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Abstract: In modern complex industrial processes, mode changes cause unplanned shutdowns,
potentially shortening the lifespan of key equipment and incurring significant maintenance costs.
To avoid this problem, a method that can detect the fault of equipment operating in various modes
is required. Therefore, we propose a novel fault detection method that uses the k-nearest neighbor
normalization-based weight local outlier factor (WLOF). The proposed method performs local nor-
malization using neighbors to consider possible mode changes in the normal data and WLOF is
used for fault detection. In contrast to statistical methods, such as principal component analysis
(PCA) and independent component analysis (ICA), the local outlier factor (LOF) uses the density of
neighbors. However, because LOF is significantly affected by the distance between its neighbors,
the weight is multiplied proportionally to the distance between each neighbor to improve the fault
detection performance of the LOF. The efficiency of the proposed method was evaluated using a
multimode numerical case and a circulating fluidized bed boiler. The experimental results show that
the proposed method outperforms conventional PCA, kernel PCA (KPCA), k-nearest neighbor (kNN),
and LOF. In particular, the proposed method improved the detection accuracy by 20% compared with
conventional methods. Therefore, the proposed method can be applied to a real process operating in
multiple modes.

Keywords: fluidized bed boiler; fault detection; weighted normalization; local outlier factor

1. Introduction

Modern complex industrial processes (e.g., power plants, chemical and manufacturing
processes) include different modes of operation owing to different market requirements,
product specification changes, manufacturing strategy changes, or other reasons [1–3].
For example, if the production specifications of a process are changed, various operating
conditions, such as the reactor temperature, pressure, feed flow rate, catalyst composi-
tions, and feedstock quality, must be adjusted to fit the operating mode [4]. Changing
the operating strategy according to the supply and demand of products can improve
customer satisfaction, product quality, and process efficiency. However, fault detection
and diagnosis of a multimode process are challenging because the process becomes more
complex and automatic due to changes in the conditions suitable for multiple operations,
such as the temperature, pressure, and feed flow [5]. Faults are caused by various factors,
such as facility defects, construction defects, and malfunctions. If the fault is neglected
without an appropriate act, it will not only shorten the life of key facilities (e.g., turbines,
compressors, generators, etc.) but also cause enormous economic losses such as repair
and replacement costs. Consequently, an initial fault can affect other normal equipment,
eventually leading to a fault. To overcome the problem, fault detection and diagnosis
(FDD), which identifies the status of the current system, is essential. Because early fault
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detection can prevent unplanned shutdowns and huge maintenance cost problems, many
scholars have recently proposed various FDD methods by analyzing multimode processes
from a different perspective [6–8].

The detection of faults in various industrial processes has been studied, including PCA-
based photovoltaic system monitoring [9] and support vector regression-based robot swarm
system monitoring [10]. ANN-based tube leak detection [11], water-cooling wall tube leak
detection using the three-dimensional space-location method [12], phase transformation
estimator-based tube leak detection [13], and ANN-based air heat exchanger modeling [14]
have been proposed in various studies. As in the above cases, many studies have been
conducted to detect a fault (e.g., tube leak, air heat exchanger, etc.) in industrial process;
however, few studies have been conducted on the multimode of fluidized bed boilers.
In addition, model-based methods require various types of faulty data to obtain process-
related knowledge and fault information [15]. Compared with these methods, the proposed
method uses only normal data for fault detection and relatively little training data is
required. In addition, data labeling according to each mode is not required because it is
transformed into a single mode using local normalization and then detects a fault.

Multimode fault detection can be classified into single models and multiple mod-
els [16]. The single model can explain other specific modes using one model. Ma et al. [5]
proposed a local neighborhood standardization strategy that allowed multimodal data to
follow a single distribution. Ge et al. [17] developed a local model approach that builds a
dynamic model based on queries using data stored in a database. Guo et al. [18] proposed
a novel fault detection method based on weighted difference principal component analysis
(WDPCA) for monitoring multimode processes. Yu [2,8] proposed a method for monitoring
non-Gaussian processes using a Gaussian mixture model (GMM). Rashid and Yu [19] used
a hidden Markov model (HMM) to estimate the distribution of normal operation data with
multimodal characteristics. GMM and HMM assume that each mode of data follows a
multivariate Gaussian distribution, although the industrial data distribution contains both
Gaussian and non-Gaussian characteristics simultaneously [2]. Zhao et al. [20] proposed
a multiple PCA method using the minimum squared prediction error (SPE) to select a
specific local model. Zhu et al. [21] used the expectation-maximization (EM) method to
handle multimodal features. However, the model parameters obtained by EM can often
be trapped in a local minimum depending on the initial starting point, and the number of
clusters must be predefined before determining the parameters.

The multiple model method selects an appropriate model that can identify different
modes or construct multiple models corresponding to different modes. Scott et al. [22,23]
used aggregated k-means clustering to identify the multiple modes. Cai et al. [24] proposed
an integrated k-means clustering method to improve the clustering efficiency in high-
dimensional space. Ge et al. [25] used external analysis (EA) to remove unnecessary external
variables for multimode monitoring. Zhu et al. [26] proposed a method to compare the
similarity between modes using k-nearest neighbor-based independent component analysis
and the principal component analysis (k-ICA-PCA) clustering algorithm. Song et al. [16]
identified a mode using a moving window and LOF. Feng Jian et al. [27] proposed a
multirate sampling method that divides data into groups of the same length to detect
failures in the data with different sampling lengths. In addition, many studies have
been conducted on adaptive PCA, such as overlapping PCA, sub-PCA, super-PCA, and
multiple PCA for multimode monitoring [28–32]. Nevertheless, PCA-based methods have
performance limitations because they are effective only when the data of each mode are
close to one another and show weak nonlinearities [8,33].

In general, the characteristics of industrial process data such as the mean and covari-
ance change significantly when one mode changes to another [2,20]. Although different
modes can be identified based on this statistical information, multiple model methods
have the following disadvantages: first, the mean and covariance structures correspond-
ing to all modes cannot be captured [5]; second, it is difficult to obtain process-related
prior knowledge that can be divided into different modes; third, the model should be
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updated according to the process mode change; and fourth, the accuracy of the multimodal
identification model has a significant impact on the number of clusters.

In this study, we proposed a novel k-nearest neighbor normalization-based weighted
local outlier factor (kNS-WLOF) to detect faults in a multimode process. The proposed
method uses the Euclidean distance to determine the degree of each neighbor to prevent
samples close to the normal data from affecting the LOF calculation. The sum of the
weights of each neighbor is 1, and the smaller weights are assigned to samples closer
to the query vector. Neighbors greater than the average distance of all neighbors are
re-adjusted by multiplying the distance by a weight. Therefore, the detection performance
of conventional LOF can be improved by assigning weights according to the distance of
neighbors. As shown in Figure 1, the procedure of the proposed method is divided into
off-line monitoring, which sets a threshold value using training data for fault detection, and
on-line monitoring, which detects the fault of a query vector measured in real time. First,
local normalization was performed using kNN to remove the multimode characteristics
of the training data. kNN-based normalization can solve the problem in which the mean
and covariance of data differ according to the mode [1,2,34]. Local normalization was
performed using kNN, and the fault in the multimode process was detected using a WLOF.
LOF is a quantitative measure of the distance between the fault data and the surrounding
neighborhood [35]. This method is intuitive compared to probabilistic methods and is
applicable to nonlinear systems and time-varying processes because it does not assume a
specific distribution of data such as PCA or ICA. Lee et al. [36] validated that a fault can be
detected regardless of the distribution of the LOF, such as a Gaussian mixture distribution
or a gamma distribution. Although supervised learning methods, such as the decision tree,
random forest, and deep neural network (DNN), can provide excellent results for fault
detection, faulty data are generally difficult to obtain in real-world applications and costly.
LOF, which belongs to the kNN-based method, can detect a fault using only normal data; it
is more applicable than supervised learning methods. However, the conventional LOF is
affected by the distance between neighbors owing to the characteristic of using the density.
For example, although it is fault data, it may be considered normal by a neighbor that is
particularly close. Therefore, we proposed a method for improving conventional LOF by
re-adjusting the distance of each neighbor by assigning a weight to each neighbor.

Figure 1. Fault detection procedure using the proposed method.
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The detailed procedure of kNN-WLOF is described in Section 2, and the highlighted
advantages of kNN-WLOF are as follows. First, it does not require prior knowledge of
the multimode process. Second, it is not necessary to build multiple regional models
based on multimodal characteristics. Third, it is not necessary to assume a specific data
distribution (Gaussian or non-Gaussian). It is possible to effectively detect the normal and
fault data with adjacent neighbors by assigning a weight according to the distance between
them. Finally, compared to DNN, which are recently applied for fault detection, a fault
can be detected without acquiring faulty data. To verify the performance, the proposed
and comparison methods are applied to two types of multimode cases and a circulating
fluidized bed boiler.

The remainder of this paper is organized as follows. Section 2 explains the fault
detection using kNS-WLOF, and Section 3 describes the experimental data used to verify
the performance and threshold setting for fault detection. Then, presents the experimental
results and discussion. Finally, Section 4 presents the conclusions and future work.

2. kNS-WLOF-Based Fault Detection

In this section, the fault detection method using the proposed method is introduced
in detail, and the concept of the LOF and the implementation procedure of the WLOF are
explained. Subsequently, local normalization using the kNS strategy and threshold setting
for fault detection are described.

2.1. Weighted Local Outlier Factor

LOF is a method for determining outliers beyond a certain distance from the per-
spective of normal data. Because this method determines whether outliers are based on
the density of neighbors, it can also be applied to processes such as nonlinear systems,
multimode, and time-varying processes. In particular, LOF is widely applied to outlier
detection fields, such as fraud detection and intrusion detection, because it can detect local
and global outliers [37]. The detailed concepts of LOF can be found in Breunig et al. [35].
In this study, we proposed a WLOF that assigns weights to each neighbor to improve the
conventional LOF. As shown in Figure 2, the calculation procedure is performed as follows:
(1) neighbor search using the Euclidean distance; (2) k-distance and weight assignment of
selected neighbors; (3) the reachability distance of the query vector and its neighbors; and
(4) calculation of the local reachability density and LOF.

Figure 2. Procedure for calculating LOF.

1. We assumed that the training data (Xtrn ∈ <n×m with n samples and m variables)
were collected from a target system operating under normal conditions. The query
sample (xquery ∈ <1×m with m variables) calculates the similarity with Xtrn using
the Euclidean distance as in Equation (1), and then selects k neighbors of Xtrn close
to xquery:

d(xtrn, xquery) =
√
(x1

trn − x1
query) + (x2

trn − x2
query)+, . . . ,+(xm

trn − xm
query)

2
(1)

2. The k-distance means the radius of its local neighborhood (Nk(xquery)) of xquery, and
it is the kth distance value after sorting the distance values calculated in Equation (1)
in ascending order. Given a k-distance, the neighbors of xquery satisfy Equation (2):

Nk(xquery) =
{

xtrn ∈ Xtrn\{xtrn}
∣∣∣d(xtrn, xquery) ≤ dk(xtrn, xquery)

}
, (2)
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where the k-distance is the kth neighbor of the query sample. LOF is significantly
affected by the distance because it calculates the density using neighbors. To address
this limitation, as in Equation (3), a weight (Wj(xquery)) is assigned to each neighbor
to readjust the distance between the neighbors:

Wj(xquery) =
1
dj

/
k

∑
i=1

1
di

, where j = 1, 2, . . . , k, (3)

where Wj(xquery) is calculated as a value between zero and one, and the sum of the
weights is one. If there are more neighbors greater than the average distance of the
query sample, the penalty is calculated by multiplying only the weight greater than
the average distance calculated in Equation (3). Consequently, neighbors smaller than
the average distance are reduced to a distance nearer than the current distance by
dividing the weight calculated in Equation (3). By contrast, neighbors farther than
the average distance are readjusted to a greater distance. For example, when the
query sample is fault data, the LOF increases owing to the high weight assignment of
distant neighbors.

3. When the distance values calculated in Equation (1) are the same, the number of
neighbors may be greater than k defined in advance. reach − distk prevents the
calculated distance from being greater than k and calculates the reachability distance
of xquery, as shown in Equation (4):

reach− distk(xquery) = max
{

dk(xquery), d(xtrn, xquery)
}

, (4)

where dk(xquery) and d(·) are the k-distance and Euclidean distance functions between
xtrn and xquery, respectively. reach− distk means the reachability distance from xquery
to Xtrn, and the larger value among dk(xquery) and d(xtrn, xquery) is determined as
reach− distk(xquery).

4. The local reachability distance (lrd) is the reciprocal of the reach− distk(xquery) average
and is calculated using Equation (5):

lrdk(xquery) = 1/

 ∑
xquery∈Nk(xquery)

reach− distk(xtrn, xquery)

k

 (5)

To represent the degree of deviation of xquery on a numerical scale, LOF is calculated
using Equation (6):

LOFk(xquery) =

∑
xquery∈Nk(xquery)

lrdk(xtrn)
lrdk(xquery)∣∣Nk(xquery)
∣∣ (6)

where LOF represents the average ratio of lrd, and when xquery is similar to the training
data, LOF is approximately close to one. For example, when xquery is normal, LOF is close
to one when the reach− distk(xquery) calculated in Equation (4) is small.

2.2. k-Nearest Neighbor Normalization

In a multimode process, each mode follows a different distribution, such as Gaussian
or non-Gaussian [38]. Therefore, various strategies for performing multimode fault detec-
tion have been proposed. Data normalization is an essential procedure for multimode fault
detection. If fault detection is performed under conditions where the variance of each vari-
able is different, erroneous results may be obtained. In general, the z-score normalization
method is used to set the ranges of the variables to be the same and is calculated using
Equation (7):

z =
x− µ

σ
, (7)
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where µ and σ represent the mean and standard deviation of the training data, respectively.
The z-score method is effective when the data follow a single distribution. When each
mode has a different distribution, this method uses the mean and standard deviation of
the entire data; therefore, even after normalization, the mean and variance of each mode
are still different [5]. In other words, the z-score method is not suitable for a process in
which the operation mode changes because it uses a fixed global mean and variance for all
the data. To avoid the shortcomings of the z-score method, we used kNN-based normal-
ization. kNN, which normalizes data based on neighbors, is widely used in single-mode
methods because it can eliminate multimode characteristics [1,5,6,34,39]. Guo et al. [18]
confirmed that multimode characteristics can be removed by performing kNN-based local
normalization. As shown in Figure 3, normalization using kNN is performed as follows:
(1) neighbor selection through kNN; (2) weight allocation to surrounding neighbors; and
(3) data normalization using the mean and weight of neighbors.

Figure 3. Procedure for k-nearest-based normalization.

(1) We assume that the training data (Xtrn ∈ <n×m with n samples and m variables) and a
neighbor (N(xi)) for each training sample are the same as in Equation (8):

N(xi) =
{

x1
i , x2

i , . . . , xk
i

}
, where i = 1, 2, . . . , n, (8)

where N(xi) represents k neighbors (kkNS) for a sample of the training data (xi). The
value of kkNS should be set to be smaller than that of at least one single-mode subset
among the multimode data.

(2) The weight of xi, selected in Equation (8), is determined by Equation (9):

wq =

1
d(xi ,N(xq

i ))

k
∑

s=1

1
d(xi ,N(xq

i ))

, where q = 1, 2, . . . , k, (9)

where wq(q = 1, 2, . . . , k) is the weight corresponding to each neighbor, and the sum
of the weights is one. d(xi, N(xq

i )) is the qth neighbor of xi. The weight calculated in
Equation (9) represents a penalty based on the distance of the neighbor. For example,
the smaller the calculated distance value between the query sample and neighbors, the
greater the weight; thus, more information about the neighbor with a small distance
is used.

(3) Data is normalized as in Equation (10), using the mean of the neighbors of the xi,
selected in Equation (8), and the weight of Equation (9):

zknn
i = xi −

k

∑
j=1

wjmj, (10)

where wj and mj = [N1(x
q
i ), N2(x

q
i ), . . . , Nk(x

q
i )] are the weights and averages of each

neighbor, respectively. After calculating Equation (10), the mean and unit variance
of the preprocessed data are zero, and approximately follow a uniform Gaussian
distribution. The data (zknn

i ) is preprocessed using the aforementioned process for all
training data.
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2.3. Setting Threshold Value by KDE

In this study, a non-parametric kernel density estimation (KDE) method was used
to set a threshold value for fault detection. KDE, described by Rosenblatt et al. [40] and
Parzen et al. [41], is a method to estimate a probability density function (PDF) from discrete
samples. KDE estimates the PDF for all samples by summing the individual kernels of each
sample [42,43]. Notably, the literature [44–46] verified that the threshold determined by
KDE does not need to assume that the data follow a Gaussian distribution, which causes
a malfunction. Therefore, they are widely used for fault detection. The estimation of the
data distribution using the KDE is as follows: Given a univariate random variable, the
PDF and cumulative distribution function (CDF) through the KDE are calculated using
Equations (11) and (12):

f̂h(x) =
1

nh

n

∑
i=1

K(x− xi/h), (11)

F̂h(x) =
1
n

n

∑
i=1

W(x− xi/h), (12)

where K(·) is the kernel function, h is the smoothing parameter, W(t) =
∫ t
−∞ K(u)du, and n

is the number of samples. The KDE kernel function has various functions such as uniform,
triangular, and Gaussian; however, the Gaussian kernel function is generally used. In this
paper, the ‘ksdensity’ built in MATLAB’s statistic and machine learning toolbox was used.

2.4. Detection Performance Indices for Fault Detection Validation

In this study, a confusion matrix was used as shown in Table 1 to evaluate the fault
detection performance. Type I and II errors mean a false negative (FN) and false positive
(FP), respectively. In the field of fault detection, two type errors are used because the ratio
of normal to normal or fault to the fault is important. For example, if the type I error (FN) is
low, the model results in fewer false alarms because the model judges normal to be normal.
Conversely, when the type II error is high, the FP is high because the fault is judged to
be normal. Additionally, precision ( TP

TP+FP ), recall ( TP
TP+FN ), F1 score (2× precision×recall

precision+recall ),

and accuracy ( TP+TN
TP+FN+FP+TN ) are used to verify the detection performance of the fault

detection methods.

Table 1. Confusion matrix for fault detection performance.

Actual State

Decision
True False

True True Positive (TP) False Positive (FP)
False False Negative (FN) True Negative (TN)

3. Case Study

In this section, two types (drift and step error) of the multimode process are used to
verify the fault detection performance of the proposed method and the case of an unplanned
shutdown of a circulating fluidized bed combustion boiler is studied. First, we determine
whether the proposed method can detect a fault more effectively than conventional methods
through a multimode simulation process. Then, the applicability of the proposed method
is confirmed by applying it to actual multimode cases. Section 3.1 compares the detection
performance of the conventional methods (PCA, KPCA, kNN, LOF) and the proposed
method for a numerical example with a multimode process. In a multimode process, the
goal is to verify that artificially generated faults can be detected. Section 3.2 compares the
detection performance of each method with that of a circulating fluidized bed combustion
boiler. In this case, the goal is to detect a fault before a boiler stop occurs for a case that
occurred in an actual boiler. The confidence level of KDE for setting the threshold was set
at 0.01.
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3.1. Multimode Numerical Example

A simple multimode numerical example was proposed by Ge et al. [3], and He et al. [5]
redesigned the verification of the multimodal processes. This example consists of la-
tent variables and five variables driven by sources, which can be generated from the
following system: 

x1
x2
x3
x4
x5

 =


0.5768
0.7382
0.8291
0.6519
0.3972

0.3766
0.0566
0.4009
0.2070
0.8045


[

s1
s2

]
+


e1
e2
e3
e4
e5

, (13)

where [e1, e2, . . . , e5]
T is the white noise with zero-mean and a standard deviation of 0.01.

[s1, s2]
T is a variable that represents three different operating modes, and the mean and

variance of each mode are expressed by Equation (14):

Mode 1 :
s1 ∼ N(10, 0.8)
s2 ∼ N(12, 1.3)

Mode 2 :
s1 ∼ N(5, 0.6)

s2 ∼ N(20, 0.7)

Mode 3 :
s1 ∼ N(16, 1.5)
s2 ∼ N(30, 2.5)

(14)

The amount of training data generated using Equations (13) and (14) was 1200 and 400,
respectively, for each mode. There are 200 query samples: from 1 to 100 are normal, and
101, where drift- or step-type faults occur. The generated training data and query samples
are shown in Figure 4. The training data consist of a total of three modes, and the mean
and variance according to each mode are the same as those in Equation (14).

Figure 4. Generated multimode data: (a) drift type fault case; (b) step type fault case.

• Case 1. The system was initially running in mode 2, and then, a drift error of 0.1 was
added to x1 from the 101st through to the 200th samples.
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• Case 2. The system was initially running in mode 2, with 5 (k-100) applied to the 101st
to 150th samples with a bias error of 5, where k denotes the serial number of the test
sample, and a bias error of 15 from the 151st to 200th samples was applied.

Two modes (mode 1 and mode 2) of the training data were generated with dense data,
and mode three was generated with sparse density. Figure 4a is a drift-type fault (case 1)
that occurred in mode two, and the size of the fault increased by 0.1 (from 0.05 to 10) from
101 to 200. Figure 4b shows a step-type fault (case 2) that occurred in mode two, and the
bias error increased by 5 from 101 to 150 and increased by 15 from 151 to 200. Specifically, a
step fault corresponds to the case in which a two-step fault occurs.

In the mode data, the average of each variable is different by ±5 or more because it
operates in different modes as shown in Figure 4. In the case of mode three, the variance is
larger than in modes one and two, and the density between the data is relatively sparse,
resulting in large fluctuations in the data. In addition, it can be confirmed that the data has
a mixed distribution while various modes are included in the training data. Due to the
characteristics of these various modes, the average of modes two and three is significantly
different compared to mode one, and thus it may be determined as a fault. To detect
multimode faults, the threshold values of PCA, KPCA, kNN, LOF, and the proposed
method were set using KDE (α = 0.01). In the case of PCA and KPCA, SPE, which showed
a higher detection performance among T2 statistics and SPE, was used. The number of
neighbors of the conventional kNN, LOF, and WLOF was 15.

Figure 5 shows the fault detection results of the PCA, KPCA, kNN, LOF, and kNS-
WLOF for case 1. In PCA, three modes were included in the training data; thus, the
threshold was set high compared to LOF and kNS-WLOF. Therefore, the fault detection
time (t = 160) of PCA was delayed. This shows that PCA cannot effectively detect faults
occurring in the multimode process because the detection performance deteriorates in the
multimode process in which several distributions are mixed owing to the assumption of the
distribution of specific data. Although the performance of KPCA was improved compared
to PCA, the detection time was delayed, resulting in high type II errors. In contrast to PCA
and KPCA, kNN and LOF is a distance-based method that can detect a fault even when the
distribution of the training data is mixed. Therefore, it is shown that the conventional kNN,
LOF, and proposed method can detect drift-type faults. However, in two conventional
methods, many query samples are out of the threshold in the normal section; therefore,
the type I error is high. PCA, KPCA, kNN, and LOF were normalized using the z-score
method, such that multimodal characteristics remained in the normal data. Consequently,
it is difficult to perform accurate fault detection beyond the threshold value despite such a
normal section. In contrast, kNS-WLOF shows that the remaining fault can be effectively
detected except for some sections where the initial faults start to occur, and the fault size is
small. In particular, even in the normal section, kNS-WLOF is calculated to be lower than
the threshold value to prevent type I errors. The performance of the proposed method is
superior to the conventional PCA and LOF because if the distance between the normal data
and the recognized neighbor is less than 2

k , the distance is adjusted by dividing the distance
by a weight.

Figure 6 shows the fault detection results of conventional PCA, KPCA, kNN, and
LOF, and kNS-WLOF for case 2. As shown in Figure 6a, PCA has higher variability
according to the fault size compared to conventional LOF and kNS-WLOF, and some
sections ( t = 101 ∼ 150) were calculated to be smaller than the threshold. Therefore,
PCA cannot properly detect drift or a step-type fault. Although KPCA has an improved
performance over PCA, it still shows high variability. In conventional kNN, the fault of the
step error was effectively detected, unlike the drift error. In the conventional LOF, the fault
was effectively detected for the step fault ( t = 151 ∼ 200, bias error = 15), although many
false alarms occurred in the normal section This is because the multimode characteristic
remains the same as in case 1; thus, the fault section was considered normal. Therefore,
conventional PCA and LOF cause confusion among operators owing to many false alarms
or erroneous diagnosis; it is difficult to determine whether they are accurate fault detection
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models. Compared to the conventional PCA and LOF, KPCA shows that faults caused by
bias error can be detected. However, it shows that the threshold value is set high because
other mode data is included in the training data.

Figure 5. Comparison of drift-type fault detection results: (a) conventional PCA; (b) conventional
KPCA; (c) conventional kNN; (d) conventional LOF; (e) kNS−WLOF.

Figure 6. Comparison of drift-type fault detection results: (a) conventional PCA; (b) conventional
KPCA; (c) conventional kNN; (d) conventional LOF; (e) kNS-WLOF.

In contrast to the conventional methods (PCA, kNN, LOF), the proposed method
does not deviate from the threshold value in the normal section; therefore, it can be
confirmed that the case 2 fault is accurately detected while lowering the false alarm. It can
be validated that the kNS-WLOF is lower than the threshold value in the normal section
compared to the conventional LOF. In summary, we compared the detection performance
with two multimode process numerical examples and showed that the proposed method
can effectively detect faults with fewer false alarms than the conventional methods.
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The results of the detection performance for two multimode cases are shown in Table 2.
In conventional PCA, the normal section ( t = 1 ∼ 100) was not considered a fault; thus,
a type I error did not occur. However, a high type II error was calculated because the
initial fault after both types (drift and step error) was not detected. The reason is that the
threshold value for fault detection is set relatively high because the training data with the
multimode characteristics are used. In KPCA, detection delay occurred, and drift error
resulted in high type II error, but faults of step error were properly detected. kNN increased
type II error due to detection delay in drift error, but the step error effectively detected the
fault as in KPCA. Conventional LOF effectively detected two types of faults compared with
PCA but determined that the normal section ( t = 1 ∼ 100) was a fault, resulting in a high
type I error. However, the proposed method effectively detected the fault without causing
a type I error in the normal section. In particular, PCA, KPCA, and kNN were calculated
with low precision because the initial defect was considered normal. Thus, even if the
recall is high, the F1 score is low due to low precision. In the case of conventional LOF,
the precision was high, but the F1 score was calculated to be low because the recall was
low due to the low number of type I errors. Compared with the conventional methods, the
proposed method has a low number and FP; thus, precision, recall, F1 score, and accuracy
were all calculated to be high. In summary, a comparison of the detection performance
using two multimode process numerical examples shows that the proposed method can
more effectively detect the fault than the other two conventional methods.

Table 2. Performance indices of the proposed method and comparison methods.

TN
(Type I)

FP
(Type II)

Precision
(%)

Recall
(%)

F1 Score
(%)

Accuracy
(%)

PCA
(SPE)

Case 1 0 69 59.17 100 74.35 65.5
Case 2 2 16 85.96 98 91.59 91

KPCA
(SPE)

Case 1 0 35 74.07 100 85.11 82.5
Case 2 0 0 100 99 99.5 99.5

kNN
(D2)

Case 1 0 32 75.76 100 86.21 84
Case 2 0 0 100 100 100 100

LOF
(LOF)

Case 1 33 0 100 67 80.24 83.5
Case 2 42 0 100 58 73.42 79

kNS-WLOF
(LOF)

Case 1 0 7 93.45 100 96.62 96.5
Case 2 0 0 100 100 100 100

The entries corresponding to the lowest type I and II errors are indicated in bold face.

3.2. Circulating Fluidized Bed Combustion Boiler (CFBC)

Circulating fluidized bed combustion boilers (CFBCs) are widely used in cogeneration
power plants and small- and medium-sized power plants because they can generate
electricity using low-quality fuels such as biomass (e.g., methane, ethanol, and hydrogen)
and solid municipal waste fuels (e.g., wood, agricultural by-products, etc.). The power
generation process of the CFBC burning fuel under the gas-solid flow condition inside
the combustion furnace is shown in Figure 7. At this time, the heated high-temperature
layer material scatters and circulates, and heat is transferred to the heat transfer tube to
generate steam. The steam encounters the superheater again, and the steam generated in
the heat exchanger is converted to high-temperature steam and fed to the turbine for power
generation. Such power generation has the advantage of reducing the amount of waste to
be landfilled and the use of fossil fuels.
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Figure 7. Distribution diagram of CFBC and clinker and nozzle plugging of thee furnace [47].

However, because CFBC uses bed materials such as sand, the alkali salt contained
in the exhaust gas is attached to the bed material and the heat pipe in the boiler, causing
erosion, corrosion, and agglomeration. For example, as potassium salts (KCI) contained
in the fuel are converted to the gas phase, they react with chromium (Cr) and Cr2O3
oxide films in a boiler tube to generate K2CrO4 and Cl(g) [48]. NaCl and KCI mainly
coagulate in incineration boilers using domestic waste as fuel [49]. The agglomeration
phenomenon is mainly caused by the alkaline components potassium (K) and sodium
(Na) in waste fuel, and occurs as follows: low-melting-temperature silicate is formed
together with the silica component (SiO2) of the sand; (1) ash is melted and the surface of
the bed material is coated with stickiness and gradually begins to be deposited. (2) In a
high-temperature environment, the deposited ash particles melt and aggregate. (3) The
low boiling point of the volatilized alkali metal condenses, it reacts, the melting point is
lowered, and agglomeration occurs.

In general, food waste and steel materials among domestic wastes are selected and
separated in advance. However, it is possible that some biomass components are contained
in solid fuel and are introduced into the power generation facilities. The agglomeration
phenomenon mainly occurs around the combustion and cyclone and reduces the heat-
transfer efficiency of the boiler by inducing slagging, clinker, and fouling phenomena.
If the appropriate actions are not performed after agglomeration in the fluidized bed, it
will eventually lead to an unplanned shutdown. In summary, CFBC is caused by the
inevitability of the combustion of various fuels and oxidizers to generate ashes, which are
by-products of combustion. This leads to problems such as de-fluidization, the formation of
deposits in the cyclone, and plugging in the recirculation area [50,51]. Sediment formation
can be prevented by controlling the temperature of the fluidized bed furnace [52].

In this study, we compared the detection performance of the proposed method and
two conventional methods in the case of unplanned shutdown owing to clinker and
nozzle plugging in the furnace in CFBC. The generator capacity of the CFBC was 9.1 MW.
The maximum capacity, maximum inlet steam pressure, maximum steam temperature,
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and maximum steam pressure of the steam turbine were 72 t/h, 41 ata, 420, and 0.3 ata,
respectively. This shutdown was stopped at 10 a.m. on 8 June 2020, owing to a sudden
increase in the differential pressure between the furnace and the boiler and the differential
pressure between the super heater (S/H) and the reheater (R/H). As shown in Table 3,
113 boiler- and steam-related variables collected at 10-s (10,000 m/s) intervals through the
supervisory control and data acquisition (SCADA) system were used for fault detection. A
total of 113 CFBC variables were selected by power plant experts as major power plant-
related variables for fault detection. For the training and testing data, 70,000 (25 May
2020–2 June 2020) and 32,768 (5 June 2020–8 June 2020) data were used. The training data
were composed of data including several operational modes operated during the operation
of the power plant. Figure 7 shows a diagram of the CFBC. CFBC has problems such as
layer material agglomeration, deposition generation, and nozzle plugging owing to the
accumulation of precipitates at the lower and upper part of the furnace owing to the bed
material. As Figure 7 shows, the fault case also caused more than 40 nozzles to plug at
the lower end of the furnace and clinker at the lower end of the wing wall tube owing
to sediment.

Table 3. Summary of monitored variables for CFBC.

No. Description Unit No. Description Unit No. Description Unit

x1
steam output of feedwater

pipe 1 (sensor A) t/h x39
inlet temp. of feedwater pipe

1 (sensor B)
◦C x77 inlet output of feedwater pipe 1 %

x2
steam output of feedwater

pipe 1 (sensor B) t/h x40
inlet temp. of feedwater pipe

2 (sensor A) x78 outlet output of feedwater pipe 1 %

x3
steam output of feedwater

pipe 2 (sensor C) t/h x41
inlet temp. of feedwater pipe

2 (sensor B)
◦C x79 outlet output of feedwater pipe 2 %

x4
steam output of fluidized

bed material supply t/h x42
outlet temp. of feedwater

pipe 1
◦C x80

output of feedwater ratio
(sensor A) %

x5
aux steam output of lower

feedwater pipe t/h x43
outlet temp. of feedwater

pipe 2
◦C x81

output of feedwater ratio
(sensor B) %

x6
steam flow of

feedwater pipe 1 t/h x44
inlet temp. of fluidized bed

material supply
◦C x82

output of steam ratio
(sensor A) %

x7
steam flow of

feedwater pipe 2 t/h x45
inlet temp. of lower place

furnace (sensor A)
◦C x83

output of steam ratio
(sensor B) %

x8
steam flow of fluidized bed

material supply t/h x46
inlet temp. of lower place

furnace (sensor B)
◦C x84

output of steam ratio
(sensor C) %

x9
furnace press. of feedwater

pipe 2
mm
H2O x47

inlet temp. of lower place
furnace (sensor C)

◦C x85 amount of H2O %

x10
furnace press. of feedwater

pipe 2 (sensor A)
mm
H2O x48

inlet temp. of middle place
furnace (sensor A)

◦C x86
inlet press. of feedwater

pipe 2 mm H2O

x11

furnace press. of feedwater
pipe

(sensor B)

mm
H2O x49

inlet temp. of middle place
furnace (sensor B)

◦C x87
diff. press. outlet between

feedwater pipe 2 mm H2O

x12

combustor bed press. of
lower furnace feedwater

(sensor A)

mm
H2O x50

outlet temp. of lower
place furnace

◦C x88
steam flow of air pre-heater and

dry reactor mm H2O

x13

combustor bed press. of
lower furnace feedwater

(sensor B)

mm
H2O x51

inlet temp. of upper place
furnace

◦C x89
diff. of press. between furnace

and top of cyclone mm H2O

x14
sum of steam output of
feedwater pipe 1 and 2

mm
H2O x52

outlet temp. of upper place
furnace

◦C x90 diff. of press. 2nd and 1st S/H. mm H2O

x15
press. of fluidized bed

material supply
mm
H2O x53 inlet temp. of furnace ◦C x91

diff. of press. 1st S/H and
2nd eco. mm H2O

x16
press. of lower place

furnace
mm
H2O x54

inlet temp. of
cyclone and boiler front-end

◦C x92 diff. of press. 2nd and 1st eco. mm H2O

x17
press. of middle place

furnace
mm
H2O x55

inlet temp. of
cyclone and boiler terminal

◦C x93
diff. of press. of 1st and

new eco. mm H2O

x18
press. of upper place

furnace
mm
H2O x56

inlet temp. of
cyclone and boiler

middle point

◦C x94 diff. of press. of new eco. mm H2O

x19
press. between cyclone

and boiler
mm
H2O x57 inlet temp. of 1st S/H ◦C x95

metering bin A outlet
conveyor rpm
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Table 3. Cont.

No. Description Unit No. Description Unit No. Description Unit

x20 press. of 1st S/H mm
H2O x58 inlet temp. of 2nd S/H ◦C x96 outlet temp. of 1st S/H ◦C

x21 press. of 2nd S/H mm
H2O x59 inlet temp. of 1st eco. ◦C x97 outlet temp. of 1st S/H ◦C

x22
press. of steam supplied of

upper place furnace MPa x60 inlet temp. of 2nd eco. ◦C x98
inlet temp. of 2nd S/H

(sensor A)
◦C

x23 press. of 2nd eco. mm
H2O x61

outlet temp. of
upper place boiler

◦C x99
inlet temp. of 2nd S/H

(sensor B)
◦C

x24
press. of lower supply

cyclone (sensor A)
mm
H2O x62

inlet temp. of cyclone
fluidized bed material supply

◦C x100
temp. of steam supplied

of boiler silencer
◦C

x25
press. of lower supply

cyclone (sensor B)
mm
H2O x63

inlet temp. of dry reactor and
bag filter

◦C x101
inlet temp. of 1st S/H

(sensor A)
◦C

x26
press. of middle place

cyclone
mm
H2O x64 inlet temp. of SCR and SGR ◦C x102

inlet temp. of 1st S/H
(sensor B)

◦C

x27
press. of middle place

furnace
mm
H2O x65

inlet temp. of SGR and
combustor

◦C x103
steam drum level of

feedwater tank rpm

x28
press. of lower place

furnace
mm
H2O x66

inlet temp. of feedwater
pipe 1

◦C x104 outlet press. 2nd S/H MPa

x29 steam press. of SCR mm
H2O x67

inlet temp. of feedwater
pipe 2

◦C x105
outlet press. steam supplied of

2nd S/H MPa

x30 press. of air pre-heater mm
H2O x68

outlet temp. of dry reactor
front-end

◦C x106 inlet press. 2nd S/H MPa

x31
press. of air pre-heater and

dry reactor 1
mm
H2O x69

outlet temp. of air pre-heater
terminal

◦C x107
amount of outlet steam flow 2nd

S/H t/h

x32
press. of dry reactor and

bag filter
mm
H2O x70

diff. of temp. 2nd and 1st
S/H

◦C x108 amount of steam flow 2nd S/H t/h

x33
diff. press. between dry

reactor and bag filter
mm
H2O x71

diff. of temp. 1st S/H and
2nd eco.

◦C x109 steam output of steam drum t/h

x34
press of upper

place combustor
mm
H2O x72 diff. of temp. 2nd and 1st eco. ◦C x110 steam drum level of eco. t/h

x35
press. of SCR

terminal
mm
H2O x73

diff. of temp. 1st S/H and
new eco.

◦C x111 outlet press. of 2nd S/H 1-1 MPa

x36
diff. press. between

feedwater pipe 1
mm
H2O x74

diff. of temp. new eco. and
bag filter

◦C x112 outlet press. of S/H 1-2 MPa

x37
diff. press. of feedwater
pipe 1 (sensor A and B)

mm
H2O x75

diff. of temp. cyclone and
boiler

◦C x113 output of steam drum %

x38
inlet temp. of feedwater

pipe 1 (sensor A)
◦C x76 amount of O2 in eco. %

Figure 8 shows the training data, including the multiple modes and test data before
the fault. Figure 8a shows three modes with different means and variances. As shown in
Figure 8a, it is difficult to determine the correct mode after the test data are operated in
mode 1 and a change similar to mode three occurs. Therefore, the test data were considered
to have failed during the change from mode 1 to another mode. If fault detection is
performed without classifying or integrating the data according to each mode, erroneous
diagnosis occurs. To handle this challenge, three-mode data were normalized to data
following a single distribution using the kNS strategy as shown in Figure 8b. Because the
mean and variance of each mode of the normalized data are the same, fault detection can
be performed using a single model.

Compared with conventional PCA, KPCA, kNN, and LOF, the proposed method can
effectively detect a fault operating in various modes. In Figure 8a, when only a single
model is used under the multimode operation condition, miss detection results occur.
Unfortunately, PCA has a limited performance on simulated data and real multimode
processes because it requires assumptions about the data distribution. KPCA requires a
lot of time for model training, and it is difficult to determine the kernel functions and
parameters for fault detection. Conventional LOF are far apart from each other even for
normal data because the mean or variance varies between operation modes. For this
reason, conventional methods are limited to being applied to a multimode process. On
the other hand, the proposed method is normalized to an integrated mode using the local
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normalization strategy and then detects a fault. Therefore, the proposed method can detect
a fault in complex industrial processes operating in various modes.

Figure 8. Training and test data for CFBC fault detection: (a) raw CFBC data; (b) preprocessed
CFBC data.

Figure 9 shows the histogram of the WLOF calculated using training data and CDFs
estimated using KDE to perform fault detection. To estimate the probability distribution
of WLOF, the ‘ksdensity’ function built into MATLAB was used, and α of the threshold
was set to 0.01. In Figure 9, the empirical CDF and estimated CDF via KDE are indicated
by blue and dashed red lines, respectively. As shown in Figure 9, the empirical CDF and
distribution estimated through the KDE are similar.

Figure 9. Histogram and empirical and estimated CDFs of WLOF from the training data: (a) his-
togram; (b) empirical CDF and estimated CDF via KDE.

Figure 10 shows the results of selecting the optimal parameters (kkNS, kWLOF) used
in the proposed method for CFBC fault detection. As shown in Figure 10a, data normal-
ization was performed while gradually increasing the number of neighbors used for data
normalization, and the results of the type II error of the WLOF are provided. When kkNS
was 15, the type II error was the minimum, and the error continued to increase thereafter.
Figure 10b shows the type II error according to the number of neighbors (kWLOF) of the
WLOF. This shows that the error trend gradually increased after kWLOF reached 30. Through
the aforementioned experiment, the kNS normalized neighbors and WLOF neighbors of
the proposed method were set to 15 and 25, respectively.
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Figure 10. Results of the kNS parameter (kkNS) and WLOF (kWLOF ) selection using cross-validation:
(a) kNS results; (b) WLOF results.

Figure 11 shows the detection performance of CFBC for PCA, KPCA, kNN, LOF,
and kNS-WLOF. In the case of PCA and KPCA, SPE, which showed a higher detection
performance among the T2 statistics and SPE, was used. In Figure 11a–d, the conventional
PCA, KPCA, kNN, and LOF capture only the moment when mode 1 is changed to other
modes and cannot detect abnormal actions. In particular, it is difficult to determine whether
a fault has been detected because the value (SPE, D2, LOF) drops below the threshold again
after a significant bounce in mode one. The conventional PCA, KPCA, kNN, and LOF do
not detect the fault because the characteristics between each mode remain after z-score
normalization. Additionally, the fault data are similar to other modes of normal data, and
the size of the fault is small compared to that before the boiler shutdown occurs, rendering
it difficult to detect. However, as shown in Figure 11, the proposed method normalizes the
data according to each mode to follow a single distribution through the kNS strategy; thus,
fault detection is possible through a single model.

Furthermore, in contrast to conventional LOF, WLOF provides a large penalty when
there are few neighbors to normal data with fault data, allowing the distance between the
normal data and distant neighbors to be readjusted. Specifically, the WLOF can effectively
detect a fault even if the distance between the normal and fault data is small. kNS-WLOF
shows that the WLOF value continuously exceeds the threshold from the period in which
the value is significantly increased until the boiler is stopped. Therefore, it was confirmed
that an unplanned shutdown can be prevented by detecting the fault at an early stage using
the proposed method.

Table 4 summarizes the results of the detection performance (type I and II errors,
precision, recall, F1 score, accuracy) in the fault case of the CFBC between PCA, KPCA,
kNN, LOF, and the proposed method. In PCA and KPCA, the SPE value was smaller than
the threshold value in the normal section; therefore, fewer false alarms occurred. However,
PCA and KPCA could not capture the abnormal symptoms that occurred after changing
from mode one to another mode, resulting in a high type II error (PCA:42.59, KPCA:66.73).
In kNN, the type I error was low, but the fault data was judged as normal, and the type II
error was high. In the conventional LOF, many false alarms occurred in the normal section;
therefore, type I error was calculated to be high. Conventional methods had low recall due
to low TN, but they were calculated with high precision because there were many cases
where the fault section was detected as normal. Thus, the F1 score, which is the harmonic
mean of precision and recall, is low. Consequently, the conventional PCA, KPCA, kNN, and
LOF show that the fault occurring in the CFBC cannot be properly detected. The proposed
method shows that the type I and II errors are lower than those of both methods, as shown
in Figure 11, and abnormal symptoms can be detected before a fault occurs. WLOF correctly
detected normal and fault data, and the precision was over 90%. In addition, the F1 score
and accuracy was more than 50% and 20% higher than that of the conventional methods,



Energies 2022, 15, 6146 17 of 21

respectively. Therefore, it was confirmed that the proposed method can effectively detect a
fault compared with conventional methods.

Figure 11. Cont.
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Figure 11. Comparison of the fault detection results: (a) conventional PCA; (b) conventional KPCA;
(c) kNN; (d) conventional LOF; (e) kNS−WLOF.

Table 4. Performance indices of the proposed method and comparison methods.

TN
(Type I)

FP
(Type II)

Precision
(%)

Recall
(%)

F1 Score
(%)

Accuracy
(%)

PCA (SPE) 0.78 45.98 14.69 99.22 25.59 57.36
KPCA
(SPE) 0.86 68.04 10.41 99.14 18.85 36.92

kNN (D2) 1.45 22.58 25.82 98.55 40.92 78.98
LOF (LOF) 10.57 38.89 15.50 89.43 26.42 63.20

kNS-
WLOF
(LOF)

5.12 0.78 90.68 94.87 92.73 98.90

The entries corresponding to the lowest type I and II errors are indicated in bold.

4. Conclusions

In this study, a novel fault detection method called kNS-WLOF is proposed for ef-
fectively detecting multimode processes. First, local normalization was performed based
on neighbors using kNN instead of the z-score method to remove multimodal features.
Local normalization was performed, and WLOF was used to detect faults measured in real
time. To verify the effectiveness of the proposed method, the detection performances of
the conventional methods and the proposed method were compared in the multimodal
numerical case and CFBC unplanned shutdown case. The experimental results confirm that
the proposed method can detect faults more effectively than the conventional PCA, KPCA,
and LOF. In particular, the conventional methods using the z-score method in multimode
cases and CFBC fault cases were erroneously determined as faults because they failed to
remove the multimode characteristics of the data for each mode. Because the proposed
method removes multimodal features using kNN-based local normalization, the variables
of the other modes included in the training data are in the same range. In addition, the
proposed method has a lower error than conventional PCA and LOF because it is read-
justed to the penalized distance value when there are many distant neighbors. In summary,
it is confirmed that the two conventional methods have difficulty detecting a fault in a
multimode process, whereas the proposed method can adequately detect a fault. Therefore,
the proposed method can be applied to a real process operating in multiple modes.

In future research, we will consider the following two topics. First, in this study, the
distance readjustment of the WLOF was empirically set as a penalty criterion because
weights were allocated according to the number of kWLOF. To address this issue, it will be
set to an appropriate value using various cross-validation methods such as grid search and
leave-one-out. Second, the LOF computation time increases according to the amount of
data or the number of variables. For complex processes such as circulating fluidized bed
boilers, the use of huge amounts of data collected in real time takes a lot of time to calculate
the WLOF, which ultimately delays monitoring alarms. If the detection time is delayed, the
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fault may spread to other equipment and lead to unplanned shutdown. Therefore, before
applying WLOF, we will consider a study to remove unnecessary data using dimensionality
reduction techniques such as PCA and ICA.
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