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Abstract: Currently, AC motors are a key element of industrial and commercial drive systems.
During normal operation, the machines may become damaged, which may pose a threat to the
users. Therefore, it is important to develop a fault detection method that allows for the detection
of a fault at an early stage. Among the currently used diagnostic systems, applications based on
deep neural structures are dynamically developed. Despite many examples of applications of deep
learning methods, there are no formal rules for selecting the network structure and parameters of the
training process. Such methods would make it possible to shorten the implementation process of
deep networks in diagnostic systems of AC machines. The article presents a detailed analysis of the
influence of deep convolutional network hyperparameters and training procedures on the precision
of the interturn short-circuits detection system. The studies take into account the direct analysis
of phase currents through the convolutional network for induction motors and permanent magnet
synchronous motors. The research results presented in the article are an extension of the authors’
previous research.

Keywords: convolutional neural network; hyperparameters; fault detection; induction motor drive;
permanent magnet synchronous motor; diagnostic system

1. Introduction

In recent years, there has been growing interest in diagnostics and prognostics of AC
motor drives, as they are used in many industrial applications, including safety-critical
devices. Among other things, it is related to the global drive to reduce carbon dioxide emis-
sions and replace systems that use hydraulic and pneumatic power, as well as combustion
engines with electric drives. This applies not only to areas such as industrial automation
and robotics but also to transport and wind power generation. Therefore, diagnostics of
electric drives, in particular those using induction motors (IMs) and permanent magnet syn-
chronous motors (PMSMs), have been intensively developed in the last two decades [1-9].
Diagnostic systems use various methods to process electrical, mechanical, and acoustic sig-
nals, often assisted by artificial intelligence methods. In particular, neural networks (INNs)
are used to detect, locate, and classify faults based on preprocessing the above-mentioned
signals from the drive system. In recent years, researchers have focused more and more
on the use of deep learning neural networks (DNNSs), which, under the appropriate train-
ing process, are able to perform fault diagnosis tasks based on raw signals, i.e., without
preprocessing the signals measured on the object.

Among the DNNSs structures, convolutional neural networks (CNNs) [10,11] and
autoencoders (AEs) [12,13] are currently the most frequently used. In addition, there
are also known applications in the diagnostic technique of Deep Belief Neural Networks
(DBFs) [14], Generative Adversarial Neural Networks (GANs) [15-17] and Long Short-
Term Memory (LSTM) [18-20]. Among the above-mentioned DNN structures, diagnostic
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processes of electrical machines are mainly associated with CNNs. Convolutional networks
make it possible to extract higher-order features from the input information, using the
mathematical convolution operation for this purpose.

A characteristic feature of CNNSs is its extensive structure and the lack of formal rules
for designing and selecting training parameters. The number of convolutional layers is
closely related to the type of signal characteristics sought. The overwhelming number
of software implementations of CNNSs refers to the use of multiple convolutional layers
connected in a cascade [21,22] which results from the necessity to perform the splice
operation several times to reveal the symptoms of damage. In the case of using CNNs in
diagnostic processes, in most cases, the amount of information ensuring a high level of
network efficiency is achieved by using three [23-26], in special cases, more convolutional
layers [10,24,27,28]. In most cases, such a solution ensures high efficiency, and, at the same
time, it is easy to analyze the individual layers of the network. Nevertheless, the literature
describes the applications of CNNs working both in hierarchical structures [24,26,29] as
well as parallel [30,31].

Despite the overarching role of the convolution operation, CNN structures contain
many layers to aid the extraction of features (pooling layers, activation functions) as well as
classifying layers (normalizing layers, dropout layers [32,33], and fully connected layers).
However, the selection of individual structure parameters is still an unrecognized scientific
issue. The currently proposed attempts to select structures in the literature are a combi-
nation of various computational techniques, such as the use of Sequential Model-Based
Optimization (SMBO) proposed in [34] to optimize CNN hyperparameters. Despite the
possibilities of optimizing the CNN structure described in this paper, no correlation be-
tween its parameters and the precision of the network was demonstrated. Another popular
approach is the use of Genetic Algorithms (GAs) in DNN optimization tasks [35-38]. As in
the case of [34], the GA-based approach proposed in [36] has not been discussed in terms
of the influence of parameters on the classifier precision. Therefore, it is impossible to
define the exact dependencies between the network parameters and the effectiveness of
performing the tasks assigned to them. Furthermore, the use of the evolutionary algorithm
to determine the optimal configuration of the AlexNET network does not ensure finding
the global minimum due to the randomness of parameters [39]. Moreover, the classical
methods of searching for the optimal structure: gradient search [40], random search [41],
and Bayesian optimization-based method [38,42—44], are not presently analyzed for diag-
nostic applications. Currently, in machine learning techniques, Bayesian optimization is
often used only in the case of Al applications, which show good performance. This method
consists in optimizing a black box object with a noisy objective function that preserves the
surrogate model learned using previously assessed solutions. The Gaussian [42] process is
usually adopted as a proxy model, which easily copes with the uncertainty and noise of
the objective function.

Apart from the necessity to select the parameters of the convolutional layer defining
the features of the input matrices, the parameters of the pooling layers are also important
in terms of network efficiency. The most commonly used type of CNN pooling layer is
the maximum function [43,45], which results from the computational simplicity of this
method. However, the following applications are common: mixed pooling [44], stochastic
pooling [46], spectra pooling [47], average pooling [48], and ordinal pooling [49]. It should
be clearly emphasized that the structure of CNN is very complex in terms of the number of
neural connections and types of layers. Changes in CNN hyperparameters are reflected
both in the final precision of the network and in the learning process.

The aforementioned CNN training process is carried out in an overwhelming number
of cases following the Stochastic Gradient Descent (SGD) algorithm. The most important
parameter of the SGD algorithm is the learning rate. This value is most often selected
empirically on the basis of the analysis of learning curves. Unfortunately, this approach
does not optimize the process because too high a value of the learning rate will cause rapid
oscillation of the learning curve, while too low a value results in an extended training
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time. In addition, the SGD method is difficult to tune, which may result in loss of stability.
Due to the key importance of the learning rate for the effectiveness of the training process,
its optimization is the subject of many studies in the field of Artificial Intelligence (AI).
Currently, the most common techniques for selecting this parameter are grid search, ran-
dom search [41], Bayesian optimization [50], and the Gaussian regression process [51,52].
The most commonly used grid search technique consists of selecting a certain range of
parameter values and then training the network for each hyperparameter value, which
is dynamically updated during the computation. The disadvantage of this method is the
complexity of the calculation and the very long process of determining the final value of the
parameter. However, it is worth noting that with appropriately selected parameters, SGD
is irreplaceable in the case of large classifications, which results in the popularity of this
algorithm in both the adapting processes of CNN, RNN, and DBN weights [53]. However,
despite its ease of implementation and convergence, SGD is a relatively slow algorithm.
This limitation manifests itself, especially in the case of high curvature or many coherent
gradients with small values. The improvement of the SGD algorithm can be obtained
with its extension by the momentum parameter (SGDM) [54,55]. Due to its simplicity, this
method is currently the most popular [55]. Furthermore, the constant necessity to select
parameters forced the emergence of many methods of adaptive learning speed selection,
such as AdaGrad [56], AdaDelta [57], RMSProp [58], and Adam [59-61].

As in the case of DNN structure hyperparameters, there are currently no rules deter-
mining which of the DNN training algorithms is the best. RMSProp, which is a modification
of the AdaGrad method, is characterized by the lack of limitations found in AdaGrad in
the form of premature and dynamic decreases in the learning rate, which makes it a more
frequently used adaptive method. Moreover, the superiority of RMSProp is due to the low
efficiency of the AdaGrad algorithm in the case of nonconvex functions. The process of
adapting the weights according to AdaDelta is analogous to RMSProp and also consists in
limiting the number of past analyzed gradients. The combination of the simplicity of the
SGDM algorithm and the convergence of RMSProp has been used in the Adam algorithm.
The use of two ideas provides both first- and second-order corrections so that the Adam
algorithm does not require a precise selection of hyperparameters [60].

The adaptive algorithms currently used do not differ significantly from the well-tuned
SGDM method based on a mini-batch of training data. The size of the mini-batch can
be selected empirically or calculated based on information about the size of the available
database [24]. As shown in [28], the use of a smaller mini-batch size of the training data
results in higher NN efficiency. It should be noted that in each of the cases presented by the
authors [28], the quotient of the size of the training database and the size of the mini-batch
was an integer, which is consistent with the technique to select this parameter presented
in [24]. The literature analysis shows that, in the case of well-known training data, it is
recommended to use the SGDM method in the basic version or with Nesterov’s momentum
coefficient. If, on the other hand, it is impossible to determine the approximate parameters
of the training process, adaptive methods are the best approach.

Based on the review of CNN structure optimization methods presented above, it
has been noticed that currently, no guidelines are known to facilitate the design of DNN-
based systems. The overwhelming number of optimization methods require a very large
computational effort and are individually adapted to a given task performed by the network.
Currently, there are no methods to determine the basic structure and parameters of DNN
training used in the field of technical diagnostics. Most of the cases analyzed in the literature
concern Al applications in the recognition or analysis of images. Therefore, the research
results presented in the further part of this article constitute a reliable source of information
necessary for the design of diagnostic systems for AC machines based on DNN.

The article is divided into six sections. After the introduction, Section 2 presents
the theoretical basis of the CNN structure used in the analysis as well as the training
process on DNN. Section 3 is dedicated to a discussion on the methodology of conducted
research. The laboratory setup is also presented in Section 3. Sections 4 and 5 are the



Energies 2022, 15, 7008 4 0of 22

main part of the article. The analysis of the impact of the structure hyperparameters on
the precision of IM and PMSM diagnostic applications is presented in the Section 4, while
Section 5 contains the analysis of the influence of the training process hyperparameters
on the accuracy of detection of the AC motors stator winding fault. The article is finished
with Section 6, which contains conclusions resulting from the obtained results. All of the
research results presented in the article are experimentally verified on the laboratory stands
with IM and PMSM.

2. Deep Convolutional Neural Networks
2.1. Structure of the Convolutional Neural Network

Deep neural structures, apart from high requirements regarding the number of data,
and stochastic training methods, are characterized by great freedom in developing the
information replenishment method (network structure). A special feature of convolutional
neural networks is the automatic search for the features of the input matrix (or vector) that
enable the determination of belonging to a known state, e.g., a damage category. For this
purpose, a mathematical convolution operation is used based on filters (windows of the
convolution layer), which contain information about the relationships between the input
elements (symptoms). Concerning diagnostic systems, thanks to the training process, the
network automatically performs the symptom extraction process for subsequent classi-
fication (Figure 1). It should be noted that with the increasing difficulty in recognizing
individual classes, the need for multiple plexus operations increases. Therefore, the search
for higher-order features in the input matrix results in the presence of many convolutional
layers in the CNN structure (as presented in Figure 1). In the following parts of the ar-
ticle, the structures of the CNNs are described in detail in relation to the stator winding
diagnosis for PMSM and IM. More details on such diagnostic systems can be found for
PMSMs in [62,63] and for IMs in [64-66], respectively.
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Figure 1. Structure of the CNNs used in the research.

As can be observed in Figure 1, the four layers included in the detector set are the
convolutional layer, batch normalization layer, activation function (ReLU), and pooling
layer. Definition of the fault category based on the detected features of input matrices is
possible thanks to the use of the set consisting of dropout, fully connected, softmax, and
classification layers.

The convolutional layer (CONV) performs the function of a feature detector using the
convolutional operation consisting of combining two data sets. The convolutional layers
characterized parameters are mostly trained using a simple gradient (filters, activation
maps) and configuration settings invariable during the network training process (filter



Energies 2022, 15, 7008 50f 22

size, input data depth, step, padding). According to the different range of elements of
convolutional filters, to increase the dynamic of the training process and ensure the stability
of the NN training, batch normalization layers (BNL) are used. The influence of the use of
BNL is described in detail in [67]. The determination of non-linear relationships between the
information stored in the layers of the feature detector is possible thanks to the activation
function. Due to the low computational complexity of CNN structures, the rectified linear
unit (ReLU) is the most frequently used.

In connection with the feature extraction task by convolutional layers, a very large
number of parameters are stored in their filters. To finally classify the input matrix into
the category to which it belongs, it is necessary to limit the number of symptoms only to
those that are of the greatest importance in relation to the task of the entire neural structure.
For this purpose, a pooling layer (PL) is used that calculates the constant function of the
input batch.

The connection between detected symptoms (last PL output) and the classifier input
(fully connected layer, FL) is characterized by large numbers of neural connections, which
may result in partial loss of generalization ability. In order to avoid this situation, the
dropout layer (DL) is often used. This layer ensures the random and periodic rejection
of neurons (reduces neural connections). During the selection of the CNN structure, the
probability of statistical rejection of the neuron is determined. Due to the use of the DL, the
neural connection between the feature detector and the classification part is independent
of each other. It should be noted that the DL reduces only the input and/or hidden layer
neurons of the FL, and the number output layer constitutes the number of categories
recognized by the CNN. Information from the FL is subsequently given to the softmax
function and classification layers, which specifies the CNN response based on the cross-
entropy of losses calculation.

2.2. Training of the Convolutional Network

As mentioned in the Introduction, many deep learning algorithms are used in the
literature. However, the literature and the authors’ own experience show that the SGDM
algorithm is currently the most commonly used because of its simplicity and efficiency.
The initial stages of the research also showed that the SGDM algorithm works best for
the CNN used in the studies (Figure 2). Therefore, it was decided to limit the research
to the description of the results obtained with this CNN learning method. The following
figures present examples of the CNN learning process with different well-known learning
algorithms used in the diagnostic system of the stator windings of the IM drive.
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Figure 2. Analysis of the CNN training algorithm—Iearning curves: (a) accuracy of the CNNs for
testing data; (b) loss function.
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As observed in Figure 2, the use of the Adam adaptive learning algorithm results in
reduced dynamics of the process. Moreover, the system precision achieved, calculated
for the test data, is lower than in the case of using the RMSProp algorithm (difference of
about 0.5%). The use of the RMSProp algorithm was characterized by the high dynamics
of the training process in the first stages of learning, comparable to the application of the
SGDM method. However, the final value of the loss function was noticeably higher than
in the case of SGDM, which corresponded to the lower precision of the system. During
the analysis of the influence of the learning method on the CNN effectiveness, the same
network structures, training, and testing data sets were used.

In order to compare the dynamics of learning processes, research was carried out
involving the use of three basic algorithms for a different number of training epochs. The
results of the training process times obtained are presented in Figure 3.
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Figure 3. Influence of the CNN learning method algorithm on the time of training process.

The use of the SGDM algorithm in the developed systems based on CNNs was a
compromise between the high precision of the training process and the short learning
time. As can be seen in Figure 3, with the increase in the number of learning epochs, the
difference in learning time between particular algorithms increases.

3. Methodology of Diagnostics of AC Motor Drives Using CNNs
3.1. Description of the Main Goal of the Invstigation—Research Scenarios

In experimental studies on the use of CNNs in the diagnostic process, particular
attention was paid to the influence of the network structure and parameters of the training
process on the precision of the developed detection system. The analysis of the literature
allows us to notice that, currently, there is a lack of formal rules regarding the selection
of hyperparameters of the training process as well as the appropriate adjustment of the
CNN structure to the task performed. The research results presented later in this article
included CNN in the process of detecting and assessing the degree of damage to induction
motors and synchronous motors with permanent magnets. Damages to electric circuits
of AC motors, interturn short-circuits (ITSC), are characterized by high dynamics of the
defect propagation, which has been repeatedly emphasized in the works [9,62,63]. Due to
the short time between the onset of a defect and the complete failure of the windings, the
issue of early detection is of particular importance. In addition, it is extremely important
to correctly assess the level of damage to take into account the time needed to shut down
a damaged machine. Therefore, the diagnostic system should be characterized by high
efficiency of damage detection at an early stage in the shortest possible time.

The diagnostic systems proposed by the authors previously [62-64] carried out the
direct analysis of phase current signals using CNN. To fully demonstrate the effectiveness
of the developed diagnostic applications, stator failures in the form of ITSCs were taken
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into account. A full description of the process of designing diagnostic systems with the
use of a CNN was presented, as well as their experimental verification. As presented in
the works of the authors [62-66], the idea of designing the stator fault detection systems of
the IM and PMSM based on the CNN does not differ significantly from each other. This
fact results from a similar structure of the stator in the analyzed machines, as well as the
influence of ITSCs on the signals of phase currents and voltages, which was shown in [65].
However, experimental studies have shown a significant influence of permanent magnets
on phase currents in the case of a small load torque, which makes the process of PMSM
stator damage detection much more difficult than in the case of IM [62].

In the experimental studies presented in the following sections of this article, the ITSC
detection systems for the IM and PMSM are considered. The CNN structure, the basis of
the respective diagnostic systems, was selected with the assumption of the possibility of
detection and assessment of the degree and location of ITSCs. Therefore, CNNs adapted to
the IM and PMSM stator diagnostics system are characterized by the different numbers
of neural connections and, consequently, different features in the context of diagnostic
ability. Detailed parameters of the CNN structures constituting the main element of the
IM and PMSM diagnostic systems are summarized in Table 1. The optimal structure of
CNN meeting the criterion of the stator fault detection efficiency was the reference point
in the further study of the influence of the parameters of the training process and the
CNN structure.

Table 1. Influence of the number of convolutional layers on the precision of a CNN-based diagnostic
system: BNL for ¢ = 0.001.

Applied Layers of CNN Structure

Convolutional Normalization Activation Pooling Dropout Fully Connected  Precision

1 x 30 filters 1 layer 1 x ReLU 1 x Maximum 87.68%

2 x 30 filters 2 layers 2 x ReLU 2 X Maximum 1 laver: 2 lavers: 95.13%

M 3 x 30 filters 3 layers 3 X ReLU 3 x Maximum _}E) 5' 64-16 yers: 97.21%
4 x 30 filters 4 layers 4 x ReLU 4 x Maximum p=> 64-16} neurons 99.11%

5 x 30 filters 5 layers 5 x ReLU 5 x Maximum 99.11%

1 x 50 filters 1 layer 1 x ReLU 1 x Maximum 81.68%

2 x 50 filters 2 layers 2 x ReLU 2 x Maximum 1laver: 2 lavers: 85.24%

PMSM 3 x 50 filters 3 layers 3 x ReLU 3 X Maximum _}6 5' 644 yers: 87.76%
4 x 50 filters 4layers 4 x ReLU 4 x Maximum p=> 64-4} neurons 88.99%

5 x 50 filters 5 layers 5 x ReLU 5 X Maximum 88.84%

The previous works of the authors were carried out in several stages. The first stage of
the research consisted in measuring selected diagnostic values on stands with AC motors
(Section 3.2), where it was possible to model the stator winding failures physically. The
next stage of research work included the development of training, validation, and testing
data packages for the developed CNN structures using direct analysis of measured current
signals (raw data). Based on the network input data, a training process and a preliminary
assessment of the effectiveness of CNN were carried out. The third stage of the research
included experimental verification of the proposed diagnostic systems based on CNNs
during the continuous operation of the tested electric motor. Moreover, an analysis of the
influence of machine operating conditions [63,64] and the applied diagnostic signal on the
precision of the system [62] was carried out. These studies were the basis for the analysis of
the impact of structure parameters and the CNN training process, which were the basis of
this article.

The studies are divided into two parts, respectively: (1) the impact of CNN structure
parameters (number of convolutional layers, number of convolutional filters, number
of fully interconnected layers, number of FC layer neurons, activation functions used,
application of the rejection layer and the type of collecting layers); and (2) training process
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(number of training epochs, initial learning rate, periodic rejection, momentum factor, mini
data packet size).

In addition to the effectiveness of the damage severity assessment, the network training
process was analyzed by assessing CNN learning curves. The training process of each
structure was carried out under the SGDM algorithm detailed in Section 2.2.

3.2. Presentation of the Experimental Setups

Experimental tests of an IM and PMSM with physically introduced failures of the
stator windings were carried out with the use of two laboratory stands. Below is a view of
the test stand (Figure 4) and the method of conducting experimental tests depending on
the type of machine under consideration.

Software-LabVIEW, Matlab, NI PXl-data acquisition Voltage Source Inverter—load motor and
VeriStand system test motor control

o Terminal board

0 L\ R L

¥¢ P
SO v

» T T
_EEm
> T'ii-]:s 3

Induction motor-tested PMSM-load PMSM-tested PMSM-load

Figure 4. Experimental setup—laboratory stands with IM (Table A1) and PMSM (Table A2).

The experimental tests, including the analysis of the impact of damage to the stator
windings of the IM, were carried out on the stand shown in Figure 4. The considered
drive system included two machines: the tested IM (INDUKTA Sg 100L—4B) with a
power of 3 kW and the PMSM (Lenze MCS14H32) with a power of 4.7 kW generating
a load torque. The motors were powered by industrial frequency converters operating
with a switching frequency of 10 kHz (IM) and 8 kHz (PMSM), respectively. The NI
PXIe—8840 real-time controller was responsible for the coordination of the entire control
structure of the frequency converters. The developed control system used the measurement
of phase currents and rotational speed through LEM transducers and an incremental
encoder. Encoder pulses were counted by FPGA-based programmable logic (NI PXI—
7851R), which was one of National Instruments rapid prototyping modules.

Tests were performed for the IM operating in a closed-loop structure of the direct rotor
flux-oriented control (DRFOC). Measurements of diagnostic quantities were performed
with a sampling frequency of 10 kHz. Data acquisition and visualization were performed
using VeriStand and LabVIEW software.

Modeling of the ITSC in the stator windings of the IM was possible thanks to specially
prepared leads from the windings in each of the three phases of the motor. Leads from
the stator windings made it possible to make a short circuit in the range from 0-30 turns.
In the research, special attention was paid to metallic short circuits (Rg, =~ 0) due to their
destructive course.

The tested drive system with PMSM motor, shown in the RHS of the lower part of
Figure 4, consisted of two mechanically coupled machines with a power of 2.5 kW (tested
motor—Lenze MCS14H15) and 4.7 kW (loading machine—Lenze MCS14H32) powered
by industrial frequency converters by Lenze. The control of the tested motor, as well as
the regulation of the load torque values, was performed with the use of the VeriStand and
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Lenze Studio environments. Acquisition of the measurement data was carried out using
the NI PXI 8186 industrial computer equipped with a DAQ NI PXI—24472 measurement
card with high resolution.

Due to the technical limitations of the laboratory stand, during the tests, it was possible
to physically model failures only in one phase of the PMSM stator winding (up to 12 turns
of the B phase). Measurements of phase currents were carried out during the failure of up
to three shorted coils of the B phase with the sampling frequency of 8192 Hz. Phase current
and voltage signals were measured with LEM transducers. Monitoring of diagnostic signals
was performed with the use of a virtual measurement system developed in the LabVIEW
environment. Measurements of diagnostic signals were carried out for changes in the
frequency of the supply voltage in the range f; = 50-100 Hz and the load torque adjustment
in the range Ty = 0-TpN.

The design of the diagnostic system for faults in the IM and PMSM was carried
out using LabVIEW (by National Instruments, Austin, TX, USA; ver. 2018) and Matlab
(by MathWorks, Natick, MA, USA; ver. 2019a) environments. The use of Matlab in
neural calculations ensured the stability of the program and a significant reduction in
computation time. The acquisition of measurement data that constitute the CNN input
vector was performed in the LabVIEW environment. The entire diagnostic system required
the possibility of transferring information between LabVIEW and Matlab software.

4. Analysis of the Influence of CNN Structure on the Effectiveness of IM and PMSM
Diagnostic Systems

In order to identify the influence of the CNN structure on the precision of the diagnostic
system, the following studies were carried out:

e analysis of the impact of changes in the number of CONV and FC layers on the
effectiveness of CNN;

e analysis of the impact of the number of CONV filters on the precision of the
CNN network;

e assessment of the impact of the number of neurons in the FC layer and the declared
probability of neuron rejection on the precision of the CNN;

e influence of the activation function used: ReLU, clipped ReLU function, leaky ReLU,
hyperbolic tangent;

e  assessment of the influence of the rejection and pooling layers on the precision of CNN.

The analyses conducted included CNNs that were responsible for assessing the degree
of damage to the stator winding of the IM and PMSM. In view of the function of the CONV
layers, namely the search for the features of the input matrix, the first stage of the research
concerned the influence of the number of convolutional sets on the effectiveness of the
diagnostic system. The list of parameters of the structures used for the induction motor
and PMSM, respectively, is presented in Table 1.

In the use of CNN in the diagnostic process, the number of convolutional layers
of the network is indirectly forced by the number of features in the set, allowing for an
unequivocal determination of the belonging of the input matrix to one of the considered
classes. The structures considered in Table 1 operated on the information contained in the
phase current signals. As can be seen with the increase in the number of CONV layers,
and thus with the increase in the share of higher-order features in the final assessment of
the category, there is a clear increase in the precision of the network. Nevertheless, after
exceeding the four layers, further increase in the network efficiency is stopped, which is
observable in the applications for the two considered types of machines. The growth of
the CNN structure by successive sets of CONV layers affects both the final precision of the
system and the course of the training process (Figure 5). Due to the similar course of the
learning curves in the early stages of the training process and during the convergence of the
learning process, the figures also show zooms of characteristic points of the training process.
Due to this, a detailed analysis of the dependence between network parameters and the
dynamics of the training process and its final convergence can be done. A similar way of
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Figure 5. Influence of the number of convolutional layers on the precision of the diagnostic system—
learning curves: (a) induction motor; (b) PMSM.

The increased number of network layers results in an increase in the number of neural
connections, which, in turn, translates into an extended training process. However, as can
be seen in Figure 5, the ultimate precision of the lattice increases to a certain level with each
successive convolutional layer. Additionally, faster stabilization of the training process is
noticeable, both in the case of the IM winding damage diagnostic system (Figure 5a) and
PMSM (Figure 5b).

The waveforms of the average network efficiency value for randomly assigned
elements of the testing package shown in Figure 5 show that the use of more than
four convolutional layers does not significantly affect the precision of the network. This
is confirmed by the network efficiency values, calculated on the basis of responses to the
testing data, presented in Table 1. It is also worth noting that the analysis of the influence
of the convolution layer required the use of additional pooling layers, activation, and
normalization functions. However, these layers are not subject to training; therefore, their
impact on network performance is considered negligible. The attachment of successive
convolutional layers is related to the necessity of extracting symptoms of higher order
to facilitate the classification process. On the contrary, the size of the set of considered
features is related to the declared number of filters, in particular, CONV. In order to analyze
the effect of the number of filters, research was carried out on the CNN network with
three CONV layers while increasing the number of filters (Table 2).

Table 2. Effect of the number of CONV filters on CNN precision.

Number of Filters in a Successive Convolutional Layers

Induction Motor PMSM
Structure Precision Structure Precision
5-10-15 87.85% 10-20-20 85.50%
10-20-30 92.95% 20-30-40 87.76%
15-30-45 97.86% 30-40-60 86.63%
20-40-60 97.07% 40-50-80 88.10%
25-50-75 98.88% 50-60-100 88.11%
30-60-90 98.62% 60-70-120 87.88%
35-70-105 98.77% 70-80-140 87.64%
40-80-120 99.10% 80-90-160 88.44%
45-90-135 99.69% 90-100-180 88.10%

50-100-150 99.57% 100-110-200 88.24%
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The analysis of the precision of the network response to the testing data, presented
in Table 2 and Figure 6, shows a clear increase in CNN effectiveness while increasing the
number of filters in each network layer. The biggest change is observed in the case of the
IM damage detection system. The difference in precision between CNN structures with the
highest and lowest scoring efficiency is about 12%. Much smaller changes in precision due
to the increase in the number of filters are noticeable for the PMSM diagnostic system. In
this case, the difference in the determined efficiencies is approximately 3%. To show the
influence of the number of convolutional filters on the adaptation process of net weights,
Figure 7 presents selected training curves recorded during the CNN training process.
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Figure 6. Influence of the number of CONV filters on CNN precision.
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Figure 7. Influence of the number of convolutional filters on the precision of the diagnostic system—
learning curves: (a) induction motor; (b) PMSM.

As can be seen in Figure 7, the increase in the number of filters in the CONV layers
results in the stabilization of the learning curves with a gradually higher level of precision
for the IM and PMSM diagnostic systems. Furthermore, in the case of networks that
perform the PMSM stator failure classification task (Figure 7b), a much longer tuning of
the training process (initial slight change in the precision level) is noticeable than for the
induction motor. This phenomenon results from the incompatibility of the training process
parameters with the gradually increasing CNN structures. The assignment of the grid input
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matrix to one of the known categories on the basis of information about the features from
the convolutional sets is possible thanks to the use of fully interconnected layers. Therefore,
the next stage of research on the influence of the CNN structure on the precision of the
diagnostic system involved changing the number of these layers. The research was carried
out on the basis of a network with three convolution sets for both IM and PMSM. The test
results are summarized in Table 3.

Table 3. Effect of the number of fully connected layers on CNN precision.

Induction Motor PMSM
Structure Precision Structure Precision
1 layer—{16} neurons 98.39% 1 layer—{4} neurons 88.88%
2 layers—{32-16} neurons 99.44% 2 layers—{16-4} neurons 88.26%
3 layers—{64-32-16} neurons 98.21% 3 layers—{32-16-4} neurons 87.94%
4 layers—{128-64-32-16} neurons 97.57% 4 layers—{64-32-16-4} neurons 88.56%
5 layers—{256-128-64-32-16} neurons 99.27% 5 layers—{128-64-32-16-4} neurons 87.85%

Accuracy of CNN [%]
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Analysis of the summary of the approximate precision of the diagnostic system
(Table 3) and the shape of the learning curves (Figure 8) showed that increasing the number
of FC layers does not result in a significant increase in the CNN precision. Moreover, the
determination of the contribution of particular features of the input matrix to the assess-
ment of belonging to a given category can be successfully performed with the use of up
to two fully connected layers. As shown in Figure 8, during the course of the training
process, the learning curves coincide, while the stabilized level of precision of the network
for all the cases analyzed is very similar. Nevertheless, limiting the number of layers
to two avoids the situation where the response of the network depends mainly on the
classifier set. Therefore, when selecting the number of FC layers, attention should be paid
to the number of parameters in convolutional and classifying sets while taking into account
the essential role of feature extraction.
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Figure 8. Influence of the number of fully connected layers on the precision of the CNN network—
learning curves: (a) induction motor; (b) PMSM.

As shown in Table 3, networks with two hidden layers were characterized by the
highest level of precision, especially in the case of IM. In the case of PMSM, the differences
were not as clear, but the use of two FC layers limits the expansion of the network structure,
and increasing the number of these layers does not significantly improve the accuracy of
the network response. Therefore, for both considered diagnostic systems, only the effect of
the number of neurons in the first fully connected layer was analyzed since the number of
neurons in the output layer is predetermined by the number of categories analyzed by the
network (Figure 8a). Furthermore, due to the direct connection between the DROP and FC
layer, the influence of the declared probability of neuron rejection on the operation of the
developed diagnostic systems was checked (Figure 9b).
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Figure 9. Analysis of the effectiveness of the CNN network—learning curves: (a) the effect of the
number of neurons in the FC layer; (b) the effect of the dropout factor.

The analysis of the results presented in Figure 10a showed that increasing the number
of neurons in the FC layer did not change the precision value of the neural network. A
noticeable lack of changes in efficiency for the entire range of the number of neurons used
is observed in diagnostic systems for both types of electric motors. The results of the
research on the effect of the probability of rejection of neurons presented in Figure 10b
show that for a certain range of this parameter, the precision of the network increases. The
highest level of precision is achieved with a rejection rate value of approximately p < 0.5.
An excessive number of rejected neurons (p > 0.75) adversely affects the operation of the
network. However, it is worth noting that the main task of the DROP layer is to eliminate
the situation in which the state of one neuron of the network is strongly dependent on the
state of another neuron. Random deactivation of neurons in the transition between the
feature detector (convolution set) and the classifier ensures a faster course of the training
process, which is presented in Figure 10.

9 NN iniwioin i
— : ‘ ' ——
= & R T (S
z 70 o S — boeee-b. ZOOMB
G @ Ht O
s : : 3 i E
e |
Basic CNN 8 40 ffo- Basic CNN
Lack of droput layer ] Lack of droput layer
Average pooling layer :CJ 30 ff Average pooling layer
20
0 100 200 300 400 500 0 400 800 1200 1600 2000
Number of training epoch Number of training epoch

(a)

(b)

Figure 10. Influence of the PL and DROP layers on the precision of the CNN network—learning
curves: (a) IM; (b) PMSM.

The basic structure described in Figure 10 was adopted as a three-layer convolutional
network with an implemented rejection layer (p = 0.5) and a pooling layer based on the
‘maximum’ function (pooling max). The observations of the learning curves shown in
Figure 10 show that the use of the DROP layer reduces the dynamics of the training process.
However, the results obtained for the PMSM (Figure 10b) indicate the advantage of the
network with the rejecting layer. In this case, the network efficiency determined based on
the responses to the test data (with the dropout layer applied) was greater by less than 2%.
The use of a pooling layer based on the mean value of a given window results in a much
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lower level of precision of the diagnostic system. The summary of the values determined
for the effectiveness of the evaluation of the technical condition of the stator winding of the
IM and PMSM based on the CNN response to the testing data is presented in Table 4.

Table 4. Influence of CNN structure parameters on the precision of responses to test data.

Effectiveness of the Assessment of the Technical Condition of Stator Windings

0 200 400 600 800 1000 1200 1400 1600 1800 2000 |

Basic Without With Dropout Activation Function:
Network Dropout Layer Layer: Clipped ReLU Leaky ReLU Tanh
PMSM ~88.3% ~86.6% ~83.2% ~87.9% ~88.5% ~87.8%
™M ~99.2% ~99.6% ~91.8% ~298.5% ~99.2% ~99.6%

The last stage of the research on the impact of the network structure involved changing
the activation function. For this purpose, the operation of the network using the activation
functions in the form of a rectified linear function (ReLU), clipped ReLU, leaky ReLU, and
the hyperbolic tangent (Tanh) function was analyzed. The course of the CNN network
training process with different activation functions is presented in Figure 11.
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Figure 11. Influence of the CNN activation function on the precision of the diagnostic system—
learning curves: (a) induction motor; (b) PMSM.

As shown in Figure 11, the activation function used does not significantly affect the
course of the neural network training process. The effectiveness of diagnostic systems
is similar for all cases analyzed, which is additionally confirmed by the list in Table 4.
However, the use of the activation function in the form of a hyperbolic tangent is charac-
terized by greater dynamics of the learning process. It should be noted, however, that the
application of this function is more complex in terms of computation; therefore, the update
of the weighting factors is slower than when using the ReLU function or its variants.

In the next step, the influence of the training process parameters on the effectiveness of
the diagnostic system implemented on CNN networks was analyzed. Research was carried
out for networks containing three sets of convolutional layers with activation functions
of the ReLU type. The classifying part of the analyzed structures, however, contained
two fully connected layers and a rejection layer with a declared rejection probability of
0.5. According to the analysis of the literature presented in the Introduction, in the case of
well-known training data, it is recommended to use the SGDM method. For this reason,
the research was limited to the stochastic gradient with a momentum algorithm.

5. Analysis of the Impact of Training Process Parameters of CNN to the Effectiveness
of IM and PMSM Diagnostic Systems

In order to estimate the impact of the parameters of the CNN training process using
the CNN (using SGDM algorithm) on the precision of the diagnostic system, the following
studies were carried out:
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e the impact of changes in the number of training epochs on the precision of the diag-
nostic system of the stator windings of an IM and PMSM;

e analysis of the impact of the initial learning rate and the drop period on the course of
the convolutional network training process;

e  study of the influence of the momentum factor on the training process and the precision
of the CNN;

e  theimpact of the data mini-batch size on the performance of a CNN-based diagnostic system.

The first stage of the research included an analysis of the impact of changes in the
number of learning epochs on the final precision of the diagnostic system. For this purpose,
the network training process was carried out 30 times for a different number of training
periods declared. Then, for each of the CNNSs, the effectiveness of the category score
based on the response to the test packet was calculated. The results of the analyses for the
diagnostic systems for IM and PMSM are presented in Figure 12.
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Figure 12. Influence of the number of learning epochs on the precision of a diagnostic system.

The courses of dependence of the precision of diagnostic systems on the number
of training epochs presented in Figure 12 show that after reaching 400 and 1600 epochs,
respectively, for CNN-IM (CNN-based diagnostic system for IM) and CNN-PMSM (CNN-
based diagnostic system for PMSM), a clear stabilization of the precision level occurs. An
excessive increase in the number of learning epochs does not disturb the operation of
the network. Moreover, due to the use of the techniques of normalization, rejection, and
training based on a randomly created mini-batch of data, the risk of overmatching with
the training data is minimized. However, during the practical implementation of CNN, in
addition to analyzing the effectiveness of the network for training, validation, and final
testing data, it is advisable to observe changes in the course of the loss function in each
training epoch. Such an approach will make it possible to interrupt the learning process
after achieving the assumed precision or, more importantly, during a sudden increase in
the value of the loss function for validation data.

A particularly important parameter of the CNN training process, which ensures the
appropriate dynamics of the learning process and its convergence, is the initial value of the
learning constant (Figure 13a). Due to the inability to accurately determine the value of
this constant, the drop period technique is often used before starting the training process.
The study used a 5% decrease in the value of the learning constant for a variable period
(Figure 13c). In order to determine the impact of the learning constant and the period of
its decrease, both the change in the level of precision of the CNN (Figure 13a,c) and the
impact on the course of the training process (Figure 13b,d) were analyzed.
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Figure 13. Influence of CNN training process parameters on the precision of the diagnostic system:
(a) change of the initial value of the learning constant; (b) the course of learning curves during changes
of the learning constant—PMSM motor; (¢) changing the period of decline of the learning constant;
(d) the course of learning curves during changes of the learning constant decrease period—PMSM.

The research presented in Figure 13 shows that an initial value too high for the
learning constant results in a slight improvement in the effectiveness of the network in the
first epochs of the training process (Figure 13b). As the learning process progresses, the
effectiveness of the network improves significantly. The test results presented for 27 cases
(Figure 13a) show no significant influence of the initial value of the learning constant on
the final value of the precision of the neural network. This fact results from the application
of the drop of the learning rate technique (Figure 13c).

The analysis of the waveforms shown in Figure 13 shows that an increase in the
frequency (decrease in the number of epochs) of the weakening of the constant results
in an increase in the effectiveness of the system both when applied to IM and PMSM
(Figure 13c). However, as the step is reduced, the reduced dynamics of the training process
are noticeable, as shown by the flat sections of the learning curve in Figure 13d. The analysis
of the results presented in Figure 13 shows that the optimal solution to the problem of
the initial learning constant is to determine its overestimated value with the simultaneous
application of a small weakening period.

The SGDM algorithm, thanks to the application of the momentum factor, enables the
damping of the oscillation of the learning curves, as well as significantly accelerates the
convention. Moreover, the momentum factor allows one to determine the participation of
earlier gradients in the process of minimizing the assumed loss function.

Figure 14 shows the influence of the value of the momentum coefficient on CNN
precision and the influence on the training process. The research results presented in
Figure 14 clearly show the dependence of the convolutional precision of the neural network
on the declared momentum coefficient. The highest level of precision of the network was
obtained for the coefficient value equal to 0.95 (Figure 14a). Furthermore, the waveforms of
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the learning curves in Figure 14b show the stabilization of the training process at a much
higher level of precision.
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Figure 14. Impact of changes in the momentum factor on the precision of the diagnostic sys-
tem: (a) precision of the response to the elements of the testing package; (b) learning curves,
induction motor.

The lower precision level observed in Figure 14b for the momentum coefficient of 0.5 is
most likely due to being stuck at a local minimum. Increasing this parameter to 0.95 enables
us to go through the local minimum and further search for the global minimum of the
objective function. Taking into account the results of the research, as well as the examples
described in [64], when selecting the parameters of the training process, it is recommended
to determine the value of the momentum coefficient in the range of 0.5-0.95 and to observe
changes in the value of the loss function (convergence of the training process).

The idea of the CNN training process in accordance with the SGDM algorithm is based
on the determination of the approximate value of the gradient based on the average of
the gradients for samples from the mini-data packet. The elements of the mini-batch are
randomly selected with the same number of cases for each of the considered classes. On the
contrary, the number of samples, which is the size of a mini data packet, is generally a few
percent of the size of the training data packet. Note that the size of the mini-data packet
also determines the number of iterations in each training epoch. Therefore, increasing the
size results in a decrease in the number of iterations due to the need to present the network
of all training packet samples in each epoch. So as to assess the impact of the parameter
discussed, the effectiveness of CNN structures developed during changes in the size of the
minibatch was analyzed within the range of 10-250 (Figure 15).
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Figure 15. Influence of CNN training process parameters on the precision of the diagnostic system:
(a) response precision to the elements of the testing package; (b) learning curves—induction motor.
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Based on the results of the research presented in Figure 15, it can be concluded that
too large a mini-batch of data results in a decrease in the level of precision of the system
(Figure 15a), as well as a reduction in the dynamics of the training process (Figure 15b).
Although the small packet size requires an increased number of iterations, the process is
computationally easier, and convergence is achieved faster. The analyses show that the
developed structures were characterized by the highest level of effectiveness for mini-batch
sizes equal to 30 and 140 for IM and PMSM, respectively. Taking into account the sizes of
the training packages (1600 for the IM and 7200 for the PMSM), the sizes of minibatch used
accounted for approximately 2% of the training data. In practice, it is recommended to use
a size no greater than 5% of the dimension of the training data packet.

6. Conclusions

Based on the presented research on the impact of the CNN structure and parameters
and its training process on the fault diagnosis task of AC motor drives, the following
conclusions can be formulated:

- Despite many similarities in the construction of the stator windings IM and PMSM
motors, diagnostic systems based on CNN have different levels of precision. This
phenomenon is observable during the analysis of the learning curves of the CNN
training process. This fact results from the influence of the permanent magnets of
the PMSM rotor, especially when working with low load torque. The influence of
permanent magnets significantly limits the possibilities of direct processing of phase
current signals by CNN. Therefore, when designing CNN-based detection systems,
applications for IM and PMSM should be considered separately as systems with
different properties.

- The gradual increase in the number of convolutional layers results in an increase in
the network precision index, which results from the increasing share of higher-order
features in the final evaluation. However, the nature of these changes is true only for a
certain range of the number of convolutional layers where the higher-order features
contain useful diagnostic information.

- Excessive expansion of the network structure significantly extends the training process
while not improving its effectiveness; as the number of filters increases, the precision
of the convection network is clearly improved, which is the result of the increased
number of characteristic features for individual categories. However, as with the
declaration of the number of convolutional layers, the improvement in the degree
of precision due to the increase in the number of filters only takes place up to a
certain level.

- Increasing the number of fully interconnected layers, as well as the number of neurons
in individual layers, does not significantly affect the precision of the convolutional
structure. As has been shown in the research conducted, the use of only two layers
ensures a high level of precision in determining the belonging of the input matrix to
one of the considered classes.

- The use of a rejection layer ensures that the generalization properties of the neural
network are maintained, which results in an increase in the precision of the system for
unknown samples. Moreover, the rejection layer should be located primarily in the
places of the structure with the highest number of neural connections (at the transition
between the convolution and the classification set). However, the declared probability
of rejection should ensure the convergence of the training process. In most of the CNN
implementation examples described, this value is 0.5.

- The activation functions of the CNN network do not play a key role in the ultimate
precision of the system. In the overwhelming majority of cases, deep networks use
activation functions of the ReLU type or its variants. In addition, the use of sigmoidal
functions makes it possible to achieve high precision in diagnostic systems. However,
attention should be paid to the fact that the use of linear functions instead of sigmoid
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ones is aimed at simplifying the computational process of a significantly extended
neural structure.

- The selection of the number of learning epochs should take into account the number of
iterations that ensure stabilization of the value of the loss function determined for the
learning and testing data. Note that with each teaching epoch, the waveforms of the
loss functions calculated for the teaching and testing data should have a similar shape.
At the moment of the emergence of gradually larger differences in the waveforms
(bifurcation of waveforms) or the complete lack of changes in the value of the loss
function, the process should be stopped, and its parameters should be improved.

- The use of the technique of periodic weakening of the learning constant eliminates to
some extent the problem of precise adjustment of the initial learning constant. The
cyclical reduction of the constant makes it possible to adjust the constant during
the training process, which is noticeable in the form of flat fragments of the loss
function. Proper selection of the number of epochs followed by the reduction of the
constant (most often, the new value is 80-95% of the value before the update) enables
a significant reduction of the tuning time of the learning constant. The research carried
out has shown that the application of the SGDM algorithm with the declared value
of the angular momentum coefficient in the range of 0.80-0.95 results in an increase
in the precision of the convolutional network. Moreover, increasing the degree of
participation of previous clients in the process of searching for the minimum of the
objective function reduces the risk of stalling the training process resulting in a lack of
a decrease in the value of the loss function; the selection of the size of the training data
mini-batch should take into account the number of all cases included in the training
packet. The research showed that despite the different sizes of the training packets
for IM and PMSM, the highest level of precision was achieved for the minibatch size,
which was about 2% of the size of the training packet.
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Appendix A

Table Al. Induction motor parameters.

Name of the Parameter Symbol Value Units
Power Py 3000 W]
Torque TN 19.83 [Nm]
Speed Ny 1445 [r/min]
Stator phase voltage Usn 230 [V]
Stator current Lin 6.8 [A]
Frequency fiN 50 [Hz]

Pole pairs number 2 2 [-]
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Table A2. PMSM parameters.

Name of the Parameter Symbol Value Units
Power Py 2500 W]
Torque TN 16 [Nm]
Speed nN 1500 [r/min]
Stator phase voltage Usn 325 [V]
Stator current LN 6.6 [A]
Frequency fiN 100 [Hz]
Pole pairs number Pp 4 [-]
Number of stator winding turns Ns 2 x 125 [-]
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