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Abstract: The application of batteries has become more and more extensive, and the heat dissipation
problem cannot be ignored. Oscillating Heat Pipe (OHP) is a good means of heat dissipation. In this
paper, the methods to improve the energy conversion and flow thermal performance of micro-channel
OHP are studied and summarized. The working principle, heat transfer mechanism, advantages and
applications of PHP are also introduced in detail in this study. Proper adjustment of the micro-channel
layout can increase the heat transfer limit of PHP by 44%. The thermal resistance of two-diameter
channel PHP is 45% lower than that of conventional PHP. The thermal resistance of PHP under uneven
heating can be reduced to 50% of the original. PHP pulse heating can alleviate the phenomenon of
dryness. Different working fluids have different effects on PHP. The use of graphene nano-fluids as
the work medium can reduce the thermal resistance of PHP by 83.6%. The work medium obtained
by the mixture of different fluids has the potential to compensate for the defects while inheriting the
advantages of a single fluid.

Keywords: battery dissipation; energy conversion; oscillating heat pipe; thermal resistance; work
medium

1. Introduction

The efficient and stable transfer of heat is the basis for the safe operation of batteries [1].
OHP were proposed by Akachi in 1990 [2,3], which is also named pulsating heat pipe (PHP).
OHP has the advantages of high thermal efficiency, simple structure, easy miniaturization,
high degree of customization, which are considered to have broad prospects in the fields of
battery cooling, energy-saving transmission [4] and superconducting cooling [5]. When
OHP works, the heat transfer of phase change is mainly carried out through the circulating
flow of liquid plugs and steam plugs which randomly distributed in the pipeline [6]. The
evaporation of the liquid film, the heat transferred and generated by the Taylor bubbles
and flowing [7,8], which promotes the work fluid in the pipe flow. Micro-channel PHP
consists of three parts: the evaporation section, the adiabatic section and the condensation
section. The evaporation section is placed at the hot end to absorb heat. The condensation
section is placed at the cold end to dissipate heat [9].

The structure of PHP is simple, but its mechanism in the process of heat and mass
transfer is still in the exploratory stage [10,11]. PHP is generally studied by the simulation
of the work fluid flow in the tube [12] or by an experiment [13,14]. The research on PHP
mainly focuses on the heating conditions [15], the PHP structure [16,17], the effect of
work fluid on the properties of PHP [18,19] and the flow [20]. The work fluid has a great
influence on the thermal performance of PHP. The nano-fluids have become a research
hotspot in recent years due to their excellent physical properties and the ability to enhance
the performance of PHP.

The heat transfer function of the micro-channel PHP is mainly completed by heat
convection and heat conduction. Geometry changes the flow of the work medium and the
conduction path of the heat, which will affect the energy conversion of the micro-channel
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PHP. Xie F et al. [21] observed that the average heat transfer coefficient of closed loop
pulsating heat pipe (CLPHP) using a right-angle elbow in the evaporation section reached
1477 W/(m2·K), which was higher than that of the CLPHP (circular evaporation section).
The heat transfer of CLPHP under multi-source heat input stability has been significantly
improved. Pagliarini et al. [22] studied a 3D closed-loop heat pipe using methanol as
the work fluid. The layout is less affected by gravity than the plane layout at high input
power and the equivalent thermal resistance can reach 0.25 K/W. The performance of 3D
flat-plate oscillating heat pipe (FP-OHP) with staggered micro-channels was investigated
by Thompson et al. [23]. The thermal resistance of 3D FP-OHP was as low as 0.08 ◦C/W.
The temperature change caused by the increase in wall temperature in the evaporation
section under local heating increase.

High-speed camera visualization [24] and infrared analysis [25] were used to observe
the flow characteristics. Heat transfer behavior of PHP in experiments, which can obtain an
accurate understanding of the operation of PHP. The heat transfer performance of PHP is
analyzed. The model is established by studying fluid dynamic phenomena and local heat
flux density. Many researchers simulated the operation of PHP through the establishment
of mathematical models [26,27] or mathematical methods to analyze the flow pattern of the
work fluid inside of PHP [28]. Czajkowski et al. [29] studied the feasibility of U-shaped
tube application by flow simulation based on the momentum and energy equations in the
rotating coordinate system. Peng H et al. [30] proposed a fully nonlinear thermo-mechanical
finite element model to simulate the oscillation of liquid plug, temperature distribution
and heat transfer performance of PHP. The proposed thermodynamic model can accurately
simulate PHP. In recent years, machine learning has been applied by researchers to predict
the oscillatory motion, heat transfer of PHP due to its powerful information processing
capability. Yoon A et al. [31] studied the oscillatory motion of liquid in PHP based on a
deep neural network (DNN) model. The error was within 30% of predicting the average
volume fraction of univariate and multivariate cases which provided an analysis of the
fluid motion in PHP unique way of the situation. Qian N et al. [32] studied and predicted
the heat transfer of PHP in the working process based on the extreme gradient boosting
algorithm. The average absolute error was as low as 0.01%, which is expected to provide
guidance for PHP studies.

Micro-channel OHP are widely applied which is important for improving the energy
conversion pathway. This paper discusses the methods to improve the energy conversion
of the micro-channel OHP. The work principle, heat transfer mechanism, advantages
and applications of PHP are introduced in detail. The energy conversion methods and
technologies are introduced, which involve physical structure of section, number of turns,
valves, fins, material properties, heat source and pressure fluctuations. The research results
can provide a favorable technical reference for battery heat dissipation.

2. Work Principle, Advantages and Applications

The structure of the micro-channel PHP is simple. The mechanism is complex and the
running process is transient. Multiple stage changes occur pin a short period of time of
heat generation, flow heat transfer and efficient heat dissipation, etc. [33].

2.1. Work Principle and Heat Transfer Mechanism

The micro-channel PHP is usually formed by bending a capillary tube with a small
inner diameter, which is generally serpentine or continuous U-shaped. After the tube is
filled with work medium, it is evacuated [34] and sealed. Heat is transferred from the
evaporation section to the condensation section by an oscillating two-phase flow [35]. Under
the action of surface tension and temperature difference between the two ends [36], the
work fluid in the tube forms bubbles and randomly distributed vapor and liquid plugs [37].
The liquid plug and liquid film in the evaporation section evaporate continuously after
heat, which leads to the expansion of the bubbles. The steam plug increases the pressure
in the evaporation section. Under the action of the pressure difference between the two
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ends, the work medium is pushed to the condensation section which can release heat in the
condensation section. The air pressure decreases after the condensation section is cooled
and condensed. The bubbles and the steam plug condense and flow into the evaporation
section under the action of gravity [38]. The residual steam and liquid plugs flow into the
next condensation section through the turn, which can form a stable circulation without
additional input power to drive. The working process of PHP is listed in Figure 1.
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Figure 1. The working process of PHP. (The orange colour is the bubbles in evaporation section. The
light blue colour is the bubbles in condenser section. The red colour is heat transmission).

The heat transfer methods include convection heat transfer, phase change latent heat
transfer, etc. The factors of pressure difference, friction, inertial force, capillary force and
gravity play an important role in coupling [39]. At the same time, the heat conduction of
the tube wall cannot be ignored [40]. The initial distribution of the work fluid in the tube
is not uniform. The vapor and liquid plugs appear at random positions, which lead to
different pressure distributions in various parts of the tube, which cause random oscillation
of the work fluid in the tube.

2.1.1. Thermal Convection of the PHP

During the operation of the micro-channel PHP, the pressure difference between the
evaporation section and the condensation section pushes the work medium to the conden-
sation section. The work medium flows back to the evaporation section after condensation.
There is convective heat transfer in this process. Heat exchange of liquid convection is
the main heat transfer mode in the PHP. The convective heat transfer coefficient of the
two-phase flow in the vertical pipeline is given in Equations (1) and (2) [41]. The latent heat
of the phase transition is given in Equation (3) [42].

hw− f = hl
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[
x
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where hw-f and hf-w are the heat transfer coefficients of convective boiling and convective
cooling, W/(m2·K). kl is the thermal conductivity of the liquid, W/(m·◦C). hl is the single-
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phase heat transfer coefficient, W/(m2·K). qin is heat flow, J/s. P is perimeter, m. Pcr is the
perimeter of the section, m. Bo is the boiling number. x is the vapor mass of the evaporation
section, kg. ρl and ρv are the liquid density and vapor density of the fluid, kg/m3. Ca is the
capillary number of the micro-channel. Dh is the hydraulic diameter of the micro-channel,
m. hc,la and hc,lat are the latent heat transfer coefficient of the condensation section of the
evaporation section, W/(m2·K).

The flow of the work fluid inside the PHP will cause the heat conduction rate along
the inner wall to be out of sync with the heat convection rate. The temperature gradient
along the wall is greater than the temperature gradient along the fluid, which will result in
convective heat transfer between the fluid and the wall [43]. The local convective heat flux
density q between the fluid and the inner wall is shown in Equation (4).

q =

(
ρcp

∂T
∂t − k ∂2T

∂z2

)
·
(
r2

ext − r2
int
)
+ (T−Tenv)

Renv
· 2rext

2rint
(4)

where k is the thermal conductivity of the micro-channel. Tenv is the ambient temperature,
◦C. Renv is the thermal resistance between the channel and the environment, which is
assumed to be equal to 0.1 (m2·K)/W. T is the temperature, K. r normalized cross-correlation
function. cp is the constant pressure specific heat capacity, J/ (kg·K). z is the coordinate, m.

Fluid convection will influence the choice of materials and dimensions when the
evaporation section is designed [44]. The use of convection cooling in the condensation
section can increase the cooling rate. A higher cooling air flow rate leads to an increase in the
convective heat transfer coefficient, which accelerates the cooling rate of the evaporation
and condensation sections [45]. When the heat input increases to a certain value, the
evaporation section is likely to be completely dried up, which leads the PHP to reach the
heat transfer limit. The increase in cooling air flow rate can raise the heat transfer limit of
the PHP.

2.1.2. Heat Conduction of PHP

The heat transfer performance of FP-OHP is weakened because the transverse heat
conduction of adjacent channels reduces the temperature gradient for the self-excited
oscillation of the work medium [46]. The heat transfer rate of the tube wall is listed in
Equation (5) [47].

qw = −kAs
dT
dr

= 2πLk
Ti − To

ln(ro/ri)
(5)

where Ti is the average temperature at the beginning, ◦C. To is the average temperature
at the end, ◦C. L is the length, m. As is the cross-sectional area, m2. k is the thermal
conductivity of the material, W/(m·K). ri is the inner radius, m. ro is the outer radius, m.

Due to the presence of tube heat conduction, the work fluid within the PHP cannot
enter a stable state without the generation of air bubbles. Although bubble generation may
not be directly involved in the development of the first oscillations, it plays a crucial role
in preventing the oscillations from stopping [48]. The pipe material and section have a
great influence on PHP startup [49]. The heat diffusion equation of the liquid plug i in the
pipe is given in Equation (6), q”W is the heat flux density with the pipe wall as shown in
Equation (7) [50].

ρlcp,la2 ∂Tl,i

∂t
= λla2 ∂2Tl,i

∂X2
i
+ 4aq′′w (6)

q′′W =


λl Nu

a (TH − Tl,i) (Evaporator)
0 (Adiabatic sec tion)

λl Nu
a (TL − Tl,i) (Condenser)

(7)

where ρl is the density of the liquid plug i, kg/m3. cp,l is the specific heat capacity of the
liquid plug i, J/(kg·K). λl is the thermal conductivity, W/(m·K). Ti is the temperature of
the liquid plug i, K. Nu is the Nusselt number. TH and TL are the evaporator and condenser
temperatures, K.
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2.2. Typical Advantages of PHP
2.2.1. Simple Structure for Manufacture

PHP has significant advantages of high efficiency and energy saving, which has wide
application potential. PHP does not require the assistance of wicks or other structures,
which relies on self-excited two-phase flow to function properly. Figure 2 is the structure of
PHP. Ji Y et al. [51] fabricated a polydimethylsiloxane (PDMS) PHP using an aluminum
mold and a PDMS plate, which consisted of only 5 turns of interconnecting channels
bonded to a PDMS plate. Zhao et al. [52] designed a copper closed loop pulsating heat pipe
(CLPHP). A red copper tube is bent five times and weld. The CLPHP can be regarded as a
copper tube that does not contain other structures except the bent structure. Wu et al. [53]
designed and fabricated a PHP for cooling metal cutting tools with the temperature reduce
by 5–15%. The PHP is a copper tube is repeatedly bent through hole of the tool to absorb the
heat generated by the tool. There is only a curved structure in the tube. Mahajan et al. [54]
used PHP for waste heat recovery of ventilation systems with the recovery power of 240 W.
The traditional heat pipe heat exchanger for waste heat recovery has an internal wicking
structure, sintered screen or coaxial groove. The PHP is made by bending and welding
a single copper pipe and the structure is relatively simple. Zhao et al. [55] used copper
tube PHP with expanded graphite/graphite as the work fluid for thermal energy storage,
which improved the safety of thermal management of power electronic equipment. The
pipe body of PHP is made of bent and welded copper pipes. Alizadeh et al. [56] conducted
a numerical simulation of a single-turn CLPHP for cooling photovoltaic modules. The
use of PHP can increase the power generation of photovoltaic panels by about 18%. The
single-turn CLPHP is an end-to-end quartz glass tube with a liquid-filled hole which has
no additional complicated structure.
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2.2.2. Energy Saving with Excellent Heat Transfer Performance

PHP has excellent heat transfer performance, and it can be used as a heat exchanger in a
heat recovery system or a solar collector system to save energy. Figure 3 is the experimental
setup for AGPHP heat recovery. The use of PHP heat exchangers in air conditioning systems
can reduce energy consumption to 14% [57]. Liu et al. [58] applied anti-gravity PHP to
waste heat recovery. The test results showed that the heat recovery efficiency of anti-gravity
PHP (AGPHP) was more than 1.66 times that of pure copper rods.
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Deng et al. [59] tested a high-temperature exhaust waste heat recovery device based
on anti-gravity PHP. The experimental device is displayed in Figure 4. The measured
heat absorbed by AGPHP is 228% of pure copper meandering strips. The heat recovery
efficiency is much better than traditional copper dielectric. Monroe et al. [60] achieved
power generation while transferring heat through magnets. The coils connected in series
with the PHP work medium. The maximum and average power generation at the heat input
of 200 W were 428 µW and 15.3 µW, respectively. In remote areas without power coverage,
the region has broad development potential. Li et al. [61] studied the graphene/water-
ethylene glycol nano-suspension PHP for low temperature heat recovery. The measured
minimum thermal resistance was 0.36 K/W, which can effectively improve the recovery
efficiency of the low temperature heat recovery system. Khodami et al. [62] designed a
PHP-based waste heat recovery device to recover waste heat from stack exhaust gas. The
energy conversion rate was up to 22% in the test. Xu et al. [63] integrated PHP into a solar
collector for heat transfer and the measured thermal resistance was as low as 0.26 ◦C/W.
The thermal efficiency of the PHP-integrated solar collector was as high as 50%.
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2.2.3. High Efficiency for Heat Dissipation

PHP can be used to cool and dissipate objects with high heat flux density of electronic
components to ensure a safe temperature range. Experiments show that the heat transfer
coefficient of multi-walled carbon nanotube nano-fluid PHP is 130% compared with con-
ventional copper fins [64]. The thermal resistance of PHP at 800 rpm is 0.925 ◦C/W [65]
when it was applied to rotating equipment cooling. Czajkowski et al. [66] measured the
thermal resistance of the rotating flower-shaped PHP. It decreased to 0.012 ◦C /W with
the increase in centrifugal acceleration. The structure is given in Figure 5, and it has a
good application prospect in the field of heat dissipation of high heat flux devices. Ji
et al. [67] fabricated and tested the high-temperature liquid metal PHP with the use of the
sodium-potassium alloy as the work fluid. The thermal resistance of the high-temperature
liquid metal PHP was at least 0.08 ◦C/W at a working temperature above 500 ◦C. The
low-temperature PHP of the cylindrical shell condenser studied by Sagar K R et al. [68] has
an effective thermal conductivity of 16,350 W/(m·K) when the filling rate is 76%, which is
about 32.7 times that of solid copper rods under the same conditions. Thompson et al. [69]
tested multilayer Ti-6Al-4V-PHP fabricated with selective laser melting process. The effec-
tive thermal conductivity of multilayer Ti-6Al-4V-PHP was improved by 400% compared
to solid Ti-6Al-4V-500%. Alizadeh et al. [70] conducted a numerical analysis of CLPHP
heat dissipation of solar photovoltaic panels and found that the improvement rate of solar
photovoltaic panels with CLPHP was 35.3%.
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2.3. Extensive Application and Promotion

Micro oscillation heat pipes (MPHP) can be fabricated by manufacture micro scale
channels on silicon chips with microelectromechanical systems technology [71]. Liu [72]
et al. tested the heat transfer performance of a silicon-based micro-oscillating heat pipe
(MOHP) with the optimal filling rate of 53%. Dang et al. [73] carried out numerical simula-
tion on the PHP cooling rack used to cool the central processing unit (CPU). The results
showed that under the load of 1380 W, the CPU temperature of the PHP cooling rack was
not more than 60 ◦C.
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Figure 6 is the cooling arrangement of PHP. Qu et al. [74] measured the minimum
thermal resistance of the silicon-based MPHP is 5.5 ◦C/W and the startup time is less than
200 s. Kelly et al. [75] studied the radial PHP for the local heat dissipation of electronic
equipment. The experiment of the radial PHP can reduce the temperature of the hotspot by
23 ◦C. Kearney et al. [76] studied the operation of embedded PHP of electronic equipment.
The embedded PHP can operate normally under the heat flux density of at least 2.5 W/cm2.
Jang et al. [77] tested the heat transfer performance of ultra-thin plate PHP of mobile electronic
equipment. The thermal resistance of ultra-thin plate PHP at 90◦ and 0◦ with the inclination
angles of 63% (3 ◦C/W) and 56% (3.6 ◦C/W), which is lower than that of graphite sheet.

Torresin et al. [78] tested a new type of PHP cooler. In the experiment, the influence of
gravity is negligible. The lowest measured thermal resistance is 27 K/kW. Qu et al. [79]
studied the standard of PHP structure in the battery management system of new energy
vehicles based on the flexible PHP made of a fluororubber tube. The heat transfer perfor-
mance of PHP structures is in the order of “I” shape, “ladder” shape, “inverted U” shape
and “N” shape. When the battery thermal management system is designed, the PHP can
be selected according to the standard [80]. Chen et al. [81] tested the TiO2 nano-fluid PHP
of lithium iron phosphate battery thermal management. They measured the maximum
temperature with the temperature gradient of the battery of 35.86 ◦C and 1.15 ◦C. The
improvement rate was 77% and the minimum thermal resistance was 0.098 ◦C/W. Ling
et al. [82] proposed a cooling method for electronic devices which combined phase change
material (PCM) with 3D PHP. The new cooling method can control the surface temperature
of electronic devices below 100 ◦C, which is about 35 ◦C lower than the air-cooling method
with the thermal resistance reduce of 36.3%. Wang et al. [83] studied the 3D OHP for
the photovoltaic cells cooling. The 3D OHP added with sintered copper particles in the
evaporation section could keep the temperature of photovoltaic cells below 57 ◦C. Wang
et al. [84] studied the thermal management system of lithium-ion power battery pack based
on PCM/OHP. The maximum energy saving rate was 81.8% after using PCM/OHP battery
management system. Wei et al. [85] tested plug-in PHP for the thermal management of
electric vehicle batteries. Under the power input of 56 W, the minimum thermal resistance
of PHP is 0.193 ◦C /W. The average temperature of the battery pack can be controlled below
46.5 ◦C and the maximum temperature difference is 1–2 ◦C. Mosleh et al. [86] used PHP
instead of fins in the air-cooled heat exchanger. The heat transfer coefficient of the air-cooled
heat exchanger under natural convection forced convection were increased by 310% and
263% after using PHP instead of fins. Wang et al. [87] studied the application of PHP of
LED heat dissipation based on PHP with sintered copper particles. The experimental setup
is listed in Figure 7. Figure 7a is the LED heat sink, Figure 7b is the front side of LED chip
and Figure 7c is the back side of PCB board. The addition of sintered copper particles
is beneficial to the startup of PHP, since it can promote the oscillation movement. The
maximum temperature of LED can be controlled below 70 ◦C.

Qian et al. [88] studied PHP for heat dissipation in the grinding wheel grinding area
and showed that PHP can operate normally when the heat flux density is lower than
24,000 W/m2. The application of PHP in space had made great progress in recent years.
Radiation PHP can be used for space applications requires an appropriate amount of heat
input to start working at a lower operating temperature [89]. Iwata et al. [90] tested a metal
flexible PHP of the spacecraft. The maximum thermal conductivity of the metal flexible
PHP can reach 0.8 W/(m·K). The dynamic stiffnesses of the Y-axis and Z-axis are not more
than 0.2 N/mm, which is smaller than the graphite. Slobodeniuk et al. [91] designed a
PHP composed of molybdenum and sapphire cover plate for the parabolic flight activities.
Based on the We number and Ga number as defined in Equation (8), PHP was evaluated by
the average We number obtained was the same as the reference critical value (Wecrit = 4)
and the Ga number (1980) was much higher than the reference critical value (Gacrit = 160).

We = ρl u2Dcrit
σ

Ga =

(
(ρl−ρv)gD2

crit
σ

)2
ρl uDcrit

µl

(8)
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where ρl, ρv, g, Dcrit, σ, v, Re, µl are liquid, and vapor, densities, gravity acceleration,
critical channel diameter, surface tension, liquid slug velocity, Reynolds number and liquid
dynamic viscosity, respectively.
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3. Methods for Improvement Energy Conversion of Micro-Channel PHP

Although the structure of micro-channel PHP is relatively simple, its heat and mass
transfer mechanism are not clear. Its heat transfer performance is affected by many factors.
The energy conversion efficiency improvement of micro-channel PHP is an important way
to enhance the heat transfer performance of micro-channel PHP.
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3.1. Influence of Section

When the inner diameter of the PHP section is too large, the surface tension of the
work medium will decrease. The work medium tends to be layered by gravity which cannot
work stably. When the inner diameter is too small, the work medium cannot overcome
the oscillating flow resistance of the liquid plug between the cold and hot ends, which
leads to the failure of start PHP [92]. Jiaqiang E et al. [93] proposed a new type of narrow
tube closed PHP with retraction that can enhance the heat transfer performance of fixed
direction oscillation cycle. The average heat transfer coefficient of the new narrow tube
closed PHP was increased by 52.28% compared with that of the conventional PHP [94]
and the average Prandel number (representing the ability of momentum diffusion and
thermal fluid transfer) was increased by 25.49% compared with that of the conventional
heat pipe. Hua C et al. [95] found the thermal resistance of rectangular channel PHP is only
30–40% of circular channel. The temperature difference between evaporation section and
condensation section is 10–20 ◦C lower than that of circular channel PHP. Figure 8 is heat
pipe structures with multiple elbows which are made from different materials. The variable
diameter structure reduced the sensitivity of PHP to gravity and enhanced heat transfer
performance by the pressure difference increase [96]. Tseng C Y et al. [97] studied the
influence of alternate pipe diameters on the heat transfer performance of CLPHP based on
CLPHP with 2.4 mm pipe diameters. Table 1 is some studies on PHP cross-sectional forms.

Table 1. Effect of PHP cross section on performance.

PHP Species Work Medium Section Type Influence of Section

MPHP [94] FC-72 Square The square channel MPHP can handle the maximum allowable heat flux
at about 70% higher than the circular channel MPHP.

Rectangular channel PHP
[95] Deionized Water Rectangle The start heating power of rectangular channel PHP is 1.5–2 times that of

circular channel PHP.

CLPHP with alternate
pipe diameters [97]

Water, Methanol,
HFE-7100

Alternate pipe
Diameter

The thermal resistance of CLPHP with alternate pipe diameters is about
11.5–34.9% of that of CLPHP with uniform pipe diameters.

The thermal resistance and start power of CLPHP with alternate pipe diameters were
lower than conventional CLPHP. MARKAL B [98,99] studied the influence of double section
ratio on PHP based on tapered PHP with double section ratio. The thermal resistance of
tapered PHP with double section ratio is reduced by 28.4% compared with conventional
PHP, which is not easily affected by gravity. The internal pressure fluctuation caused by
the unequal hydraulic diameters of adjacent pipes leads to the heat transfer performance of
the asymmetric micro pulsation heat exchanger which is better than that of the symmetric
micro pulsation heat exchanger. Micro-channel OHP in battery heat management system
and electronic device cooling has remarkable potential applications as listed in Table 2.

Table 2. The heat transfer performance of PHP application.

PHP Species Work Medium Minimum Thermal
Resistance/K·W−1 Fill Rates/% Input Power/W

MPHP [73] Pure acetone 5 40, 53, 58, 61, 64, 74 4–10

OLPH [77] Novec 649
Novec 774 0.2 30–70 –

Double condenser PHP [80] R245fa 0.027 40–75 750–2400
PHP with sintered copper particles [94] Ethanol 0.145 30–60 0–100
PHP with sintered copper particles [97] Ethanol 0.168 30–50 10–60
Single loop PHP [99] Acetone 0.54 55 –

The minimum thermal resistance is 3.4 ◦C/W [100]. Kwon G H et al. [101,102] studied
the flow and heat transfer characteristics of dual diameter channel PHP. The thermal
resistance of dual diameter channel PHP is 45% lower than that of conventional PHP.
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When the pressure difference generated by the channel diameter difference is greater
than the friction pressure drop, the work medium can move without gravity as displayed
in Figure 9. Figure 9a is the thermal conductivity greatly affected by gravity with dual
diameter channels number of 1. Figure 9b is the thermal conductivity hardly affected by
gravity with double diameter channels number of 3. Yang K S et al. [103] studied the flow
characteristics of silicon-based MPHP pipes with different widths. The micro-channels
with alternative widths introduce an unbalanced capillary force to promote the movement
of vapor and liquid slugs. Tseng C Y et al. [104] proposed a new type of double pipe PHP.
The thermal resistance of the new type of double pipe PHP can be as low as 0.0729 K/W.
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3.2. Characteristics of Turns

OHP turns lead to excessive flow resistance of the work medium in the pipe easily.
When the turns number is too less, the oscillation of the work medium in the pipe is easier
to stop. There is no recognized standard for the selection of PHP turns, which hinders the
large-scale application of PHP [105]. Qian N et al. [106] described the startup process of
single loop PHP through the second-order dynamic system control equation. The startup
speed of single loop PHP depends on the type of work medium and heating power. Mameli
M et al. [107] developed a numerical model for predicting the heat transfer performance
of PHP. The flow reversal phenomenon caused 3 circles of CLPHP could not operate at
the horizontal position and 9 circles of CLPHP could operate at the horizontal position.
Spinato G et al. [108] found the thermal resistance of single circuit PHP reached the lowest
value under high heat load and low filling rate. The film evaporation was the main local
heat transfer mechanism. Lee et al. [109] studied the influence of turns on the heat transfer
limit based on 5, 10, 15 and 20 turns of MPHP. The results are given in Figure 10. The
influence of gravity on the maximum allowable heat flux of MPHP decreases with the
increase in turns. Noh H Y et al. [110] studied the characteristics of 2 turns PHP and the
heat transfer performance of PHP was affected by the mass flux of work medium. Kim
B et al. [111] tested single loop, parallel and 2 turns PHP. Under low heating power, the
thermal resistance of 2 turns PHP is smaller than that of parallel PHP. The influence of
pressure drop is greater than the increase in disturbance under high heating power, which
caused resistance of 2 turns PHP being larger than that of parallel PHP.
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3.3. Heat Transfer Performance Improvement of Pipeline Structure

Figure 11 is the pipeline structure of some PHPs. The pipeline structure of PHP affects
the flow pattern and distribution of work fluid. Kim W et al. [112] compared the influence
of cavity size on heat transfer performance based on the MPHP with cavity (10, 20, 30,
40 µm) and without cavity. The power required for startup of the MPHP with cavity
was 50% lower than that without cavity. Kang Z et al. [113] studied a kind of PHP with
partition walls based on numerical method. The heat transfer performance of PHP with
partition walls can be improved by 14% compared with conventional PHP. The maximum
equivalent thermal conductivity of PHP on the inner side of the partition wall is about
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1194 W/(m·K). The maximum equivalent thermal conductivity is about 1977 W/(m·K)
when the partition wall is located in the middle of the channel. Qu J et al. [114] studied
the heat transfer performance under vertical heating based on micro groove PHP and the
maximum effective thermal conductivity of PHP was 41.8 kW/(m·◦C) at 40% filling rate.
Lim J et al. [115] tested the influence of the channel arrangement on the plate MPHP under
local heating. The amplitude oscillation of the liquid slug of the channel randomly arranged
MPHP is larger than that of the channel with uniform channel arrangement, which makes
it improve by 32% in heat transfer performance. Kim J et al. [116] and Wang J et al. [117]
studied the influence of the length of evaporation section and condensation section on PHP.

As shown in Figure 12, the evaporation section is more likely to dry up with the
increase in the length of condensation section. The heat exchange area of the MPHP im-
proved with the increase in the length of the condensation section. The length ratio of the
evaporation section increase in the condensation section will help CLPHP start and also
reduce thermal resistance. Sedighi et al. [118,119] manufactured the additional branch PHP
of a two-stage bubble pump in the evaporation section and compared the heat transfer
performance of the additional branch PHP with that of the conventional FP-PHP. The
bubble pump enhanced the flow cycle which resulted in less temperature fluctuation of the
additional branch PHP. Kim et al. [120] carried out a visual study on the oscillatory motion
of work medium in asymmetric MPHP. Two flow phenomena were oscillatory eruption
mode (pressure periodic change) and circulation mode (the temperature rise in the evapo-
ration section causes the expansion of the steam plug and the generation of circulation).
Chiang C M et al. [121] established a model for predicting the asymmetric MPHP oscil-
lation motion. The stronger oscillation motion caused by the larger average temperature
difference between the evaporation section and the condensation section enhanced the heat
transfer performance. Okazaki et al. [122] compared the conventional serpentine PHP with
the closed-loop ring PHP. The thermal resistances are almost the same, which indicated
that the design ideas of the PHP pipeline can be more diversified. Liu et al. [123] tested the
heat transfer performance of the double serpentine channel flat plate OHP under multi-
ple heat sources. The average equivalent thermal conductivity of the double serpentine
channel flat plate OHP is 5.8 times than that of the pure 6063 aluminum alloy plate. The
weight is only 83.6% of that of the pure 6063 aluminum alloy plate with the same geometry.
Fonseca et al. [124] designed and tested a helium-based PHP, including 3 sub PHPs. The
maximum effective thermal conductivity was 55,000 W/(m·K). Wang et al. [125] studied
single loop PHP with a corrugated structure at different positions. The corrugated structure
of evaporation section reduced the startup time by 28.96%. He et al. [126] promoted unidi-
rectional flow in 3D CLPHP through series conical nozzles and the lower forward pressure
drop alleviated the drying phenomenon with the lowest thermal resistance of 0.87 K/W.

Table 3 summarizes the improvement of heat transfer performance of OHP by some
pipeline structures.

Table 3. Effect of OHP pipeline structure on performance.

PHP Species Work Medium/Structure Performance Improvement

MPHP with cavity [112] Ethanol/With concave cavity ↓57% of thermal resistance

Micro slot PHP [114] Water/Separation wall The maximum allowable input heat flux is
increased by 90 times

FPPHP [118,119] Water/Secondary bubble pump ↓11–20% of thermal resistance

Double serpentine channel
FPPHP [124] Acetone/Double serpentine channel

The thermal conductivity is 5.8 times that of pure
6063 aluminum alloy plate, and it can be started
at all inclination angles from 0◦ to 90◦

Corrugated structure PHP [125] Water/The evaporation section is of
corrugated structure Thermal resistance reduced by 37.57%

3D PHP [126] Ethanol/Tandem conical nozzle ↓29.5% of thermal resistance
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Yeboah et al. [127] designed an experiment for testing the copper spiral OHP with
ethanol, methanol and deionized water as work fluids. Ebrahimi et al. [128] added in-
terconnection channels in FP-PHP to enhance heat transfer and increased the working
power range of FP-PHP. Qu et al. [129,130] studied 1–5 layers of 3D OHP and reported the
thermal resistance of four layers of 3D OHP is the smallest when the heating power is less
than 100 W. The copper tube with fewer layers of 3D OHP has less heat transfer and the
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3D OHP with more layers has higher demand for heat input. The thermal resistance of
two to five layers of 3D OHP is about 0.23 ◦C/W when the heating power is 100 W. The
3-D OHP and 2-D OHP were compared with paraffin as the work medium as shown in
Figure 13. Figure 13a is the structural diagram of 2D OHP and 3D OHP. Figure 13b is the
schematic diagram of experimental equipment of four layers of 2-D OHP and 4 layers of
3D OHP. 1~8 are the positions of thermocouples. The melting time of wax in wax/3D OHP
is longer during the heating process. The solidification time of wax/4-layer 2D-OHP and
wax/4-layer 3D-OHP are about 0.48 and 0.29 times than that of pure wax, which indicated
the heat transfer performance of PCM/3D OHP is better than PCM/OHP.
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3.4. Valves and Fins of the Work Medium

The use of valves helps PHP to promote and maintain the oscillation cycle of the work
medium, which improved the heat transfer performance and stability. Ando et al. [131,132]
investigated the effect of check valves on PHP start and heat transfer performance. The
effective thermal conductivity of the check valve at normal weight is about 6000 W/(m·K),
which is 30 times that of conventional aluminum alloy. The thermal resistance refers
to no work fluid during the operation of PHP with a check valve and it can operate
stably in space for 4 years. PHP enables stable start-up when the check valve is located
near the condensation or insulation section. Fairley et al. [133] studied the effect of Tesla
valves on PHP based on time-frequency analysis. The Tesla valves effectively reduced
the occurrence of intermittent high-energy oscillations in the evaporation section of PHP
by promoting circulating flow. De Vries et al. [134] found that Tesla valves reduced the
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thermal resistance of PHP by about 14% by facilitating the circulation of the work fluid.
Thompson et al. [135] observed the effect of Tesla valves on the internal flow of FP-PHP
based on neutron radiography technology. The Tesla valves can make PHP by facilitating
circulating flow. The thermal resistance is reduced by about 15 to 25%. Feng et al. [136]
based on CLPHP with a spring-loaded check valve and studied the influence of the position
of the check valve on the heat transfer performance. The experimental apparatuses are
in Figure 14. The thermal resistance of CLPHP with a check valve is 25% lower than that
of conventional CLPHP and the influence of gravity is weakened. Bhuwakietkumjohn
et al. [137] discovered the flow pattern in PHP pipe with check valve changes from annular
flow/segment plug flow to segment plug flow/bubble flow. Check valves, gravity and
asymmetric heating all promote the flow cycle of the work medium. The synergy can
enhance heat transfer when the promoters of loops move in opposite directions; the heat
tolerance of PHP is enhanced [138]. Daimaru T et al. [139] simulated PHP with a check
valve and observed that the localization of the liquid plug in the condensation section.
The addition of fins helps to increase the heat transfer rate of PHP. Rahman et al. [140,141]
studied the effect of fins on PHP. The use of fins in the condensation section can enhance
the heat transfer effect significantly. Qu et al. [142] introduced micro fins in PHP, which
reduced the thermal resistance by up to 41.7%. The effective thermal conductivity could
reach 86,262 W/(m·K), which was about 216 times than that of large copper materials.
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3.5. Material Properties for Heat Transfer

The pipe body of PHP plays a certain role in the heat transfer. Odagiri et al. [143]
established a 3D heat transfer model of aluminum flat PHP. The temperature difference
in the thickness direction of aluminum PHP was relatively small (0.1 ◦C) through the
simulation. The ratio of the maximum superheat of the hotspot to the average evaporation
section temperature was between 9 and 11%. The equivalent thermal conductivity of
polypropylene flat PHP is up to 6 times that of polypropylene sheets of the same size [144].
The effective thermal conductivity of polycarbonate PHP is up to 7000 W/(m·K) [145].
The residual sintered powder at the edge of Ti-6Al-4V PHP caused the work medium to
produce core suction behavior. This suction behavior increases capillary pumping capacity,
which reduced the PHP of gravity and start power [146]. Bhramara [147] analyzed the heat
transfer characteristics of copper PHP, which was consistent with experimental data. Lim J
et al. [148] tested the heat transfer performance and stability of flexible OHP (FOHP) made
of laminated film and low-density polyethylene. Figure 15 is flexible OHP (FOHP) when it
is bended which is vertical under heating. The thermal resistance of FOHP is 2.41 K/W,
which is 37% lower than that of copper OHP. The service life of FOHP is equivalent to
306 days in the standard atmosphere, which is 18 times that of conventional polymer OHP.
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Figure 15. Flexible OHP [148]. Lim et al. (2018).

Qu et al. [149] tested the heat transfer properties of FOHP of different structures
consisting of fluoroelastomer materials and micro-slot copper tubes. Figure 16a is the
schematic diagram of different structures of FOHP. Figure 16b is the photographs of
different structures of FOHP. The bending of the insulation section will lead to pressure
loss. The start-up and heat transfer performance of FOHP is reduced and the heat transfer
of FOHP performance is “i” shape, “step” shape, “inverted U” shape and “N” shape
from high to low. PHP heat transfer performance can be improved by adjustment of the
different wettability modes of the inner walls of the pipe [150]. Hao et al. [151] found the
amplitude, velocity and liquid film length of the super-hydrophilic and hydrophilic pipe
wall PHP were higher than those of copper PHP. The thermal resistance of the four-circle
hydrophilic pipe wall PHP is reduced by about 5 to 15% and the thermal resistance of
the six-circle super-hydrophilic and hydrophilic PHP is reduced by 5 to 15% and 15 to
25%, respectively. Betancur-Arboleda et al. [152] studied the effect of surface treatment on
heat transfer properties of pipes based on copper PHP with different degrees of inner wall
roughness. The thermal resistance of mixed sanding PHP (which uses standard sandpaper
Grit N100 and Grit N1200 grinding in the evaporation section and the condensation section)
is conventional 60% of PHP. Xie et al. [153] conducted chrome plating experiments on the
inner wall of PHP aluminum tubes filled with moisture. which can reduce the thermal
resistance of PHP to about 30% of the original. The stable working time was more than
5 times that of untreated PHP.
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3.6. Heat Source Impact on the Temperature

In contrast to continuous heating, pulse heating can change its output power by
constantly turning the heat source on and off. Taft B S et al. [154] found the input of PWM
power does not affect the thermal resistance of PHP. The “injection-shrinkage” phenomenon
of the work medium during pulse heating caused fluctuations in the pressure in the tube to
enhance the heat transfer capacity [155]. In practice, PHP is susceptible to uneven heating.
Mangini et al. [156] tested mixed PHP in uneven heating mode in space applications.
The uneven heating can promote work medium circulation and improve the overall heat
transfer performance. The thermal resistance of PHP is reduced by up to 8.7% under
normal gravity. The excessive uneven heating tends to dry up the higher parts of the
heating power. Jang D S et al. [157] used dimensionless thermal differences to express the
degree of inhomogeneity as displayed in Equation (9).

φ =
Q1 −Q2

Q1 + Q2
=

Q1 −Q2

Qtotal
(9)

where Q1 and Q2 are the heat inputs of two heat sources. Qtotal is the total heat input. The
thermal resistance and temperature difference increase with the increase in the dimension-
less thermal difference.

Chen et al. [158] tested the heat transfer performance of series two-channel plate PHP
under uneven heating and the experimental equipment which was shown in Figure 17.
The heating of uneven PHP has better heat transfer performance at low heating power. The
thermal resistance is about 15.3% of the same size pure 6063 aluminum alloy plate. When
the heating power is higher, the heat transfer performance of the series two-channel flat
plate PHP is even weaker than that of uniform heating. Zhao et al. [159] studied the work
mass motion and heat transfer mechanism of PHP under different heating modes based
on mathematical models. The heat transfer performance of PHP was increased by more
than 6% under uneven heating. When the heating cycle under uniform pulse heating is
short, the oscillation of the fluid maintains stable alternate heating and the dominant heat
transfer is increased by 25%. Based on the topology optimization method, Lim et al. [160]
proposed a channel layout design of plate MPHP under local heating. The experimental
comparison results showed the design can reduce the thermal resistance of MPHP by 50%.
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3.7. Pressure Fluctuations of the PHP

The fluctuation in pressure in PHP is closely related to the generation of bubbles and
liquid film. Pipe pressure affects the length of the steam plug and liquid plug, which leads
to the heat transfer performance of PHP to change. Nine et al. [161] estimated the heat
transfer performance of PHP by means of a pressure spectrum between the evaporation and
condensation segments. The PHP had the lowest thermal resistance (about 0.25 ◦C/W) and
the maximum pressure fluctuation at 2 wt% Cu/water nano-fluid as the work medium. Qu
et al. [162] studied the effect of initial pressure on PHP with a thermal resistance increase of



Energies 2022, 15, 7391 19 of 29

493% at a heating power of 140 W, which was the initial pressure increased from 0.007 MPa
to 0.065 Mpa. The average temperature of the evaporation and condensation sections
increased and decreased with the initial pressure improvement.

PHP fill rate affects fluctuations in pressure and the startup power increases as the fill
rate improves [163]. Barua et al. [164] found the heat transfer performance of PHP depends
on the work medium, filling rate and heating power. Fonseca et al. [165] studied the effect
of filling rate on heat transfer performance based on low temperature PHP as given in
Figure 18. The PHP has an effective thermal conductivity of 70,000 W/(m·K) at a filling rate
of 20%. More heating power leads to more bubbles, which increased pressure fluctuations.
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4. Current Research Insufficient and Future Development Trends
4.1. Current Research Insufficient

(1) The study of micro-channel layout mainly focuses on the thermal properties of PHP
with a certain micro-channel layout design, which does not propose specific design
specifications as a reference [166];

(2) The study of pipeline structure is still in the stage of the pipeline geometry change
and the heat transfer performance. The PHP heat transfer performance mechanism of
pipeline structure is lacking in-depth description [167,168];

(3) The study of materials and work fluids are not related to manufacturing and cost [169].
The work fluid is believed to be one of the factors that may have the greatest influence
on PHP. Due to the complex hydrodynamic properties of the work medium, it is
difficult to study the mechanism in the process of heat and mass transfer [170]. The
certain kinds of work fluids of nano-fluids have own complex and properties which
even under-fully recognized [171]. The stability of nano-fluids is a major problem of
PHP applications [172];

(4) The current research on PHP work fluids mainly focuses on the heat transfer perfor-
mance or flow of PHP with a certain work medium [173]. The current research is
lacking the selection criteria of the work medium under different conditions, which
can only passively test the characteristics of the work fluid in experiments [174].

4.2. Future Trends

It can optimize the design of micro-channel layout for the future research trends of PHP.
Appropriate adjustment of micro-channel layout can promote cyclic heat transfer [175]. Lee
et al. [176] introduced a micro-stick array of the PHP micro-channel layout to increase the
maximum permissible input power by 44%.
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(1) The prediction technology of PHP heat transfer performance is applied. Qian et al. [177]
predicted the heat transfer performance of axial rotating OHP with an error of 3.36 to
16% with the grey system-based theory, which enhanced the heat transfer performance
ability of PHP in industrial applications with only a small amount of data. Machine
learning is applied to predict the heat transfer performance of PHP [178,179], which
reduced the cost of PHP design, which is a reliable method for future PHP study;

(2) Model optimization of PHP is studied. Chu et al. [180] proposed equations for the
pressure difference and flow resistance of the work medium, which provided guidance
for the structure optimization of PHP. Min et al. [181] introduced PHP in battery
thermal management and compared the heat transfer performance of PHP with other
cooling methods by modeling. Kang [182] et al. introduced porous core suction layers
into PHP and established numerical models, which provided a new inspiration for
the design of PHP;

(3) A study trend focused on green environmental protection. In terms of environmental
protection, it is a factor that must be taken into account in order to achieve sustainable
development which reduced the carbon emissions and resources consumed with
the PHP [183]. Monroe et al. [184] designed thermoelectric PHP with magnets and
solenoids to recover waste heat into electrical energy, which is conducive to reducing
carbon emissions and environmental pollution caused by power generation. PHP can
also be combined with PCM materials which is applied to seawater desalination. It
can save a lot of energy because it is a green and pollution-free seawater desalination
technology [185,186];

(4) The study of the relationship between the physical properties of the work fluid
and the heat transfer properties of PHP can gain an in-depth understanding of the
mechanism of PHP with the appropriate work medium [187]. Yasuda et al. [188]
observed the flow of work fluids in PHP through neutron photography technology,
which helped to explore the mechanism of work fluid flow. Wang J et al. [189] found
the hydrophilicity of the pipe surface of numerical models, which can help to reduce
the thermal resistance of CLPHP and improve the stability of the circulating flow;

(5) Gravity PHP increases the drying limit of PHP by the reflux of the work fluid en-
hancement. PHP adaptability of the working environment will be improved [190].
Chen et al. [191] designed a tandem dual-channel FP-PHP for use in ultra-gravity en-
vironments, which can be applied to modern aerospace. Abela et al. [192] conducted
experimental analysis and numerical simulation of PHP under microgravity. The
prediction deviation was within 7%, which was helpful for studying the mechanism
of gravity on PHP;

(6) The exploration of industrial production is adopted. Low temperature PHP has the
significant advantage of high thermal conductivity when it is used for superconduc-
tivity heat dissipation [193,194]. The application of PHP in industrial process will be
explored [195];

(7) The miniaturization of electronic equipment inevitably brings the problem of high
heat flow density. The miniaturization of the heat dissipation system has become
one of the mainstream directions of product iteration. The compact structure of PHP
makes it easy to miniaturize and maintain good heat transfer performance. Silicon-
based MPHP has micron-sized channels in which fluid flow and the heat transfer had
some new characteristics compared to conventional capillary OHP [196]. Kamijima C
et al. [197] measured 700 W/(m·K) as the highest effective thermal conductivity of
MPHP with a pipe diameter of 350 µm. After miniaturization, PHP was able to work
stably with excellent thermal performance. Lin et al. [198] studied the effective range
of miniature oscillating heat pipes by experiment. Sun et al. [199] studied the working
range of PHP after miniaturization. The MPHP can be started normally and operated
stably. The effective fill rate of the horizontal direction is 40 to 55% when the vertical
direction of the fill rate is 30 to 75%.
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(8) Heating applications are extended. PHP is usually used for heat dissipation due to
its excellent heat transfer performance. The key step in the equation of the refrig-
eration and heating process is the heat transfer. PHP is well-used in refrigeration
and heating. Aref L et al. [200] tested the thermal performance of flat-panel PHP
solar collectors. The thermal efficiency reached 72.4% at a filling rate of 60% in sunny
weather. Zhao J et al. [201] studied the heat transfer performance of solar with long-
distance heat transmission PHP. The thermal resistance was as low as 0.0024 ◦C/W.
Jin H et al. [202] used transparent PHP with nano-fluids as the work medium for
the collection and transmission of solar energy. The maximum energy conversion
efficiency can reach 92%. Zhao J et al. [203] conducted experimental tests on PHP-
based large-scale heat storage systems. The use of self-humidifying fluids as work
fluids would make PHP have greater heat transfer limits and longer heat transfer
distances. Qu et al. [130,204] studied 3D PHP thermal properties for latent thermal
energy storage (LHTES) devices. The efficiency of 3D OHP LHTES devices increased
by about 32% compared to conventional devices and the heat storage was enhanced by
PCM. Chen et al. [205] proposed ethane PHP based on stirling chillers. Xu et al. [206]
designed PHP refrigeration equipment based on phase change energy storage tech-
nology and the utilization rate of PCM reached 78.7%. Saw L H et al. [207] designed a
PHP-based roof cooling system which can reduce the temperature of the top floor of
the house by 13%.

5. Conclusions

In this paper, the methods to improve the energy conversion and flow thermal perfor-
mance of micro-channel PHP are studied. The use of appropriate physical structures can
improve the heat transfer performance, start performance, operating range and stability of
PHP. The work fluid is the main carrier of PHP heat transfer. The research and choice of
the right work medium are key to achieving the desired performance of PHP.

(1) The right structure and material choice had an important impact on PHP performance.
Proper adjustment of the micro-channel layout can increase the heat transfer limit of
PHP by 44%. The thermal resistance of 2D channel PHP is 45% lower than that of
conventional PHP. The thermal resistance of FOHP can be as low as copper OHP of
63%;

(2) In practical applications, different heating conditions of PHP are encountered. The
thermal resistance of PHP under uneven heating can be reduced to 50% of the original.
PHP pulse heating can alleviate the phenomenon of dryness;

(3) Work fluids have different effects on PHP. The use of graphene nano-fluids as the
work medium can reduce the thermal resistance of PHP by 83.6%. PHP with liquid
nitrogen as the work medium can work at temperatures below 100 K. The work
medium obtained by the mixture of different fluids has the potential to compensate
for the defects while inheriting the advantages of a single fluid. The addition of
self-humidifying nano-fluids to the graphene oxide nano-fluid can enhance the heat
transfer performance of PHP by 12%, which can inhibit the drying phenomenon.
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