedure rests upon the discretization of continuous data and the subsequent removal of
redundant samples.

The proof of concept showed that the size of the training data set could be reduced
by 99.5%, leading to smaller storage space and faster training time. In addition, higher
prediction accuracy was achieved. The reduced training time renders MdBR suitable
for processes where many models have to be trained, e.g., hyperparameter search for
neural networks.

As a positive side effect, the MdBR approach also limits the thread of over-fitting due
to an imbalanced training set and lessens the influence of measurement noise.

MdBR works best with large data sets of low-dimensional data. Although periodic data
often include the most redundant samples and thus provide the best reduction capabilities,
the presented MdBR approach can only handle individual samples (time-invariant data)
and not sequences of samples, as often done in time series. Nevertheless, it could be applied
to sequences by transforming the sequence into a single vector. One possibility would be
by flattening the lagging/leading observations into the feature vector. On the downside,
this would increase the dimensionality and thus lessen the effect of the reduction. Another
possibility would be to encode the sequences into a latent space consisting of a single vector.
Whether this is worthwhile or whether there are other possibilities for the reduction in data
sets of sequences is the subject of future evaluations.

Also pending is an evaluation of the approach by further data sets and the question of
how far different discretization techniques influence MdBR.
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