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Abstract: Smart grids, together with the Internet of Things, are considered to be the future of the
electric energy world. This is possible through a two-way communication between nodes of the
grids and computer processing. It is necessary that the communication is easy and safe, and the
distance between a point of demand and supply is short, to reduce the electricity loss. All these
requirements should be met at the lowest possible cost. In this paper, we study a two-dimensional
rectangular grid graph which is considered to be a model of a smart grid; nodes of the graph represent
points and devices of the smart grid, while links represent possible ways of communication and
energy transfer. We consider the problem of choosing the lowest possible number of locations (nodes,
points) of the grid which could serve as energy sources (or a source of different resources) to other
nodes in such a way that we ensure reduction in electricity loss and provide safe communication
and resistance to failures and increases in energy demand.Therefore, we study minimum doubly
connected dominating sets in grid graphs. We show that the proposed solutions are the best possible
in terms of the number of source points for the case of narrow grid graphs and we give upper and
lower bounds for the case of wide grid graphs.

Keywords: smart grids; security; communication; doubly connected domination number; rectangular
grid graphs

1. Introduction

Smart grids are similar to conventional power grids, but they introduce two-way com-
munication so that electricity and information can be exchanged between electrical utilities
and a customer. Controls, computers, new technologies and tools can work together to
make a smart grid not only safe, but also more efficient, reliable and more environmentally
friendly. For example, they can integrate renewable resources of energy, such as wind and
solar sources, to provide electricity for plug-in electric cars. In this way, smart grids, with
the help of smart meters, can easily manage our electricity needs at a lower cost.

Since the amount of electricity provided by renewable resources of energy (especially
wind and solar sources) often relies on weather conditions, a smart grid needs to analyze
data and optimize the use of the energy to keep up with constantly changing energy de-
mands. By deferring the electricity usage to off-peak hours, we can reduce operating costs.
Usually, the power we are using right now was generated just a second ago, many kilome-
ters away. At each instance, the amount of energy generated must equal the consumption
of the entire grid, so a smart grid should manage electricity production and consumption
in real-time.

Because of the tasks and requirements for smart grids, the two-way communication
between nodes should be immediate, easy and safe, and the distance between a point of
demand and supply should be short to reduce the electricity loss and time propagation.
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In addition, the smart grid should be resistant to temporary increased demand for electricity
(peaks) and malfunctions. All these requirements should be met at the lowest possible cost.
These demands inspired the authors to study a two-dimensional rectangular grid graph
which is considered to be a model of a smart grid; nodes of the graph represent points and
devices of the smart grid, while links represent possible ways of communication and energy
transfer. Then we studied the problem of choosing the lowest possible number of locations
(nodes, points) of the grid which could serve as special nodes (for example energy sources) to
other nodes in such a way that each such ordinary node is at an immediate neighbourhood
of a source node and there is a path between any two source nodes, completely contained in
links between the source nodes, and there is also a similar path between any two ordinary
nodes, completely contained in links between them. The first requirement ensures the
reduction in loss of electricity, while the last two provide safe communication and resistance
to failures and increases in energy demand. We show that the proposed solutions are the
best possible in terms of the number of source points. To achieve this aim, we apply graph
theory and study doubly connected domination number in grid graphs. The novelty of the
paper includes the possibility of applying the doubly connected domination in smart grids
modeled as grid graphs. Other new results concern exact values for the number of nodes
in the smallest doubly connected sets for the case of narrow grids, and upper and lower
bounds for this number in other cases.

The paper is organized as follows. In Section 2, we present studies related to smart
grids and domination in grid graphs. In Section 3, all necessary definitions and notions are
introduced. The main results of the paper are presented in Section 4, which is divided into
two subsections: first, we study narrow grid graphs, and afterwards, wider grid graphs.
The last Section 5 is devoted to discussion of the obtained results, applications and ideas
for future research.

2. Related Work

Graph theory has provided a solid mathematical basis for developing new tools for
complex networks analysis. Many of these tools have enormous potential to be implemented
in power systems as well [1]. Graph coloring, and its variants, find application in channel
assignment, for example, see [2,3]. In [4], the authors present a structured approach to
creating integrated infrastructure models for smart grids using graph theory. In [1], several
chapters are devoted to the use of graph theory, in particular graph symmetry and centrality,
for the complex networks of charging stations.

The notion of domination in graphs has also been widely studied, since domination in
graphs helps to solve problems related to localization of different resources and devices.
For example, in [5], the authors studied minimum distance dominating sets in complex net-
works. In [6,7], dominating sets were used to make such safe networks. Power domination
is a type of domination problem defined and studied with immediate application to power
lines. It helps to solve the problem of monitoring an electric power system by placing as few
measurement devices as possible (see [8–11]). Minimum connected dominating sets apply
in ad hoc networks to find a virtual backbone, which helps achieve efficient broadcasting
in these networks [12]. This type of domination is studied in grid graphs in [13].

In this paper, we study doubly minimum connected dominating sets in grid graphs
with application to smart grids. This type of domination set was first defined in 2006 [14],
and further studied by [15–19]. In these studies, the authors investigated the computational
complexity of the graph parameter, basic properties and bounds on the doubly connected
domination number, the influence of removing a link on this parameter and studied this
number in coronas of graphs and lexicographic products. Nevertheless, this type of domina-
tion parameter has still not been thoroughly studied and there is still a great deal to discover.
Until now, nobody has studied minimum doubly connected dominating sets in grid graphs,
nor their application to smart grids.

A rectangular grid graph is a graph whose drawing, embedded in two-dimensional
Euclidean space, forms regular rectangles. Grid graphs can also be described as Cartesian
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products of two paths (see Section 3 for detailed definitions). This regularity of the structure
of the grid graph implies that the structures of many variants of minimum dominating sets
also create repeated patterns, which are symmetric in many cases [20,21]. Since grid graphs
can serve as a model for a sensor’s localization in a network, geographical coordinates on
a map or coordinates in a two-dimensional Cartesian plane, these graphs have potential
practical applications.

Our paper is devoted to patterns that occur while constructing minimum doubly
connected dominating sets. Since both the minimum dominating set and its complement
have to be connected, the results may look like a labyrinth or a bark beetle path in a board.
The basic pattern that is constructed for smaller grids is repeated for bigger ones, bringing
the idea of symmetrical arrangements.

3. Preliminaries

A simple graph (or graph for short) G = (V, E) consists of a non-empty finite set V
of elements called nodes and a set E of two-element subsets of elements of V, which are
called links. If {u, v} is a link, then we will write uv for short. This definition of a graph
can be regarded as a mathematical model of any network or grid in which links reflect the
two-way communication channels between nodes.

A Cartesian product of graphs G1 and G2 is the graph G = G1�G2, where the set of
nodes is the Cartesian product of V(G1) and V(G2), that is V(G) = V(G1)× V(G2) and
two nodes (a, b) and (c, d) are adjacent if, and only if, a = c and bd ∈ E(G2) or if b = d and
ac ∈ E(G1).

A path graph (or a path) is a graph Pn = (V, E), where V = {v1, v2, . . . , vn} and
E = {vivi+1 : i = 1, 2, . . . , n − 1}. A rectangular grid graph is a Cartesian product of
two paths, say Ps and Pl . For this kind of graph, we can give a more straightforward
definition. For two positive integers s, l, a grid graph G[s, l] is a graph with node set
V(G[s, l]) = {(i, j) : i = 1, . . . , s; j = 1, . . . , l} and two nodes (a, b), (c, d) ∈ V(G[s, l]) are
adjacent if, and only if, |a− c|+ |b− d| = 1.

In Figure 1, we can see a graph G[6, 5]. Nodes are labeled by their coordinates. Note
that each inner node is of degree 4, that is, it has 4 neighbours. The nodes on the border of
the grid are of degree 3, while four nodes in the corners are of degree 2. By Cm, we denote
the nodes in the column m, m = 1, . . . , s of the grid graph, that is Cm = {(m, j) : j = 1, . . . , l}
and by Rn the nodes in the row n, n = 1, . . . , l, that is Rn = {(i, n) : i = 1, . . . , s}.

Let D ⊆ V(G) be a subset of the set of nodes of a graph G. The subgraph induced by
D is a graph G[D] = (D, ED), where ED is the set of these links whose both ends belong
to D. A subgraph G[D] is connected if any two nodes of D can be connected by a path
completely contained in G[D].

In Figure 2, the set D1 = {(1, 2), (2, 2), (1, 3), (2, 3)} induces a connected subgraph,
while the set D2 = {(4, 4), (4, 5), (6, 4)} induces a disconnected subgraph. There is no path
between nodes (4, 4) and (6, 4) that is contained in the subgraph induced by D2.

A set D ⊆ V(G) is a dominating set of a graph G if every node in V(G) − D is
adjacent to at least one node in D. A set D ⊆ V(G) is a doubly connected dominating
set of G (MDCDS) if it is dominating and the induced subgraph G[D] and G[V − D] are
connected. The doubly connected domination number γc

c(G) is the cardinality of a smallest
doubly connected dominating set of G. Although determining the minimum doubly
connected domination number is NP-hard for many graph classes (see [14]), in this paper,
we give exact values of this number for narrow rectangular grid graphs, namely G[s, l] for
l = 1, . . . , 5, and we give upper and lower bounds for l ≥ 6.

For two nodes x and y, let dG(x, y) denote the distance between x and y in G, that is
the length (number of links) of a shortest path between x and y. If D is a set of nodes of G
and x is a node of G, then the distance from x to D, denoted by dG(x, D), is the shortest
distance from x to a node of D. For example, in Figure 2 the distance between nodes (3, 2)
and (5, 3) is 3.
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Figure 1. A grid graph G[6, 5]. Column C4 is denoted by blue, row R2 is denoted by yellow.
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Figure 2. The blue subgraph is connected, while the green one is disconnected.

4. Results

In this section, we study the minimum doubly connected dominating sets in grid
graphs. We start by analyzing the cases of narrow grids, then we move on to wider grids.
At the end, we generalize our results. Without loss of generality, for each case of a grid
graph G[s, l], we assume s ≥ l.
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4.1. Results for Narrow Grids

We begin this section with the following lemma, which says that if two nodes lying on
the border of a grid do not belong to a minimum doubly connected dominating set, then
they belong to the same column or to the same row.

Lemma 1. Let D be a minimum doubly connected dominating set in G[s, l]. If u, v ∈ (C1 ∪ Cs ∪
R1 ∪ Rl)− D, then exactly one possibility is true:

• u, v ∈ C1 − D;
• u, v ∈ Cs − D;
• u, v ∈ R1 − D;
• u, v ∈ Rl − D.

Proof. Let D be a minimum doubly connected dominating set in G[s, l] and let u, v ∈
(C1 ∪ Cs ∪ R1 ∪ Rl)− D. We proceed to the proof by contradiction, so suppose the thesis is
false. Without loss of generality, let u ∈ C1 − D and v ∈ (Cs ∪ R1 ∪ Rl)− (D ∪ C1).

Since G[V − D] is connected, there exists a (u− v)-path such that each node of the
path is contained in V − D. Since G[D] is also connected, the (u, v)-path contains the node
(1, 1) or (1, l). Without loss of generality, we assume that (1, 1) belongs to the (u− v)-path.
However, this situation is possible only if v = (1, 1) and v ∈ R1 − D, which contradicts the
assumption. Therefore u, v ∈ R1 − D.

Lemma 1 implies that except for perhaps the corner nodes, three out of four border
rows and columns are contained in each MDCDS.

Our next results determine exact values of the doubly connected domination number
of grids G[s, 1], G[s, 2], G[s,3], G[s, 4] and G[s, 5].

Proposition 1. Let s ≥ 2. Then
γc

c(G[s, 1]) = s− 1.

Proof. Since G[s, 1] is a path, the result follows by [14].

Proposition 2. Let s ≥ 2. Then
γc

c(G[s, 2]) = s.

Proof. Clearly, R1 is a doubly connected dominating set of G[s, 2]. Hence, γc
c(G[s, 2]) ≤ s.

Now let D be a MDCDS of G[s, 2]. Since V = R1 ∪ R2, Lemma 1 implies that |V −D| ≤ s.
Therefore, γc

c(G[s, 2]) = s.

Figure 3 is an example of a smallest doubly connected dominating set of G[11, 2]: the
set of all black nodes form a MDCDS of this grid graph. This is also true for the set of all
white nodes. Note that this is exactly half of the nodes of the grid.

Figure 3. A minimum doubly connected dominating set of G[11, 2] formed by the set of all black
nodes.

Proposition 3. Let s ≥ 3. Then
γc

c(G[s, 3]) = 2s.

Proof. Clearly, R2 ∪ R3 is a doubly connected dominating set of G[s, 3], so γc
c(G[s, 3]) ≤ 2s.

Let D be a minimum doubly connected dominating set of G[s, 3]. Then |D| ≤ 2s and
thus without loss of generality either (V − D) ∩ C1 6= ∅ or (V − D) ∩ R1 6= ∅.
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In the first case, Lemma 1 implies that |D| ≥ s− 1 + s− 1 + 1 = 2s− 1. Moreover, one
more node is needed to dominate (1, 2), so |D| ≥ 2s.

In the second case, Lemma 1 implies that |D| ≥ s+ 1+ 1 = s+ 2. If |(V−D)∩R1| = t,
then, since D is doubly connected and dominating, at least t− 2 more nodes of R2 belong
to D to dominate R1. Thus, |D| ≥ s + 2 + (s− t) + (t− 2) = 2s.

Figure 4 is an example of a grid G[11, 3] in which the smallest doubly connected
dominating set consists of all black nodes. Note that two thirds of all nodes are needed to
form an MDCDS in this grid.

Figure 4. A minimum doubly connected dominating set of G[11, 3] formed by the set of all black
nodes.

Proposition 4. Let s ≥ 4. Then

γc
c(G[s, 4]) = 2s + 2.

Proof. Clearly, R1∪R4∪C1 is a doubly connected dominating set of G[s, 4], so γc
c(G[s, 4]) ≤

2s + 2.
Let D be a minimum doubly connected dominating set of G[s, 4]. Then |D| ≤ 2s + 2

and thus, without loss of generality, either (V − D) ∩ C1 6= ∅ or (V − D) ∩ R1 6= ∅.
In the first case, Lemma 1 implies that |D| ≥ s − 1 + s − 1 + 2 = 2s. Moreover,

because of (1, 2) and (1, 3), two more nodes must be added to D to make D connected and
dominating, so |D| ≥ 2s + 2.

In the second case, Lemma 1 implies that |D| ≥ s+ 2+ 2 = s+ 4. If |(V−D)∩R1| = t,
then at least t− 2 more nodes of R2 belong to D to dominate R1. Thus, |D| ≥ s + 4 + (s−
t) + (t− 2) = 2s + 2.

Figure 5 is an example of a smallest doubly connected dominating set of G[11, 4].

Figure 5. A minimum doubly connected dominating set of G[11, 4] formed by the set of all black
nodes.

Proposition 5. Let s ≥ 5. Then

γc
c(G[s, 5]) = 2s + 4.

Proof. Clearly, (R2 ∪ R5 ∪ C1 ∪ Cs)− ({(2, 2), (s, 1)}) is a doubly connected dominating
set of G[s, 5], so γc

c(G[s, 5]) ≤ 2s + 4.
Let D be a minimum doubly connected dominating set of G[s, 5]. Then |D| ≤ 2s + 4

and thus, without loss of generality, either (V − D) ∩ C1 6= ∅ or (V − D) ∩ R1 6= ∅.
In the first case Lemma 1 implies that A = (R1 ∪ R5 ∪ Cs)− C1 ⊆ D, so |D| ≥ 2s + 1.

However, elements of the set {(i, 3) : i = 1, 2, . . . , s− 2} are not dominated by any node



Energies 2022, 15, 2969 7 of 12

of A, so at least four (or more) nodes must be added to D to make D connected and
dominating. This implies that |D| > 2s + 4, which contradicts |D| ≤ 2s + 4. Therefore this
is not the case.

In the second case, Lemma 1 implies that |D| ≥ s+ 3+ 3 = s+ 6. If |(V−D)∩R1| = t,
then at least t− 2 more nodes of R2 belong to D to dominate R1. Thus, |D| ≥ s + 6 + (s−
t) + (t− 2) = 2s + 4.

Figure 6 is an example of a smallest doubly connected dominating set of G[11, 5].

Figure 6. A minimum doubly connected dominating set of G[11, 5] formed by the set of all black nodes.

4.2. Results for Wide Grids

In this part, we focus on grid graphs G[s, l] with s ≥ l ≥ 6. Some general results are
valid also for narrow graphs and this is indicated in the assumptions of the theorems. The
previous results are used in the inductive proofs as the basic step of the induction. The
results are divided and studied depending on the remainder when dividing l by 3. The first
results are devoted to upper bounds on the doubly connected domination number, while
the last are devoted to lower bounds on this number. It is worth noting that the minimum
doubly connected domination number lies in between the upper and the lower bounds.

First, we present the theorems; their proofs can be found below.

Theorem 1. Let 5 ≤ l ≤ s and let l = 3k + 2 for some positive integer k. Then

γc
c(G[s, l]) ≤ (l − 2)s

3
+ l + s− 1.

Theorem 2. Let 3 ≤ l ≤ s and let l = 3k for some positive integer k. Then

γc
c(G[s, l]) ≤ ls

3
+ l + s− 3.

Theorem 3. Let s ≥ l ≥ 3 and let l = 3k + 1 for some positive integer k. Then

γc
c(G[s, l]) ≤ (l − 1)s

3
+ l + s− 2.

Theorem 4. For G[s, l], where 6 ≤ l ≤ s,

γc
c(G[s, l]) ≥

⌈
(l − 2)s

3
+ s +

2
3

l − 2
3

⌉
.

Proof of Theorem 1. Proposition 5 implies that the result is true for l = 5.
We continue the proof by induction on the positive integer l ≡ 2 mod 3. Let l ≥ 8

and assume that for l′ = l − 3, γc
c(G[s, l′]) ≤ (l′−2)s

3 + l′ + s− 1. Observe that

G[s, l′] = G[s, l]− {(i, j) : i = 1, 2, . . . , s; j = l − 2, l − 1, l}.
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We extend D′ into a doubly connected dominating set of G[s, l].
By Lemma 1, either R1 ⊂ D′ or Rl′ ⊂ D′. Without loss of generality, we assume

that Rl′ ⊂ D′. Now, we add to D′ all nodes of degree 2 or 3 belonging to G[s, l] and not
belonging to G[s, l′], and we remove one node of Rl−3 in order to make V − D′ connected.
We may remove either (2, l − 3) or (s− 1, l − 3), because in all other cases D′ is neither
dominating nor connected. Denote by D the set obtained from D′ after the modifications.
Clearly D is a doubly connected dominating set of G[s, l]. Moreover,

γc
c(G[s, l]) ≤ |D| = |D′|+ 2 + s + 2− 1

=
(l′ − 2)s

3
+ l′ + s− 1 + s + 3

=
(l − 5)s

3
+ (l − 3) + s− 1 + s + 3

=
(l − 2)s

3
+ l + s− 1.

See an example of G[23, 20] and its doubly connected dominating set in Figure 7.

Figure 7. G[23, 20] and a doubly connected dominating set denoted in black. Nodes not belonging
to the doubly connected dominating set are not marked and located at the intersections of the links
without the black marks.

Proof of Theorem 2. Proposition 3 implies that the result is true for l = 3.
We continue the proof by induction on the positive integer l ≡ 0 mod 3. Let l ≥ 6

and assume that for l′ = l − 3, γc
c(G[s, l′]) ≤ l′s

3 + l′ + s− 3. Observe that

G[s, l′] = G[s, l]− {(i, j) : i = 1, 2, . . . , s; j = l − 2, l − 1, l}.
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We extend D′ into a doubly connected dominating set of G[s, l] in the same way as in
the proof of Theorem 1. Again we obtain that |D| = |D′|+ s + 3, so

γc
c(G[s, l]) ≤ |D| = |D′|+ s + 3

=
l′s
3

+ l′ + s− 3 + s + 3

=
(l − 3)s

3
+ (l − 3) + s + s

=
ls
3
+ l + s− 3.

See an example of G[23, 21] and a doubly connected dominating set in Figure 8.

Figure 8. G[23, 21] and a doubly connected dominating set. Nodes not belonging to the doubly
connected dominating set are not marked and located at the intersections of the links without the
black marks.

Proof of Theorem 3. Proposition 4 implies that the result is true for l = 4.
We continue the proof by induction on the positive integer l ≡ 1 mod 3. Let l ≥ 7

and assume that for l′ = l − 3, γc
c(G[s, l′]) ≤ l′s

3 + l′ + s− 3. Again

G[s, l′] = G[s, l]− {(i, j) : i = 1, 2, . . . , s; j = l − 2, l − 1, l}.
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We add new nodes to D′ to make it a doubly connected dominating set of G[s, l] in the
same way as in the proof of Theorem 1. Again we obtain that |D| = |D′|+ s + 3, so

γc
c(G[s, l]) ≤ |D| = |D′|+ s + 3

=
(l′ − 1)s

3
+ l′ + s− 2 + s + 3

=
(l − 4)s

3
+ (l − 3) + s + s + 1

=
(l − 1)s

3
+ l + s− 2.

See an example of G[23, 22] and a doubly connected dominating set in Figure 9.

Figure 9. G[23, 22] and its doubly connected dominating set. Nodes not belonging to the doubly
connected dominating set are not marked and located at the intersections of the links without the
black marks.

Proof of Theorem 4. Let G[s, l], where 6 ≤ l ≤ s, be a grid graph and let D be a doubly
connected dominating set of G[s, l].

Since the maximum degree among nodes of G[s, l] is 4, D may dominate at most 4|D|
nodes of V − D. However, D is connected, so we conclude that D may dominate at most
4|D| − 2(|D| − 1) = 2|D|+ 2 nodes of V − D. Moreover, accordingly to the Lemma 1, D
contains at least three nodes of degree 2 and at least s− 2 + 2(l − 2) = s + 2l − 6 nodes of
degree 3. For this reason, D may dominate at most

2|D|+ 2− 6− (s + 2l − 6) = 2|D| − s− 2l + 2

nodes of V − D. Therefore

sl = |V| = |D|+ |V − D| ≤ |D|+ 2|D| − s− 2l + 2 = 3|D| − s− 2l + 2
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and hence
|D| ≥ sl + s + 2l − 2

3
.

Since D is a doubly connected dominating set of G[s, l], this inequality must be true
also for the smallest such a set, so

γc
c(G[s, l]) ≥

⌈
(l − 2)s

3
+ s +

2
3

l − 2
3

⌉
,

since the minimum doubly connected domination number is an integer.

5. Conclusions and Discussion

This paper contributes to filling the gap in studying and inventing safe and reliable
smart grids. For this reason, we introduce and study a rectangular grid graph as a model
for smart grids. We present exact values for the doubly connected domination numbers
for narrow grid graphs and straightforward formulas for the upper and lower bounds for
this number in wide grid graphs. We also give examples of (minimum) doubly connected
dominating sets for some of them. These examples give an idea of how doubly connected
dominating sets may look in any given grid graph. It will be interesting to find and prove in
the future the exact values for the doubly connected domination number in wide grid graphs;
however, the authors believe that the values of this number are very close to those presented
in this paper for the upper bounds.

Doubly connected dominating sets might be used to help locate facilities in smart
grids. For example, in the nodes belonging to the minimum doubly connected dominating
set, we may locate energy sources (or batteries). In this way, each energy consumer is
directly connected to a source of energy. Moreover, the subgraph induced by the set of
source nodes is connected, so the sources may communicate and even transfer energy
with each other without intermediation of the consumer nodes. Similarly, the subgraph
induced by the set of consumer nodes is connected. Due to this, consumers may exchange
information, such as reconciling electricity usage graphics for sustainable energy use and
for supporting green sources of energy. This can be performed without involving source
nodes. Hence, the significance of the proposed research refers to safety, economy, ecology
and reliability of the future energetic world.

In the future, it will be worth considering minimum doubly connected dominating
sets in other types of grid graphs, for example in triangular or hexagonal grids.

Author Contributions: Conceptualization, J.C. and J.R.; methodology, J.C.; investigation, J.C. and
J.R.; resources, J.R.; writing—original draft preparation, J.R.; writing—review and editing, J.C. and
J.R.; visualization, J.R. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Ministry Subsidy for Research for the Gdańsk Univer-
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