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Abstract: This research aims to minimize the unnecessary resource consumption by intelligent Power
Grid Systems (PGSs). Edge Computing (EC) technology is used to forecast PGS load and optimize
the PGS load forecasting model. Following a literature review of EC and Internet of Things (IoT)-
native edge devices, an intelligent PGS-oriented Resource Management Scheme (RMS) and PGS load
forecasting model are proposed based on task offloading. Simultaneously, an online delay-aware
power Resource Allocation Algorithm (RAA) is developed for EC architecture. Finally, comparing
three algorithms corroborate that the system overhead decreases significantly with the model iteration.
From the 40th iteration, the system overhead stabilizes. Moreover, given no more than 50 users, the
average user delay of the proposed delay-aware power RAA is less than 13 s. The average delay of
the proposed algorithm is better than that of the other two algorithms. This research contributes to
optimizing intelligent PGS in smart cities and improving power transmission efficiency.

Keywords: edge computing; intelligent Power Grid System (PGS); PGS load; resource management

1. Introduction

It is reasonable to assume that power facilities empower modern social and urban
development. In particular, an intelligent Power Grid System (PGS) has risen as a powerful
technological means for supporting urban facilities [1–3] given the defects of the traditional
PGS, such as high transmission cost and excessive on-the-line energy loss. These deficien-
cies affect the economic benefits of the PGS by increasing residential costs and decreasing
grid transmission utilization.

With the further progress of network architecture technology, the Cloud Computing
network has gradually broken through the existing limitations. Furthermore, Edge Com-
puting (EC) has become a new way of collecting and processing network resources [4–6].
IoT architecture, based on enhanced data analysis and processing capabilities of IoT de-
vices, minimizes resource allocation time [7] and improves system performance. Therefore,
digital and intelligent upgrade of the comprehensive performance of the EC-empowered
intelligent PGS can improve the system’s grid load performance and power transmission
capacity [8–10].

This work uses EC technology as the technical framework. It constructs the PGS
wireless communication model based on a Mobile Edge Computing (MEC) network by
analyzing the PGS-oriented Resource Management Scheme (RMS). As a result, a distributed
PGS-oriented RMS is proposed based on matching theory and a delay-aware online power
Resource Allocation Algorithm (RAA). The experimental results verify the effectiveness of
the proposed algorithms. Section 1 briefly introduces the background of EC and intelligent
PGSs. Section 2 organizes the deficiencies of previous research on the intelligent PGS load
estimation through literature research and designs the distributed PGS-oriented RMS based
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on matching theory. Section 3 proposes the MEC network and PGS model based on research
related to task-offloading RMS. Then, Section 4 conducts the experiments to analyze the
variation range of the system delay and overhead parameters. Section 5 summarizes the
experimental results. The research reported here has practical reference value for digital
and intelligent development of intelligent PGSs.

2. Recent Related Work
2.1. EC and IoT-Native Edge Devices

Many scholars have researched edge computing technology. For example, ref. [11]
integrated EC and Deep Learning (DL) and researched the services and development model
of Artificial Intelligence (AI) applications. The research results showed that integrating
DL with the EC framework could provide an intelligent edge and realize dynamic and
adaptive edge maintenance and management. Furthermore, unleashing deep learning ser-
vices with resources at the network edge close to data sources has become an ideal research
solution. Deng et al. [12] studied fusing EC and AI to optimize AI models under DL and
improved hardware architecture. The results offered technical support for edge intelligence
exploration. Deng et al. [13] researched the architecture and technical application of the
MEC-based Mobile Augmented Reality (MAR). They found that MAR enhanced human
perception of the world by combining natural environments with virtual spaces. Further,
with the explosion of powerful, inexpensive mobile devices and the advent of complex
communication infrastructure, mobile augmented reality applications could become popu-
larized. Siriwardhana et al. [14] investigated the security and privacy of multiaccess EC
systems to improve mobile network data processing efficiency. Furthermore, they analyzed
the vulnerabilities leading to identified threat vectors and proposed potential security
solutions to overcome these vulnerabilities.

The continuous development of EC technology places greater requirements on IoT
edge-device security architecture and performance. Ranaweera et al. [15] researched AI
security architecture for the IoT edge layer. They established an architecture on top of an
AI security module at the edge layer to protect IoT infrastructure. The proposed module
outperformed the Cyber Kill Chain model in intrusion detections. HaddadPajouh et al. [16]
modeled the behavior of IoT–EC environments and designed a simulation framework. The
findings demonstrated that the IoT–EC fabric could monitor the computing behavior of the
infrastructure and allow users to test their infrastructure and frameworks in a configurable
and straightforward manner. The collaborative MEC-oriented resource allocation and
optimization was explored in [17]. They proposed two-edge server deployment schemes
based on software-defined network technology: the enumeration-based optimal edge server
deployment scheme and ranking-based near-optimal edge server placement algorithm.
The proposed algorithm optimized the collaborative edge server deployment The total
service configuration cost of the clustering-enhanced heuristic service algorithm was about
0.89 under eight service types. Lv and Liang [18] studied smart-cities-oriented intelligent
EC based on machine learning. Focusing on the mobile edge server, they used the available
resources around the mobile edge server for collaborative computing to improve the
computing performance of the MEC system. AI-driven IoT–EC and cloud computing
technologies were researched by [19]. Through mixed discussion of all important aspects
of basic technology, they provided comprehensive research and accelerated knowledge
acquisition opportunities and furnished the EC paradigm with comprehensive technical
support. Firouzi et al. [20] discussed the opportunities and challenges of federated learning
in IoT. They employed the Internet to bring more mobile network endpoints, thus reducing
costs. Additionally, centralized cloud-based learning could help users solve user data
security privacy issues.

2.2. Intelligent PGS Load and Forecast Models

The research on the PGS load prediction relies on the information exchange technology.
Zhang et al. [21] predicted PGS load based on the heuristic algorithm by proposing a new
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technology for feature selection based on improved mutual information. In addition, they
constructed a novel hybrid short-term PGS load forecasting model. The results showed
that the proposed algorithms improved the PGS load prediction accuracy. Hafeez et al. [22]
utilized blockchain technology to balance the load in the energy trading market. They
proposed a model to implement an efficient hybrid energy trading market while reduc-
ing costs and power peak-to-average ratios. Then, they checked the performance of the
proposed system through simulation experiments. The results indicated that the research
system effectively reduced the target cost. Khalid et al. [23] investigated renewable energy
and PGS load forecasting methods for innovative grid operation. For PGS load forecasting,
they utilized an improved stacked-gated Recurrent Neural Network (RNN). The find-
ings proved that the proposed method outperformed state-of-the-art methods in machine
learning or DL by achieving accurate energy predictions for intelligent grid operation.
Xia et al. [24] examined power load clusters in smart grids and analyzed consumers’ energy
consumption patterns and preferences through data mining. They also summarized the
basic concepts and general processes of power load clusters. Then, they concluded several
similarity measures and five main categories in power load clusters and their advantages
and disadvantages. Data analysis found that the PGS-load-clustering method could help
detect different PGS load patterns and provide theoretical support for smart grid research
and applications.

It is also essential to replan the PGS power prediction model in intelligent PGSs.
Si et al. [25] applied a hybrid model by studying Convolutional Neural Network (CNN)
and Long Short-Term Memory (LSTM) networks for short-term individual household
load prediction. They used the CNN layer to extract features from input data and the
LSTM layer for sequence learning. The research results showed that the intelligent PGS
was transformed into a flexible and collaborative system. Additionally, residents’ short-
term PGS load forecasting would weigh heavier in future PGS operations and planning.
Alhussein et al. [26] scrutinized forecasting models for renewable energy and electricity
demand, reviewed high-quality research articles, and evaluated the model’s forecast accu-
racy using five metrics. They summarized the forecasting objectives in power generation
schedules, unit investment, and economic dispatching problems. The research offered
practical references for critical and systematic research on renewable energy and power
forecasting models. Ahmad et al. [27] delved into the short-term PGS load and price
forecasting algorithms by introducing a new feature selection method based on entropy
and mutual information. Then, candidate inputs were ranked to eliminate redundant
input. The research results showed that the LSTM-based DL model could improve the
model’s predictive accuracy, significantly practical for intelligent development of PGS.
Memarzadeh and Keynia [28] surveyed the PGS load prediction method based on DL and
the Attention Mechanism (AM) by proposing an AM-based Bayesian optimized encoder–
decoder network. The proposed model was used to forecast short-term PGS load against
the existing model’s poor stability and low prediction accuracy in processing time-series
data. The experimental verification results indicated that the model was superior to other
models regarding prediction accuracy and algorithm stability. The results provided an
effective migration time series-oriented PGS load prediction method. Jin et al. [29] applied
a Deep Belief Network (DBN) to predict short-term PGS loads. They also employed the
Markov-based switching topology to address uncertain network attacks during neighbor
communication. The findings showed that the load dataset was separated and trained the
model locally without a central regulator. Meanwhile, it was updated through communica-
tion with random neighbors under the designed consensus program, significantly reducing
the model training time.

To summarize, many PGS load forecasting-oriented research models have achieved
high forecasting accuracy and excellent prediction effects. However, research is scarce
regarding intelligent or digital PGS load forecasting Therefore, based on previous research,
this paper designs a distributed PGS-oriented RMS using matching theory and MEC
architecture to predict the intelligent PGS load accurately.
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3. Distributed PGS-Oriented RMS by Matching Theory
3.1. RMS by Task Offloading

The development of MEC technology has challenged network resource management
technology and faces many challenges [30–32]. MEC networks, mainly based on power
resources and spectrum resources, place strict requirements on the edge device connec-
tion delay and rate. Moreover, mobile users often generate real-time, resource-intensive,
complex, heterogeneous, and diversified service requests. Thus, resource management tech-
nologies in MEC networks are essential for improving User Experience (UX) and network
resource utilization.

User-end mobile devices have minimal capacity to process resource-intensive tasks [33].
The intelligent PGS will offload those overloaded tasks to MEC devices to improve virtual
resource utilization. Figure 1 displays RMS by task offloading.
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3.2. MEC Network Architecture and System Power Communication Model

Constructing a wireless communication model is essential to MEC network architec-
ture. Specifically, all mobile devices run under a computing mode with different decision
variables. Once enough mobile devices are connected to the network, user-end computing
tasks can be offloaded through subchannels. The data transfer rate rm

i,n for the task is
calculated according to (1).

rm
i,n = W log2

(
1 +

pi,ngm
i,n

σ2 + Km
i,n

)
(1)

In (1), W represents the channel bandwidth; pi,n denotes the information transmission
power of the mobile device i; gm

i,n indicates the signal transmission gain between the mobile
device i and the channel m; Km

i,n signifies the interference caused by other mobile devices to
channel m; and σ2 represents the Gaussian noise. In addition, computing local tasks using
mobile devices must consider the local delay tl

i and EC El
i of computing tasks. The local

cost Zl
i is defined by the local delay and EC, as given by (2).

Zl
i = λ1tl

i + λ2El
i (2)

In (2), λ1 and λ2 denote the weight of the execution delay and EC of the mobile
device i, respectively; and tl

i and El
i represent the local delay and EC of the computing

task, respectively. When a mobile device loads computing tasks on a remote server for
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execution, the cost of edge computing mainly includes execution delay and EC. The total
execution delay tm,e

i,n and total EC Em,e
i,n of mobile devices in the edge computing process can

be expressed as:
tm,e
i,n = tm,s

i,n + tx
i,n (3)

Em,e
i,n = Em,s

i,n + Ex
i,n (4)

where tm,s
i,n signifies the total delay of the data transmission process; tx

i,n represents the total
delay of the system computing process; Em,e

i,n denotes the total EC of the system computing
process; Em,s

i,n refers to the transmission energy consumption; and Ex
i,n stands for the EC of

the computing process. The sum of total delay and EC is the total cost Ze
i of EC system, as

written in (5).
Ze

i = λ1 ∑
n

∑
m

am
i,ntm,e

i,n + λ2 ∑
n

∑
m

am
i,nEm,e

i,n (5)

In (5), ∑n ∑m am
i,ntm,e

i,n represents the data transmission overhead; ∑n ∑m am
i,nEm,e

i,n refers
to the system resource overhead; and λ1 and λ2 stand for the weight coefficients of the exe-
cution overhead in the two processes. Figure 2 shows the architecture of the MEC network.
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In addition, decision variables are introduced in mobile devices to describe the system
model. The cost minimization model is designed as (6).

min
ai∈{0,1}

Zi(ai, a−i), ∀i ∈ I (6)

Equation (7) describes the detailed objective function.

Zi(ai, a−i) =

{
Zl

i (1− a), if ai = 0
Ze

i (a), if ai = 1
(7)

In (7), Zi(ai, a−i) refers to the cost function, where ai represents the decision variable
value of the mobile device. Different load constraints need to be considered to solve the
cost. The delay constraints and energy constraints of the server are expressed as:

Zi
(
a′i, a−i

)
< Zi(ai, a−i) (8)
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Pi
(
a′i, a−i

)
< Pi(ai, a−i) (9)

where Zi
(
a′i, a−i

)
indicates the actual system delay; Zi(ai, a−i) denotes the estimated de-

lay parameter value; Pi
(
a′i, a−i

)
represents the actual system energy consumption; and

Pi(ai, a−i) signifies the system energy consumption threshold. Furthermore, the threshold
function Cm

i,n for local computation offloading tasks is defined as (10).

Cm
i,n = β1

(
tm,e
i,n

tl
i

)
+ β2

(
σ2 + ∑N

l=1,l 6=n ∑K
j=1,j 6=i am

j,l pj,l gm
j,n

pi,ngm
i,n

)
(10)

In (10), β1 and β2 are the weight of delay and interference, respectively;
(

tm,e
i,n
tl
i

)
represent the influence factor of time delay on the system;

(
σ2+∑N

l=1,l 6=n ∑K
j=1,j 6=i am

j,l pj,l gm
j,n

pi,ngm
i,n

)
means the influence factor of data interference on the system. (11) indicates the threshold
policy of the task offloading model.

P(a) =
1
2 ∑N

n=1 ∑I
i=1 Cm

i,nCm
j,l I{ai=aj :m} I{ai=1} (11)

In (11), I{ai=1} represents the indicator function and Cm
i,nCm

j,l I{ai=aj :m} refers to the task
offloading process in the subchannel. In the edge computing system, the mobile device
i needs to update its unloading decision in the EC system continuously. In the decision
time slot τ, according to the interference and uplink data rate, the mobile device needs to
update the server information according to (12).

Θi(τ) =
{

a′i : Zi
(
a′i, a−i

)
< Zi(ai, a−i)

}
(12)

In (12), Θi(τ) represents the updated parameter information and Zi
(
a′i, a−i

)
signifies

the cost decision set in the unloading process. In the process of updating the decision,
the mobile device needs to compete for computing resources to minimize the resource
overhead Then, the competition for resources reaches equilibrium after finite iterations,
which can be described as:

a∗i = arg min
a∗i

Zi
(
a′i, a−i

)
, a∗i ∈ Θi(τ) (13)

where Θi(τ) represents the set of optimal response decisions and Θi(τ) = 0 demonstrates
that the algorithm is implemented within finite iterations. Then, after G iterations, the
difference between the actual and the predicted decisions follows (14).

0 < β1∆κ1 + β2∆κ2 ≤ 2 (14)

In (14), ∆κ1 and ∆κ2 refer to the difference between the actual and the predicted
decisions, and β1 and β2 represent the variation coefficient of the two thresholds, respec-
tively. Suppose that the equilibrium state policy set of all mobile devices is a∗i . Then, the
approximate Efficiency Ratio ER of the optimal solution can be written as (15).

ER =
min ∑I

i=1 Zi
(
a∗i
)

min ∑I
i=1 Pi

(
a∗i
) (15)

The closer the value of ER is to 1, the better the state of the mobile device; a∗i in
(15) stands for the optimal solution using minimal overhead. The proposed intelligent
PGS-oriented delay cost model releases independent delay-sensitive tasks with an iden-



Energies 2022, 15, 3028 7 of 16

tical distribution. Meanwhile, the computing task i is offloaded through the self-carrier.
Equation (16) describes the link rate of data transmission.

ri,k,m(t) = αk log2

(
1 +

pigi,m(t)
Ii,k,m(t) + σ2

)
(16)

In (16), αk represents the bandwidth of the subcarrier at time t; pi stands for the
bandwidth allocation vector; gi,m(t) denotes the information transfer gain between the user
and the channel; Ii,k,m(t) refers to the unified channel unloaded resources by the remaining
base stations; and σ2 signifies the signal interference value. Figure 3 displays the PGS
communication model based on unified channel resource scheduling by the base station.
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3.3. Online Delay-Awareness Power RAA

Reasonable computing resources allocation can improve the system’s computing
power. However, improvement of computing power has certain limitations, as shown
in (17).

∑k∈K ai,k,m(t)ri,k,m(t) ≤ θm(t− 1)
Fmax

m
ηm (17)

In (17), ai,k,m(t) denotes the bandwidth resource of the signal base station; ri,k,m(t)
refers to the signal gain power of user i between channels; θm represents the path loss
parameter; and Fmax

m
ηm signifies the task offloading decision parameter. The total delay cost Ti

and average delay cost T of the user performing the computing task can be written as:

Ti = ∑T
t=1 E{Li(t) 6=0} (18)

T = lim
T→∞

1
I ∑I

i=1 ∑T
t=1 Ti (19)

where E{Li(t) 6=0} measures whether or not the event occurs. If the event occurs, E{Li(t) 6=0} = 1;
otherwise, the parameter value E{Li(t) 6=0} = 0. According to different offloading strategy
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functions, tasks are injected into different classification sets. The three different offloading
strategy functions can be expressed as:

Ql
i(t) =

Li(t)Ci
fi

(20)

Qm
i (t) =

Li(t)ηm

fi
(21)

Qn
i (t) =

Li(t)ηn

fi
(22)

where Ql
i(t), Qm

i (t), and Qn
i (t) represent the user online classification strategy, the allocation

strategy based on the macro base station, and the allocation strategy based on the small
base station, respectively. Li(t) stands for the task uploading resource consumption to the
remote server. Ci, ηm, and ηn denote the task unloading efficiency of different unloading
strategies, and fi represents the task execution rate. Then, the delay cost on multiple tasks
is evaluated by the competition rate o(ORAM), as calculated by (23).

o(ORAM) = max
I

{
e(ORAM(I))
e(OHA(I))

}
(23)

In (23), e(ORAM(I)) represents the delay cost of executing the task event through
the system mechanism and e(OHA(I)) denotes the delay cost of the offline allocation
algorithm to complete the task. In addition, the offline objective and the penalty function
need to jointly form a fitness function to solve the optimization problem. The offline fitness
function is defined as (24).

Fitness = T + penalty (X) (24)

In (24), T represents the offline objective function and (X) stands for the offline penalty
function. The blockchain model calculates the probability that mobile devices conduct
transactions at network edge nodes according to (25).

Pmine
m =

wm

∑m∈M wm
(25)

In (25), Pmine
m represents the probability of mining a block during the consensus process

of the MEC network, and wm denotes the computing power of the edge node m. Then, a
block in edge nodes is successfully loaded into the blockchain, and the edge node mining
the block will be rewarded. Figure 4 illustrates the framework of the intelligent PGS-
oriented PPS.

In addition, the mining rewards Rm and mining accuracy Pwin
m are calculated by:

Rm =

(
R + ∑n xnmρn

wm

∑m∈M wm
e−λαm

)
(26)

Pwin
m = Pmine

m

(
1− Porphan

m

)
(27)

where Pwin
m denotes the mining accuracy, Pmine

m represents the overall mining rate, and
Porphan

m refers to mining inaccuracy (28) counts the mining inaccuracy.

Porphan
m = 1− e−λαm (28)

In (28), λ denotes the Poisson distribution parameter; m is the edge node; and Rm
stands for the mining reward. In addition, the calculation cost CCm of the edge node m can
be presented as (29).

CCm = PPm + MPm (29)
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In (29), PPm represents the power of the edge node processor and MPm signifies the
memory power. Given the system resource utilization, the computing resource scheduling
is set as (30).

∑n∈N xnmdn ≤ vm (30)

In (30), dn represents the system Central Processing Unit (CPU) cycle and xnm denotes
the computing resources of edge nodes. Equation (31) demonstrates the service cost of
edge nodes.

Cm = ζ ∗ TCm + ϑ ∗ CCm (31)

In (31), ζ ∗ TCm represents the system data transmission cost and ϑ ∗ CCm denotes the
system computing cost. The preference file φn(m) of the edge node of the matching system
with unilateral preference is determined according to (32).

φn(m) =

{
ρn

wm

∑m∈M wm
e−λ f sn

}
−
{

ζ

Bn
+ ϑ f sn

}
(32)Energies 2022, 15, x FOR PEER REVIEW 9 of 16 
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In (32), Bn represents the bandwidth allocated by edge node m to transaction n; φn(m)
denotes the preference coefficient of edge nodes; ζ refers to the network resource utilization;
ϑ stands for the data transmission efficiency; f represents the transmission resistance
coefficient; and sn indicates the transmission benefit cost. Figure 5 provides the structure of
the online power RAA.

The data collection equipment collects the PGS loads systematically to analyze and com-
pare the performance of the EC-based intelligent PGS load forecasting system. Algorithm 1
presents online delay-aware RAA.
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Algorithm 1: Distributed matching algorithm.

1 Input : π = (N, M, φN(M)), γkσmvζm
2 Output : µ

3 Initialization: f lag(m)← Failure, ∀m ∈ M
4 Repeat
5 While Transaction was not successfully matched do
6 The maximum number of transactions randomly scheduled by the main edge node Dn
7 If sn ≥ φm or ρn ≥ ζm then
8 update ζm;
9 f lag(m)← Success ;
10 End if
11 If φn(m) > φ′n(m)n, n′ ∈ ζm then
12 If |∑n xnmsn|≤ ζmγm or, |∑n xnmdn|≤ υm then
13 ζm = ζm/n′;
14 End if
15 End if
16 End while
17 Until φn(m) = ∅, ∀m ∈ M, n ∈ N;
18 If Each edge node is successfully matched then
19 output µ

20 Else
21 Return “Failed”
22 End if
23 Output: µ is a stable match.

3.4. Experimental Parameter Settings

Simulation experiments verify the effect of the proposed intelligent PGS load forecast-
ing model, and the mechanical properties are theoretically analyzed. The experimental
data used for the simulations are from Ampds, a public dataset for load decomposition
and ecological feedback studies. This dataset contains detailed energy consumption data
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for 19 household internal grid devices during a year. This experiment assumes that the
resource release time A of the PGS is uniformly distributed between [1,T], and the released
resources change continuously over time. At the same time, the bandwidth between the
user and the MEC system is set to 9 × 106 MHz. The frequency of the local CPU obeys a
uniform distribution in the range [0.65, 0.75] GHz. The actual signal transmission power of
the system is 5 W. Additionally, the proposed delay-aware online power RAA is compared
with the Remote Upload Algorithm (RUA) and the Local Computing Algorithm (LCA),
factoring in system overhead and system delay. The experimental data of each group of
algorithms are divided into the experimental group (Group 1) and control group (Group 2)
to reduce the experimental error. The six groups are RUA-1, RUA-2, LCA-1, LCA-2, OAP-1,
and OAP-2. The statistical results are analyzed in the next section.

4. Results and Discussion
4.1. An RMS by Task Offloading

The proposed online delay-aware power RAA is compared with RUA and LCA on
overhead and system delay. As shown in Figure 6, the system overhead decreases gradually
with iteration. Figure 7 reveals the impact of mobile device numbers and data volume on
the system overhead. Figure 8 indicates the influence of the mobile device number on the
system delay. The proposed online delay-aware power RAA is denoted as Optimization
Algorithm Proposed (OAP) in the following graphs.
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Figure 7. Variation curves of the influence of the mobile device number and the data volume
on the system overhead: (a) mobile device number on the system overhead; (b) data volume on
system overhead.



Energies 2022, 15, 3028 12 of 16

Energies 2022, 15, x FOR PEER REVIEW 12 of 16 
 

 

Figure 6. Variation curves of the system overhead with iteration: (a) variation curve under thresh-
old = 0.1; (b) variation curve under threshold = 0.5. 

Figure 6 shows that the system overhead of the three algorithms decreases signifi-
cantly with model iterations. From the 40th iteration, the overall system overhead stabi-
lizes. Apparently, the threshold also impacts the system overhead: the larger the thresh-
old, the greater the system overhead. Meanwhile, the system overhead of the three algo-
rithms also tends to be stable from the 40th iteration. Comparing the system overhead 
under different thresholds reveals that the system overhead increases significantly, as 
shown from Figure 6a to Figure 6b. Thus, the model parameters have a specific impact 
on the system overhead. Figure 8 presents the variation curves of the influence of the 
mobile device number and the data volume on the system overhead. 

  
(a) (b) 

Figure 7. Variation curves of the influence of the mobile device number and the data volume on 
the system overhead: (a) mobile device number on the system overhead; (b) data volume on sys-
tem overhead. 

Evidently, the mobile device number is positively proportional to system overhead; 
the system overhead increases gradually with the increase in mobile devices. Then, when 
mobile devices are 40 N, the system overhead begins to stabilize. Remarkably, OAP has 
the largest system overhead, mainly used to allocate PGS resources. Meanwhile, compu-
ting data volume is also positively proportional to the system overhead; the system 
overhead increases with the computing data volume. However, when data volume = 4 
MB, the system overhead stabilizes. RUA takes up the lowest proportion of system 
overhead among the three algorithms. Hence, its data calculation is insufficient, and the 
results are less reliable. Therefore, the system model with a calculation dataset that is too 
large can be optimized to improve the utilization of the algorithm. 

 

10 20 30 40 50 60
0

20

40

60

80

100  RUA 
 LCA  
 OAP  

Number of mobile devices (N)

Sy
ste

m
 D

el
ay

 (s
)

 
10 20 30 40 50 60

0
50

100
150
200
250
300
350  RUA 

 LCA  
 OAP  

Sy
ste

m
 O

ve
rh

ea
d 

(s
)

Number of mobile devices (N)  
(a) (b) 

Figure 8. Influence of the mobile device number on the system delay and system overhead: (a) the 
changing trend of the system delay with the increase in mobile devices; (b) the changing trend of 
the system overhead with the increase in mobile devices. 

Figure 8. Influence of the mobile device number on the system delay and system overhead: (a) the
changing trend of the system delay with the increase in mobile devices; (b) the changing trend of the
system overhead with the increase in mobile devices.

Figure 6 shows that the system overhead of the three algorithms decreases significantly
with model iterations. From the 40th iteration, the overall system overhead stabilizes.
Apparently, the threshold also impacts the system overhead: the larger the threshold, the
greater the system overhead. Meanwhile, the system overhead of the three algorithms also
tends to be stable from the 40th iteration. Comparing the system overhead under different
thresholds reveals that the system overhead increases significantly, as shown from Figure 6a
to Figure 6b. Thus, the model parameters have a specific impact on the system overhead.
Figure 8 presents the variation curves of the influence of the mobile device number and the
data volume on the system overhead.

Evidently, the mobile device number is positively proportional to system overhead;
the system overhead increases gradually with the increase in mobile devices. Then, when
mobile devices are 40 N, the system overhead begins to stabilize. Remarkably, OAP has the
largest system overhead, mainly used to allocate PGS resources. Meanwhile, computing
data volume is also positively proportional to the system overhead; the system overhead
increases with the computing data volume. However, when data volume = 4 MB, the
system overhead stabilizes. RUA takes up the lowest proportion of system overhead
among the three algorithms. Hence, its data calculation is insufficient, and the results are
less reliable. Therefore, the system model with a calculation dataset that is too large can be
optimized to improve the utilization of the algorithm.

Apparently, with the growth in mobile device numbers, the system delay and system
overhead show a significant increasing trend. The system delay and overhead of RUA are
the smallest among the three algorithms. In contrast, OAP presents the largest proportion
of system delay and system overhead. This result proves that OAP needs larger system
overhead to allocate power resources with the increase in the mobile device number.
Although the accuracy of the delay-aware power RAA is improved, prolonged system
delay will affect the data transmission efficiency, which is worthy of improvement.

4.2. Changing Curves of Average Time Delay and System Fixed Control Parameters

Further, user numbers and system running time are factored into the experiment to
evaluate the three algorithms’ variation range of system fixed parameters. The longer the
system runs, the greater the requirements for the algorithm, the longer time the algorithm
needs, and the higher the fitness. Therefore, it is essential to evaluate the algorithm
efficiency through running time. Figure 9 plots the impact of the user number and system
running time on the average delay of users. Figure 10 gives the parameter changes of
system calculation resource surplus and average system delay. Figure 11 describes how
the trend of fixed control parameters and system average delay change with the increase
in users.
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According to Figure 10, the number of users is positively proportional to the re-
source remaining. The system running time is inversely proportional to the resource re-
maining. With the increase in users, more system resources are generated. OAP per-
forms best in calculating the resource remaining. By comparison, the average system 
delay decreases slightly with the system running time. With the increase in resource 
consumption rate, the average system delay also increases. Moreover, as shown in Fig-
ure  10d, the gap between OAP-1 and OAP-2 is large, indicating that the system stabil-
ity is not high. However, the average delay between the two systems is still very low. 
Thus, the performance of the OAP algorithm is still outstanding, and the average delay 
of OAP is about 7.5 s. Compared with the other two algorithms, OAP significantly im-
proves the efficiency of system resource allocation. 

According to Figure  11, with the increase in the user numbers, the system fixed 
control parameter shows a downward trend, while the average system delay of several 
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(a) the relationship between the user number and resource remaining; (b) the relationship between
the system running time and resource remaining; (c) variation curves of average system delay with
the increase in system running time; (d) variation curves of average system delay with resource
consumption rate.
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Obviously, with the increase in users, the average user delay increases significantly.
Among the three algorithms, the OAP has the smallest average user delay, less than 13 s,
when the number of users is less than 50. Furthermore, the average user delay shows a
downward trend with the increase in the system running time. Noticeably, the trend of
RAU and LCA is not mild. In contrast, OAP decreased sharply. Therefore, when the system
calculation time exceeds a threshold, the OAP delay greatly reduces and stabilizes at about
4 s when the system running time reaches 400 s. Thus, the operation efficiency of the OAP
system is obviously better than the other two algorithms.

According to Figure 10, the number of users is positively proportional to the resource
remaining. The system running time is inversely proportional to the resource remaining.
With the increase in users, more system resources are generated. OAP performs best in
calculating the resource remaining. By comparison, the average system delay decreases
slightly with the system running time. With the increase in resource consumption rate, the
average system delay also increases. Moreover, as shown in Figure 10d, the gap between
OAP-1 and OAP-2 is large, indicating that the system stability is not high. However,
the average delay between the two systems is still very low. Thus, the performance of
the OAP algorithm is still outstanding, and the average delay of OAP is about 7.5 s.
Compared with the other two algorithms, OAP significantly improves the efficiency of
system resource allocation.

According to Figure 11, with the increase in the user numbers, the system fixed control
parameter shows a downward trend, while the average system delay of several algorithm
models increases. When the user number reaches 100, the fixed control parameter of
OAP is about 0.75, while that of RUA is only 0.6; the higher the fixed-parameter, the
better the data processing effect. Therefore, OAP is superior to other algorithms in data
processing. Meanwhile, the average system delay of OAP is higher than that of the other
two algorithms at the beginning but decreases significantly when the number of users
increases to a threshold. Moreover, the OAP curve is lower than the other two models.
Therefore, the performance of OAP in system delay is better than the other two algorithms,
significantly reducing system resource consumption.

5. Conclusions

This paper proposes a distributed PGS-oriented RMS based on matching theory and
an online delay-aware power RAA. Initially, it discusses the algorithm theory, then designs
the algorithm model, and finally evaluates the algorithm performance by comparing three
different algorithms. The results show that the system overhead of the three algorithms de-
creases significantly with the model iteration. From the 40th iteration, the system overhead
stabilizes. Meanwhile, the average user delay of OAP is the smallest, less than 13 s, given
no more than 50 users. Thus, OAP outperforms the other two algorithms in the average
user delay. This research has practical value for the digitization and intellectualization
of PGS. However, some defects were noted. First, given the limited communication and
computing resources, the delay and resource consumption are simplified by calculating
system overhead through the overhead minimization model. Second, this research focuses
on maximizing the system benefits of the MEC network while ignoring the impact of
blockchain technology on network resource allocation. Future research will combine the
online RAA with the blockchain network, build a new network RMS, and improve the
utilization efficiency of the system on the edge computing resources.
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