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Abstract: The superparamagnetic Fe3O4 nanoparticles as an absorbent with a size distribution of
4.8–6.4 nm were synthesized using a simple one-pot hydrothermal strategy at 200 ◦C for 24 h, where
iron citrate and distilled were the sum total of raw materials. The as-synthesized Fe3O4 powders
showed rapid and efficient adsorption for xylenol orange with a saturated adsorption amount of
42.5 mg/g according to Langmuir linear fitting, and the adsorption reaction between xylenol orange
adsorbate and Fe3O4 adsorbent was mostly completed within 10 min. The Fe3O4 nanoparticles not
only had superparamagnetism with a saturation magnetization value of 54.9 emu/g at 15 kOe but
also possessed strong magnetic response, making them easy to separate easily from aqoeous solution
under the attraction of magnet. In this work, the Fe3O4 particles can be totally attracted toward the
magnet within 15 s, leaving the suspension a clear solution.

Keywords: iron citrate; magnetic Fe3O4; superparamagnetism; hydrothermal; adsorption; dye

1. Introduction

Energy development and environmental protection have always been the common
concern of people because energy is the important material base for the life and devel-
opment of human society, and the environment is the fundamental condition for human
survival [1–4]. Water pollution caused by dyes is a serious disposal problem because most
of the dyes in water are highly visible and undesirable. The dyes can severely interfere with
the absorption and reflection of sunlight entering the water, which affects the replication
and producing of dye-degrading bacteria; as a result, these dyes are not biodegradable
in the water [5–9]. Therefore, removal of such colored dye contaminants from polluted
aqueous media has become an impendent issue. To solve this problem, a number of avail-
able technologies for the removal of dyestuffs have been developed and implemented,
such as physical [10,11], chemical [12,13], electrical [14,15], and biological [16,17] strategies.
Among these technologies, the adsorption technology has been regarded as one of the most
competitive methods for wastewater treatment in terms of its flexibility and simplicity of
design, operational ease, and insensitivity to pollutants; moreover, no harmful substances
are formed during the adsorption reaction [18–20].

Many absorbent materials have been developed to remove dyes from aqueous so-
lution, such as graphene oxide nanocomposites [21], activated carbon [22], ultrafiltration
membrane [23], natural fiber [24,25], and magnetic nanocellulose [26]. Among all available
candidates, the nanostructured Fe3O4 particles are attractive because of their superparamag-
netism, which facilitates the targeting control and recyclable separation just using an applied
magnetic field. This superparamagnetism of Fe3O4 particles is beneficial to the simple and
rapid separation of Fe3O4 after adsorption of pollutants, which can not only save the cost,
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but also shorten the operation cycle. In addition, the size effect of nanomaterials makes them
easier to capture the pollutant due to enhanced surface activity [27,28]. So far, numerous
methods have been reported to synthesize magnetic Fe3O4 nanoparticles. For example, Chen
et al. [29] synthesized the superparamagnetic Fe3O4 nanofibers with hollow characteristic
morphology based on a polymer-assisted thermochemical reduction process, and the diame-
ter and wall thickness of these nanofibers were ranging from 100 to 200 nm and 15 to 25 nm,
respectively. Yang et al. [30] synthesized the magnetite (Fe3O4) nanoparticles with different
shapes and sizes by the thermal decomposition method. Liu et al. [31] also synthesized Fe3O4
nanoparticles with a diameter of ~500 nm by a hydrothermal method using FeCl3·6H2O,
ethylene glycol and CH3COONa as the main raw materials. Moreover, Eskandari et al. [32]
synthesized the Fe3O4 nanoparticles (6 nm) based on a chemical co-precipitation method
with an alternating magnetic field and ultrasonic-assisted. Although these methods could
synthesize the nanostructured Fe3O4 particles with superparamagetism, but the synthesis
process is still not the easiest, as well as the used raw materials. It is still challenging to
further simplify the operation process to reduce costs and energy consumption.

Xylenol orange (XO) is a common synthetic dye, also usually used as potentiometric
reagent and complexometric indicator for the determination of metal ions in the science
laboratory. Therefore, the XO effluents from manufacturing industries and laboratories
will further attract heavy metal ions, finally leading to various ailments to the living body.
To date, only a few studies had reported on the removal of XO from the aqueous solu-
tion. Hyperbranched polyethyleneimine based gels [33] and polyvinyl alcohol/cellulose
nanocrystals hydrogels [34] were developed as absorbent materials for the removal of XO
from the aqueous solution. However, the process of collecting these used sorbents from
water was cumbersome after the adsorption reaction. For that, in this work, a facile one-pot
hydrothermal procedure was developed for the synthesis of superparamagnetic Fe3O4
nanoparticles, in which iron citrate and distilled were the sum total of raw materials. The
main advantages of hydrothermal method are as follows. The cheap and readily available
water served as the solvent during the hydrothermal method, which could synthesize
the desired products under medium and low temperature conditions without subsequent
high-heat treatment. The closed conditions of hydrothermal process could reduce the emis-
sion of toxic and harmful gases, effectively reducing environmental pollution, in line with
the requirements of energy-saving and emission reduction. Moreover, the as-synthesized
superparamagnetic Fe3O4 nanoparticles could serve as an adsorbent for the removal of XO,
as a comparison, the adsorptions of other dyes, Basic Orange 2 (BO2) and Acid Orange 7
(AO7) were also investigated.

2. Experimental
2.1. Materials

Iron citrate (AR) was obtained from Shanghai Yien Chemical Technology Co., Ltd.,
Xylenol Orange (XO, 98%) dye was obtained from Shanghai Bide Medical Technology
Co., Ltd., Basic Orange 2 (BO2, AR) dye was obtained from Shanghai Maclin Biochemical
Technology Co., Ltd., Acid Orange 7 (AO7, >97.0%) was obtained from Tokyo Chemical
Industry Co., Ltd., and ethanol (≥99.7%) was purchased from Chengdu Kelong Chemical
Co., Ltd. The general characteristics of XO, BO2, and AO7 dyes, including Cas number,
chemical number, and maximum absorption wavelength are (λmax), are shown in Table 1.
These reagents were used as received without further purification.

2.2. Synthesis of Fe3O4

Superparamagnetic Fe3O4 nanoparticles were synthesized by a sample one-step hy-
drothermal procedure based on our previous report [35]. Iron citrate (4.0 mmol) and
distilled water (30 mL) was directly added into a 50 mL Teflon-lined stainless-steel auto-
clave, and maintained for 24 h at 200 ◦C. After cooling to room temperature, the resulting
precipitate was separated with the help of a magnet, and washed with distilled water and
ethanol. Finally, the Fe3O4 powders were obtained under vacuum at 60 ◦C for 24 h.
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2.3. Characterization

The crystallographic phase of Fe3O4 sample was characterized by X-ray diffraction
(XRD, DX-2700). The morphology and size of Fe3O4 particles were evaluated by transmis-
sion electron microscopy (TEM, JEM-2100F). The magnetic property of Fe3O4 powders was
obtained by physical performance measurement system (PPMS 9).

2.4. Evaluation of Adsorption Capacity

The adsorption capacities of Fe3O4 powders were evaluated by the removal of XO,
BO2, and AO7 dyes from simulated wastewater at room temperature without pH preadjust-
ment. Briefly, 0.1 g Fe3O4 powder was dispersed into 100 mL dye solution with different
concentrations, and the mixture was stirred at a constant speed of 200 rpm. Then, a small
amount of suspension was withdrawn at regular intervals and separated by an applied
magnetic field, and the absorbance of supernatant was measured at the maximum absorp-
tion wavelength of the dye using an ultraviolet-visible spectrophotometer (U-3900). The
adsorption efficiencies (ηt, %) and adsorption amount (q, mg/g) for dyes were calculated
using Equations (1) and (2), respectively:

ηt =
C0 − Ct

C0
× 100 % (1)

q =
(C0 − Ce)V

m
(2)

where C0 (mg/L) is the initial concentration of dyes, Ct (mg/L) is the concentration of dyes
at time t (t = 0–60 min), m (g) is the mass of Fe3O4 powders, and V (L) is the volume of dyes
aqueous solution.

Table 1. General characteristics of AO7 dye.

Generic Name Abbreviation Cas Number Chemical Structure λmax (nm)

Xylenol orange XO 1611-35-4
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3. Results and Discussion

Figure 1a shows the XRD pattern of the sample. All broad peaks had a good match
with the standard Fe3O4 pattern (JCPDS No. 65-3107), suggesting that the as-synthesized
Fe3O4 particles had a good crystallinity with small grain size. The mean grain size of
Fe3O4 was about 6.6 nm, as calculated by the Scherrer formula. Figure 1b shows the
high-resolution XPS spectra of Fe 2p and O 1s of the as-synthesized Fe3O4 particles. For the
Fe2p core-level XPS spectra, two distinct peaks with binding energies of 724.1 and 710.5 eV
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appeared, which were assigned to the characteristic doublets of Fe 2p1/2 and Fe 2p3/2 from
iron oxide. For the O 1s core-level XPS spectra in the inset of Figure 1b, the O 1s centered at
binding energy of 529.8 eV belonged to O2− species, and these data are consistent with the
reported literature [36]. The above XRD and XPS results confirmed the formation of Fe3O4
phase in the hydrothermal system. TEM was employed to characterize the morphology
and size of Fe3O4 particles. As observed in Figure 1c, the morphology of particles was an
equiaxed shape. Moreover, these size values of Fe3O4 particles were demonstrated by a
statistical analysis, the size distribution histograms were showed in Figure 1d, and most of
the Fe3O4 particles were mainly concentrated in 4.8–6.4 nm.
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Figure 1. (a) XRD pattern of Fe3O4 powders; (b) high-resolution XPS spectra of Fe 2p (the inset
is the high-resolution XPS spectra of O 1s); (c) TEM image; and (d) size distribution histogram of
Fe3O4 particles.

The room-temperature magnetization hysteresis loop of the as-synthesized Fe3O4
was measured by a physical performance measurement system. Figure 2a shows the
magnetic hysteresis curve of Fe3O4 powders. From Figure 2a, it could be found that
the saturation magnetization value of Fe3O4 nanoparticles was 54.9 emu/g. Moreover,
the Fe3O4 nanoparticles were essentially superparamagnetic with negligible hysteresis,
as observed by the enlarged partial curve of the surrounding origin in Figure 2a. In
practical application, it is critical for practical applications that the magnetic materials
should exhibit prompt responsiveness to an applied magnetic field without retaining any
magnetism once the applied magnetic field was removed [37]. The magnetic manipulation
of such superparamagnetic Fe3O4 was performed in water upon the application of a NdFeB
permanent magnet near the glass bottle. As observed in Figure 2c, the Fe3O4 particles can
be totally attracted toward the magnet within 15 s, leaving the suspension a clear solution.
Moreover, the congregated Fe3O4 particles can be easily and quickly re-dispersed again by
shaking after the removal of magnet. Hence, this superparamagnetic Fe3O4 powders have
the potential to be easily recovered after liquid phase adsorption reaction, which could
greatly facilitate the practical running of an industrial pollutant cleanup.
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Figure 2. (a) Magnetic hysteresis curve of Fe3O4 powders and (b) enlarged partial curve of the
surrounding origin in (a); (c) pictures for the progressive separation of Fe3O4 particles from aqueous
medium upon the application of a NdFeB permanent magnet ([Fe3O4] = 25.0 g/L; V = 8.0 mL;
Distilled water; Glass bottle: d = 1.5 cm and h = 6.2 cm).

Figure 3 shows that the time-dependent adsorption efficiencies of superparamagnetic
Fe3O4 nanoparticles for XO, BO2, and AO7 dyes. It was observed that Fe3O4 nanoparticles
had larger adsorption affinity for XO dye, whereas the adsorption of AO7 dye can be
ignored. The adsorption efficiencies achieved within 60 min of reaction was 98.5, 15.9, and
5.5% for XO, BO2, and AO7 dyes, respectively. Furthermore, it could be clearly observed
that the adsorption of XO dye was rapid at the early stages of the process. In fact, the
adsorption reaction was mostly completed within 10 min, and the removal rate was up
to 93.6%. No significant changes were observed from 20 to 60 min, indicating that the
adsorption-desorption equilibrium between the dye adsorbate and Fe3O4 adsorbent was
reached within the first 10 min of adsorption reactions. Compared with the adsorption reac-
tion of XO dye, those of BO2 and AO7 dyes reached the adsorption-desorption equilibrium
within 30 min, and the removal rates were only 23.0 and 6.2%.
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The saturated adsorption amounts (qm) of XO, BO2, and AO7 dyes were obtained
according to the Langmuir isotherm model, and the Langmuir linear fittings based on
the adsorption data of these dyes onto the superparamagnetic Fe3O4 nanoparticles were
showed in Figure 4a–c, while the relevant parameters of Langmuir fittings calculated were
listed in Table 2. By comparing with the associated correlation coefficients (R2), it could be
found that the Langmuir isotherm model was most suitable for modeling the adsorption of
XO dye (R2 = 0.9991) than that of BO2 (R2 = 0.9546) and AO7 (R2 = 0.7904) dyes, and the
value of qm is 42.5 mg/g for XO dye according to the Langmuir linear fitting. Table 3 shows
the qm values of XO dye adsorbed on other adsorbents from the recent literature [33,38–42].
Despite the adsorption capacity of superparamagnetic Fe3O4 nanoparticles synthesized in
this work being moderate among these reported adsorbents by comparing the qm of various
adsorbents, the Fe3O4 adsorbent still had obvious advantages in energy consumption and
cost, which are due to the advantages of synthetic process and the superparamagnetism of
Fe3O4 nanoparticles synthesized in this work. The equipment used in the hydrothermal
process was simple and economical, and the Fe3O4 phase could be obtained in a simple
one-pot hydrothermal process. In addition, the as-synthesized Fe3O4 nanoparticles in this
work had excellent magnetic sensitivity, which made them easy to separate from liquid
medium under the attraction of a magnet.
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Table 2. Relevant parameters of Langmuir fittings for XO, BO2, and AO7 dyes adsorbed onto the
superparamagnetic Fe3O4 powders.

Langmuir Parameters
Langmuir Isotherm Model: Ce

qe
= 1

qm
Ce + 1

KLqm

XO Dye BO2 Dye AO7 Dye

qm (mg/g) 42.5 1.3 3.8
R2 0.9991 0.9546 0.7904

Table 3. Recent literature on adsorbent development for the removal of XO dye.

Authors Adsorbent Name Synthetic Method qm
(mg/g)

Ishaq [38] Coal ash Heated at 750 ◦C 0.74
Bai [39] Porous amino-cellulose membrane TEMPO oxidation and ethylenediamine grafting 15

Pang [40] Expansion graphite Chemical oxidation intercalation of potassium
permanganate and vitriol 18.15

Garrudo-Guirado [41] Vitreous tuff mineral (VT) Milled and sieved to 60 mesh 45.17

Wang [42] Bi-porous chitosan monoliths Unidirectional freeze-drying method under
vacuum less than 20 Pa for 48 h 153.8

Zhu [33] Hyperbranched polyethyleneimine
(HPEI) based gel

Cross-linking reaction between HPEI and
N,N′-methylene-bis-acrylamide 3312.06

Xu in this work Fe3O4 nanoparticles One-pot hydrothermal process at 200 ◦C for 24 h 42.5
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The sorption kinetics of XO, BO2, and AO7 dyes onto Fe3O4 nanoparticles were tested
using a pseudo-first-order kinetic model by plotting log(qe-qt) versus t (Figure 5a,c,e), as
well as pseudo-second-order kinetic model by plotting t/qt versus t (Figure 5b,d,f). As
observed in Figure 5, the adsorption of XO, BO2, and AO7 dyes using a pseudo-second-
order model (Figure 5b,d,f) exhibited a better linear fit than those using a pseudo-first-order
model (Figure 5a,c,e). Moreover, the relevant kinetic parameters, such as the equilibrium
adsorption amount (qe1,cal, qe2,cal), rate constant (k1 and k2), and correlation coefficient (R2),
could be obtained by fitting with these two models, and the results were listed in Table 4.
As observed in Table 4, all pseudo-second-order equations showed higher correlation
coefficients (R2 > 0.98) than their respective pseudo-first-order equations (R2 < 0.74), and the
adsorption amounts at equilibrium (qe,cal) were much closer to the respective experimental
one (qe,exp). Therefore, the pseudo-second order model is more suitable to describe the
adsorption kinetics of XO, BO2, and AO7 dyes onto Fe3O4 nanoparticles, indicating that
the chemisorption is the rate controlling step during the attachment process.

Energies 2022, 15, x FOR PEER REVIEW 8 of 11 
 

 

 
Figure 5. Fittings by a pseudo–first–order model for the adsorption of (a) XO, (c) BO2, and (e) AO7 
dyes, pseudo–second–order model for the adsorption of (b) XO, (d) BO2, and (f) AO7 dyes onto 
Fe3O4 nanoparticles. ([Fe3O4] = 1.0 g/L; [dye] = 10 mg/L; Room temperature; without pH preadjust-
ment). 

Table 4. Kinetic parameters for the adsorption of XO, BO2, and AO7 dyes onto Fe3O4 nanoparticles 
at room temperature. 

Dye qe,exp (mg/g) 

Pseudo–First–Order Kinetic Model 
1

e1,cal t e1,callog( ) + log
2.303
kq q t q− = −  

Pseudo–Second–Order Kinetic Model 

2
t 2,cal 2 e2,cal

1 1
e

t t
q q k q

= +  

qe1,cal (mg/g) k1 (1/h) R2 qe2,cal (mg/g) k1 (g/mg·h) R2 
XO 9.847 1.7906 7.1318 0.7328 10.0452 6.4352 0.9998 
BO2 2.444 6.2516 0.2983 0.6316 2.8740 2.8272 0.9859 
AO7 0.614 8.9600 0.0383 0.5564 0.7223 18.9232 0.9959 

4. Conclusions 
In summary, Fe3O4 nanoparticles with a main size distribution of 4.8−6.4 nm have 

been successfully synthesized via a simple one–pot hydrothermal strategy at 200 °C for 
24 h, in which iron citrate and distilled were the sum total of raw materials. The as–syn-
thesized Fe3O4 nanoparticles exhibited apparent superparamagnetism, and the saturation 
magnetization value was 54.9 emu/g. Moreover, Fe3O4 nanoparticles possessed sensitive 
magnetic responsiveness, which can be totally attracted toward the magnet within 15 s 

Figure 5. Fittings by a pseudo-first-order model for the adsorption of (a) XO, (c) BO2, and (e) AO7
dyes, pseudo-second-order model for the adsorption of (b) XO, (d) BO2, and (f) AO7 dyes onto Fe3O4
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Table 4. Kinetic parameters for the adsorption of XO, BO2, and AO7 dyes onto Fe3O4 nanoparticles
at room temperature.

Dye qe,exp (mg/g)

Pseudo-First-Order Kinetic Model
log(qe1,cal−qt)=− k1

2.303 t + logqe1,cal

Pseudo-Second-Order Kinetic Model
t
qt

= 1
qe2,cal

t + 1
k2q2

e2,cal

qe1,cal (mg/g) k1 (1/h) R2 qe2,cal (mg/g) k1 (g/mg·h) R2

XO 9.847 1.7906 7.1318 0.7328 10.0452 6.4352 0.9998
BO2 2.444 6.2516 0.2983 0.6316 2.8740 2.8272 0.9859
AO7 0.614 8.9600 0.0383 0.5564 0.7223 18.9232 0.9959

4. Conclusions

In summary, Fe3O4 nanoparticles with a main size distribution of 4.8–6.4 nm have
been successfully synthesized via a simple one-pot hydrothermal strategy at 200 ◦C for 24 h,
in which iron citrate and distilled were the sum total of raw materials. The as-synthesized
Fe3O4 nanoparticles exhibited apparent superparamagnetism, and the saturation magneti-
zation value was 54.9 emu/g. Moreover, Fe3O4 nanoparticles possessed sensitive magnetic
responsiveness, which can be totally attracted toward the magnet within 15 s from sus-
pension, and quickly re-dispersed again by shaking after the removal of magnet. Such
superparamagnetic Fe3O4 nanoparticles exhibited the effective adsorption affinity for XO
dye, and the adsorption reactions were mostly completed within 10 min. The Langmuir
isotherm model is most suitable for modeling the adsorption of XO dye (R2 = 0.9991) com-
pared to those of BO2 and AO7 dyes, and the value of the saturated adsorption amount is
42.5 mg/g for XO dye according to Langmuir linear fitting. This superparamagnetic Fe3O4
nanoparticles had the potential to be easily recovered after liquid phase adsorption reaction,
which could greatly facilitate the practical running of an industrial pollutant cleanup.
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