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Abstract: The increasing integration of renewable sources into distributed networks results in multi-
ple protection challenges that would be insufficient for conventional protection strategies to tackle
because of the characteristics and functionality of distributed generation. These challenges include
changes in fault current throughout various operating modes, different distribution network topolo-
gies, and high-impedance faults. Therefore, the protection and reliability of a photovoltaic distributed
network relies heavily on accurate and adequate fault detection. The proposed strategy utilizes the
Variational Mode Decomposition (VMD) and ensemble bagged trees method to tackle these problems
in distributed networks. Primarily, VMD is used to extract intrinsic mode functions from zero-,
positive-, and negative-sequence components of a three-phase voltage signal. Next, the acquired
intrinsic mode functions are supplied into the ensemble bagged trees mechanism for detecting fault
events in a distributed network. Under both radial and mesh-soft normally open-point (SNOP)
topologies, the outcomes are investigated and compared in the customarily connected and the island
modes. Compared to four machine learning mechanisms, including linear discriminant, linear sup-
port vector mechanism (SVM), cubic SVM and ensemble boosted tree, the ensemble bagged trees
mechanism (EBTM) has superior accuracy. Furthermore, the suggested method relies mainly on
local variables and has no communication latency requirements. Therefore, fault detection using the
proposed strategy is reasonable. The simulation outcomes show that the proposed strategy provides
100 percent accurate symmetrical and asymmetrical fault diagnosis within 1.25 ms. Moreover, this
approach accurately identifies high- and low-impedance faults.

Keywords: distributed network; distributed generation; fault detection; protection scheme; protection
strategy; high impedance fault; soft normally open point; variational mode decomposition; ensemble
bagged trees method

1. Introduction

Distributed generation is increasingly being incorporated into the distribution grid
because it improves the distribution network’s effectiveness, stability, and reliability. Dis-
tribution generation generates electricity by combining numerous small-scale sustainable
energy sources [1]. Distribution generation enables customers to develop their own energy
and export surplus electricity into the distribution network (DN) [2]. In 2050, solar panels
are predicted to provide around 20% of the total energy production. In terms of global
installed capacity, photovoltaic generation ranks third among renewable energy sources [3].
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Therefore, photovoltaic-based distribution generation injection into the electricity grid is
an up-and-coming sustainable energy solution.

Additionally, distribution generation provides fault current dependent on generator
size, type, location, and DN configuration [4]. The operational conditions of distribution
grids have become more complex because of their flexible operation and quick response
to consumer demand [5]. DN supports both operation modes: the typically connected
and island. Island mode (ISM) contributes to the malfunctioning of DN protection [6];
due to the operating mode change in DNs, changes in the direction of the current and
magnitude offer significant challenges to the fault diagnosis process. Additionally, inverter-
interfaced distributed generators are particularly vulnerable to voltage fluctuations. In
industrial systems, voltage dips are involved in 92 to 98 percent of all malfunctions in
the DN [7]. Consequently, developing voltage-based protection technique operating in
different operating modes are important for the safe operation of DN.

Identifying faults involving high impedance is a major challenge for distribution
network protection designers. High-impedance fault (HIF) occurs when damaged electrical
wires connect with high-impedance materials, such as concrete-base, grass-land, sand, or
gravel [8]. Since the HIF has a relatively limited fault current compared to a low-impedance
fault (LIF) [9], fuse, over-current relay, and distance relay are inadequate for fault detection.
Energized conductors are accompanied by an arc when HIF occurs, even though the low
HIF current will not destroy DN devices. Nevertheless, the arc poses a critical risk to
human life and electrical equipment because it can cause fire and electrical shock [10]. To
prevent network damages, DN fault diagnosis is vital. Due to these aspects, HIF needs to
be identified in DNs efficiently and accurately.

SNOP could be used to improve DN reliability in network malfunction and transient
disturbance [11]. Additionally, SNOP can maintain voltage regulation, reactive power
compensation, and active-power flow management under normal operating conditions [12].
Furthermore, SNOP offers reliability by distributing power among adjacent feeders, and it
delivers advantages for mesh networks [13]. The transition from a radial DN topology to a
mesh SNOP can impact the fault detection process during the implementation of SNOP.

Recently, several methods for detecting faults in DNs have been developed. In such
an effort, Y. Bansal and R. Sodhi used a Tellegen theorem and phasor measurement unit
to diagnose the fault in DN [14]. However, the communication channel is the basis of this
technology. In the meantime, Mishra and Rout proposed a differential protection mecha-
nism based on the Hilbert-Huang transform and machine learning techniques (MLTs) [15].
The Hilbert-Huang transform involves feature extractions of the current signals and zero
sequences. Mishra and Rout also found that the extreme learning technique outperformed
other machine learning techniques such as the SVM and the Native Bayes classifier. In [16],
Chaitanya et al. proposed a differential protection strategy by employing VMD and Hilbert
transform. This technique requires a predefined threshold value to identify defects.

In contrast, the authors in [17] presented a protection relay that depends on voltage
measurement to protect DN. The suggested relay algorithm utilises power and voltage
sensitivity computations to diagnose faults in specified protective zones. However, a
communication link is required for the techniques presented in [15–17]. Using the negative-
sequence component of the impedance angle, Dubey and Jena [18] in 2020 suggested a
differential protection scheme. This method does not validate symmetrical fault diagnosis
and ISM. In addition to the cost, the precision of differential protection-based strategies is
affected by loads in DN. Differential protection strategies fail when communication channel
failure occurs. Consequently, the suggested method utilises only local data.

Many research papers have established reliable fault detection technologies. A strategy
depending on wavelet-singular entropy and a fuzzy-inference system was presented by [19]
to detect faults. This work extracted the positive-sequence component and three-phase
current signal features using wavelet singular entropy. These signal features represented the
inputs for the fuzzy-inference system. Subsequently, the indexes of a fuzzy inference system
are determined by using fuzzy sets and fuzzy rules. In order to identify and categorise
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faults in normal connected mode (NCM), the indices are transformed into perceptual
variables. Based on wavelet-transform and SVM, Ahmadipour et al. introduced a fault
detection method [3]. Wavelet transforms are used to identify prominent features in a
voltage signal. Next, these prominent features are used for both training and testing the
SVM to classify and detect faults. Nevertheless, this strategy did not consider the effects of
three-phase faults, ISM, and HIF. On the contrary, Srinivasa Rao et al. presented a neural
network with an adaptive evolutionary mechanism and wavelet decompositions with
cascade SVM for fault detection and classification in DN [20]. Hichri et al. presented a
mechanism for fault diagnostics using genetic algorithm and neural networks [21]. The
genetic algorithm method is employed to select the best features and the neural network is
used for fault detection. The effects of ISM were not taken into account by both techniques
mentioned in [20,21].

Several strategies for identifying HIFs in a distribution grid have been developed
recently. The fuzzy logic methodology was used by Vyshnavi and Prasad to identify
HIF in DN Prasad [9]. However, this strategy did not consider the impact of ISM and
distribution generations. For HIF detection in smart grids, researchers in [22] implement
a wavelet transform in combination with an extreme-learning machine. This protection
strategy depends on extracting high-frequency components from three-phase current
signals on both ends of the power line, which needs a highly dependable communication
link. Whilst, Roy and Debnath presented a protection strategy in order to detect HIFs based
on the wavelet transform for evaluating the power-spectral density [23]. Nonetheless, the
threshold value is critical to the performance of this strategy. The detection time is affected
by the threshold values. In the meantime, Manohar et al. suggested the least squares-
Adaline technique and improved SVM to identify and categorize HIF in medium-voltage
DN [24]. This strategy did not take into account the influence of SNOP operation. Xiao et al.
proposed a neural network and decision tree approach for detecting HIF by employing
the transient zero-sequence component of the current signal [25]. This strategy does not
determine the effects of ISM and SNOP operation. Forouzesh et al. employed SVM to detect
the faulty line in mesh DN using inter-harmonic injection [26]. However, this technique is
verified only on ISM. Recently, the improved Hilbert-Huang transform and the ensemble
bagged-trees approach were proposed by Nsaif et al. to detect and classify faults in DN [27].
This approach depends on a three-phase current signal. Their findings suggested that HIF
can be efficiently and precisely identified by employing sophisticated algorithms.

A comparison between various existing fault detection approaches is tabulated in
Table 1 in which there are a few existing approaches that are reasonable for DN. Four
approaches are shown to require an extensive communication link. Only one technique is
capable of detecting all types of faults (i.e., single-line to ground, double-line, double-line to
ground, three-line, and three-line to ground). In addition, only three methods are capable
of detecting the HIF. Furthermore, only three approaches can operate in both NCM and
ISM. Several approaches do not consider the effect of the mesh topology of DN.

In this paper, digital signal processing and MLT are presented to identify faults in low-
voltage DN. Local measurements of the voltage signal are processed using signal extraction
techniques to identify hidden features. MLT is applied to prevent an insufficient predefined
threshold value, which has a substantial influence on the detection time and precision.
Due to the variational mode decomposition (VMD) technique surpassing empirical-mode
decomposition in non-stationary signals mathematically, VMD proposed extracting hidden
features. Subsequently, a supervised MLT technique known as the ensemble bagged-
trees method (EBTM) was utilised in order to improve detection accuracy. The major
contributions of the presented strategy are highlighted as:

• Accurate detection of all types of faults, including symmetrical and asymmetrical
faults in DN by utilising only local input variables. The suggested method provides a
cost-effective technique for protecting DNs when compared to methods that rely on
established communication channels.
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• Consideration of the impact of operating modes changing from NCM to ISM. Protec-
tion strategies that operate primarily during NCM are inadequate during ISM due to
the limited amplitude of the fault current. In contrast, the proposed strategy delivers a
high accuracy throughout a diverse range of operation modes.

• Consideration of the influence of high impedance faults on the suggested strategy.
Consequently, the HIF has a significantly lower fault current as compared with LIF.
Traditional protective strategies are insufficient for identifying HIF. Nevertheless, the
proposed strategy successfully identifies LIF, and HIF.

• Consideration of the influence of the mesh-SNOP in the proposed strategy. The pro-
posed technique protects DN effectively during both radial and mesh-SNOP topolo-
gies, despite the fact that the deployment of SNOP has the potential to influence the
fault detection process by altering the DN topology.

• Development of a new voltage-based protection strategy by using VMD, and EBTM.
VMD is useful for addressing non-stationary signals. Moreover, the suggested EBTM
technique is contrasted with four conventional machine learning algorithms that are
trained and evaluated by employing the same dataset as EBTM. EBTM can identify
faults with a high degree of accuracy.

This paper includes five main sections. The methodology is presented in Section 2.
Subsequently, a brief summary of the system description and distribution network models
is provided in Section 3. Results and discussion are presented in Section 4. Finally, Section 5
illustrates the conclusions.

Table 1. Comparison between various existing fault detection approaches.

Refs. Existing Approaches for
Fault Detection Contribution/Key Findings Research Gaps

[17] Active power differential and voltage
sensitivity computations

Detect and identify fault in
both operation mode

Double-line to ground, and three-line to
ground faults, required a communication
link, and costly

[18]
Negative-sequence component of the
impedance angle, differential
protection

Detect LIFs and HIFs
Three-line, three-line to ground faults,
required a communication link, costly,
ISM, and symmetrical fault

[28]
Time-time transform, deep belief
network, phasor measurement unit,
and global positioning system

Diagnose the fault accurately
and quickly. Required a communication link, and costly

[23] Wavelet transform, power spectral
density and a threshold value Detect and identify HIFs Three-line to ground fault, mesh

topology of DN, and ISM

[29] CIGRE benchmark parameters and
communication link Detect LIFs

Three-line fault, mesh topology of DN,
HIF, required a communication link, and
costly

[30] Differential zero sequence component
of current signal, and Kalman filter

Identify faulty feeder
(single-line to ground) Mesh topology of DN, and ISM

[25]

Transient zero-sequence component,
neural network (one dimensional
variational prototyping encoder), and
decision tree algorithm

Identify the HIFs (single-line
to ground) and non-HIFs ISM, and Mesh topology of DN

2. Methodology

In this portion, the presented mechanism is described in detail. The VMD is employed
to extract voltage signal characteristics. In addition, fault identification is accomplished by
the implementation of EBTM.

2.1. Variational Mode Decomposition

VMD is deployed to extract the features in the time-frequency domain, which has
several benefits, including being self–adaptive, not having an impact of mode mixing,
and being insensitive to noise. Decomposing multi-component signals, identifying side
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bands, extracting intra-wave features, and handling with noise robustness are all aspects
where the VMD outperforms the empirical-mode decomposition [31]. Consequently, VMD
was utilised rather than empirical-mode decomposition to extract signal features for the
purpose of this paper.

VMD is a distinct, non-recursive, fully intrinsic, and adaptive signal processing ap-
proach that breaks a signal into sub-signals, called intrinsic-mode functions (IMFs) [32].
The VMD algorithm divides a signal Y(t) into a specific number of IMFs. Every IMF signal
has a band-limited bandwidth. Differences in sparsity features are used to distinguish
between the modes, while the input signal is generally fully reproduced. The IMFs are
constructed in the form of a sinusoidal waveform function.

Yk(t) =
K

∑
k=1

Mk(t) cos θk(t) (1)

The number of modes, denoted by K. Yk(t) are IMFs, Mk(t) are positive-envelope of
IMFs, and θk(t) are represent the non-decreasing phase. The reproduction of an original
signal by deconstructing modes has a specific sparsity characteristic. Particularly, the
preponderance of each mode rotates around the fundamental frequency [31]. In fact, the
IMFs are the re-production of varying amplitudes of substantial disruptions in the original
signal caused by the fault. The original signal can be reconstructed by combining all of the
IMFs. The bandwidth and centre frequency of every IMF can be calculated by continually
evolving the best solution to a variational problem using a steady optimization method.
The decomposition problem for any signal can be stated as:

L({Mk}, {wk}, λ) = α∑
k

∥∥∥ d
dt

[(
δ(t) + j

πt

)
∗Mk(t)

]
e−jwkt

∥∥∥2

2
+

∥∥∥∥ f (t)−∑
k

Mk(t)
∥∥∥∥2

2

+

〈
λ(t), f (t)−∑

k
Mk(t)

〉 (2)

where wk denotes the central angular frequency, δ represents the dirac-distribution, ∗ repre-
sents the convolution, j denotes the imaginary component with a value j2 = −1, α repre-
sents the quadratic penalty-term, and λ denotes the Lagrangian multiplier (LM). Recon-
structing the original signal f (t) is possible by combining all modes. Implementing the
alternating direction approach of multiplying, Equation (2) can be successfully minimised.
In the frequency response, the relevant updated centre frequency and assessed modes are
displayed as follows:

M̂n+1
k (w) =

f̂ (w)− ∑
i<k

M̂n+1
i (w)− ∑

i>k
M̂n

i (w) + λ̂(w)
2

1 + 2α(w− wk)
2 (3)

∑
k

∥∥∥M̂n+1
k − M̂n

k

∥∥∥2

2∥∥M̂n
k

∥∥2
2

< ε (4)

Equations (3) and (4) describe the mathematical strategy for updating the modes and
their centre frequencies based on the number of selected modes (n), where M̂n+1

k (w) and
wn+1

k demonstrate the magnitude and centre frequency of the next mode (n + 1) of the
kth level of decomposition. f̂ denotes the Fourier transform of f . ε denotes an adequate
tolerance rate. The LM is updated as,

λ̂n+1(w) = λ̂n(w) + τ

(
f̂ (w)−∑

k
M̂n+1

k (w)

)
(5)
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where τ represents the LM update rate. The iteration number is raised, and the modes
are constantly being updated by the algorithm, centre frequencies, and LM until the
convergence is attained. In this article, IMF mode-3 was employed because it fulfilled the
design criteria.

2.2. Sliding-Window Mechanism

Before extracting fault features, one must preserve the real-time characteristics of the
signals via a sliding window analysis technique. Therefore, VMD needs to specify the
quantity of signal length to guarantee an accurate IMF output. Although time-consuming,
the sliding window analysis technique reduces the negative effects of data processing,
which minimises the impact induced by the data processing. With this process, a fixed-
length sample can be made by sliding a fixed-length window over a specific time. The
selection is continuously updated throughout the windowing process. This way, the VMD
data can be accurately acquired and features extracted [5]. As a consequence, the data for
VMD can be obtained quickly. Moreover, the functionality of the windowing mechanism
can be enhanced by selecting the appropriate sliding window dimensions.

2.3. Ensemble Bagged-Trees Method

In general, the MLT can be classified into three types: supervised, semi-supervised,
and unsupervised learning. Supervised machine learning is one of the most commonly
used classification techniques. In the training function, training errors are used to achieve
classification capability. This closed-loop feedback has the potential to increase MLT
classification accuracy [33]. Thus, this project used supervised MLTs as the base learner for
the EBTM.

The ensemble learning strategy requires three primary phases for implementation.
The first phase is adjusting training datasets and developing models using various learning
methods. The second phase is selecting the members, which only involves choosing models
that can make predictions. In the third phase, defined as the member combining phase,
the output from multiple classifiers is aggregated into one final prediction. Furthermore,
three stages are required in the task, and every step requires numerous classifiers. Firstly,
various perspectives are explored to integrate classifiers. Secondly, cooperating classifiers
are integrated by utilising one or multiple perspectives. Thirdly, the selection of classifiers
based on several criteria including the deployment of basic ensemble approaches. By com-
bining the results of several classifiers, designers utilise several basic ensemble approaches,
such as the average, majority-voting, weighted-average, and weighted majority voting, to
make a final accurate prediction. The three basic types of ensemble learning strategies for
deploying machine learning classifiers are bagging, boosting, and random subspace [34].
The EBTM was proposed to address the classification problem in this project.

Bagging is a statistical method commonly known as bootstrap aggregation. There are
two essential advantages of utilising bagging. First, by developing multiple classifiers with
a fixed bias and averaging the outcomes, variance is dismantled, and model overfitting
is minimised. This method is extremely effective when the input characteristics have
a considerable variation and a minimal bias level. Second, bagging produces multiple
bootstrap sets from the training data, trains the data with a classifier, and then combines
the outputs of each model with a convenient method, e.g., majority voting [35]. The EBTM
algorithm is conducted using the procedures mentioned in Algorithm 1.
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Algorithm 1. Ensemble bagged trees Algorithm.

1. Input: Data Set TR = {(x1,y1),(x2,y2), . . . ,(xn,yn)};
2. Base learning algorithm L;
3. Number of learning rounds R.
4. Process: for r = 1, . . . , R;
5. TRr = Bootsrap(TR);
6. hr = L(TR);
7. end

8. Outputs: H(X) = argmaxy∈Y
R
∑

r=1
l(y = hr(x))

As shown in Algorithm 1, the algorithm starts by preparing the input using data set
TR, specifying the base learning algorithm L and the number of learning rounds R. Then,
the process phase involves generating a bootstrap sample from the data set and training a
base learner for iteration from 1 to R. Finally, the output can be determined by applying the
argmax function where the value of l(a) is ‘1’ if it is true and ‘0’ otherwise.

2.4. Proposed Method for Fault Detection

The proposed fault detection technique using VMD and EBTM is demonstrated as
in Figure 1. The sequence analyser is utilised to compute zero-, positive-, and negative-
sequence components of a three-phase voltage signal. Next, IMFs (mode-3) are extracted
using VMD to detect the fault. Hence, the signal analyser in MATLAB’s signal-processing
toolbox was used to identify the IMF mode. Finally, all IMF (mode-3) are employed for
fault detection in DN using EBTM. Figure 2 depicts the overall flow chart of the proposed
technique for identifying faults in DN. The proposed method consists of four phases. In
the first phase, the three-phase voltage signal is used to compute the zero-, positive-, and
negative-sequence components. After manually selecting a sliding window size, the sliding
window mechanism is applied on zero-, positive-, and negative-sequence components in
the second phase. Next, VMD is employed to extract IMF (mode-3) in the feature extraction
phase. Lastly, an MLT is used to distinguish between healthy and faulty DN conditions in
the detection phase.

2.5. Machine Learning Techniques Performance in Fault Detection

This section illustrates how the performance of an artificial intelligence (AI) technique
is evaluated using VMD based on IMF mode-3. This framework examines and compares
five AI techniques for fault detection: linear discriminant, linear SVM, cubic SVM, ensemble
boosted tree and EBTM.
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Indeed, accuracy is a statistical criterion employed to evaluate the efficiency of MLTs.
Accuracy evaluates the reliability between expected and normal situations for both healthy
and faulty events concurrently. It can be determined utilising Equation (6).

∑ (X̃ +
−̃
X)

∑ (X +
−
X)

(6)

where X̃ and
−̃
X are the predicted faulty and healthy events. Moreover, X and

−
X denote

the actual faulty and healthy events, respectively. In addition to accuracy, the suggested
approach has been evaluated on various metrics, including recall, precision, and F1-score.

Recall: recall standard for classifying fault events is the percentage of fault events that
the model classifies correctly (Tp) to the total number of classification events in the testing
set [36]. The total of classification fault events that have been classified incorrectly are
considered false negatives (Fn). When the recall metric has a high value, it means that only
a small amount of data has been assigned to the inaccurate class. The recall is computed
by using

recall =
Tp

Tp + Fn
(7)

Precision: this criterion, computed by Equation (8), measures the proportion of cor-
rectly classified events related to the sum of Tp and the total number of inaccurate fault
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events assigned to the class Fp. A high accuracy criterion value denotes that there is minimal
misclassification data in a certain class.

precision =
Tp

Tp + Fp
(8)

F1-score: This criterion can be achieved by using the recall and precision criterion. This
score is found by using Equation (9). The F1-score provides a more feasible depiction of how
the classifier model works on all classes in the data set compared to the accuracy criterion.

F1 = 2
recall× precision
recall + precision

=
Tp

Tp + 0.5(Fn + FP)
(9)

To ensure that all available data is used effectively, a re-substitution validation method
is employed throughout the training and testing of all MLTs in this article. Furthermore,
the training data consisted of 408 different instances of dynamic operating modes that were
trained in MATLAB using supervised machine learning in classification learner application.
The NCM and IsM modes of operation are both covered in the training data. Furthermore,
all possible fault types, including single-line, double-line, double-to-ground, and three-line
faults, were taken into account. Additionally, the HIFs and LIFs were investigated along all
fault types in both modes of operation. The fault impedance is specified in 0.01, 10, 80, 100,
500, and 1000 Ω for LIF and HIF, respectively. The fault is developed at 0.2 s, near bus-5, as
depicted in Figure 3. Additionally, the condition of SNOP on the distribution grid and its
effect on the suggested protection process is considered.
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3. System Description and Distribution Network Models

A low-voltage distribution network with 11, and 0.4 kV voltage level is simulated
and modelled in MATLAB Simulink environment, as shown in Figure 3. The distribution
network is supplied by two inverters-interfaced distribution generations. Furthermore, the
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inverters-interfaced distribution generations are linked to the distribution network through
bus six, and seven, respectively. The first step-down transformer 11/0.4 kV is coupled with
the network between bus five and six. The second step-down transformer 11/0.4 kV is
linked between bus four and seven.

The distribution grid is comprised of two photo-voltaic panels, two battery banks, two
inverters, two step-up transformers, and five distributed loads. As depicted in Figure 3, the
circuit breaker is utilised to transit a distribution grid topology from radial to mesh-SNOP.
Table 2 tabulates the distributed grid component specifications.

Table 2. The distributed grid component specifications.

No. Component Specification

1 Photo-voltaic panels (11 and 21) 2 Parallel strings, 28 series-connected modules per
string, irradiance 1000 W/m2

2 Inverters (1 and 2)

12.5 kVA, 0.4 kV, 50 Hz, switching frequency 5 kHz
Filter:

Series-Inductance 4.6 mH
Series-Resistance 0.4596 Ω

Shunt-Capacitance 0.1102 µF
3 Battery banks (11 and 21) Lead-Acid, 980 V, 2.7 Ah
4 Transformers (TR1, and TR2) 11/0.4 kV, 24 kVA, 50 Hz, D11/Yn
5 Loads (61 and 71) 5 kW, 0.4 kV, 50 Hz
6 Load (21) 10 kW, 11 kV,50 Hz
7 Loads (11, and 12) 8 kW, 11 kV, 50 Hz

4. Results and Discussion

As indicated previously, the characteristic was extracted from three phase voltage
signals by VMD. VMD can decompose the signal into multiple modes, although a high
level of deconstruction is preferred to acquire the maximum number of dependable signal
features. Additionally, a higher decomposition level has several negative sides. The higher
number of modes increases the computing burden, which may cause in a longer reaction
time for the relay. A rise in the relay response time could pose a serious hazard to the
electrical grid. Consequently, the number of decomposed modes is limited to five. Unlike
other VMD implementations, it is not mandatory to record the whole signal information
in this article because VMD was performed within the MATLAB/Simulink environment.
Each signal must be adapted to a moving window-based signal to precisely operate VMD
within the MATLAB Simulink environment. In addition to the sampling frequency, the
sample size is a vital factor to consider. For the proposed moving window method to work
effectively, it is necessary to precisely identify the size of the samples being used. As a
consequence, a 500-samples-per-moving-window approach is being utilised to establish
a balance between the need for minimal computing time and the requirement for the
extraction of comprehensive features based on the investigation. In this study, the VMD
algorithm was used to deconstruct five different IMFs, as shown in Figure 4. The sample
time interval for the discrete-simulation type is stated as 2.5× 10−6 s. IMFs extracted by
VMD technique during the single-line to the ground on phase A in ISM are shown in
Figure 4. After a comprehensive investigation of all types of DN faults, IMF (mode-3) was
used to extract features from zero-, positive-, and negative-sequence components of the
voltage signal. Subsequently, the data is collected for the training process. As demonstrated
in Figure 5a,b, the IMF mode-3 feature of the negative-sequence component was variant
from 27.8 to 26.95 during ISM-LIF whilst initiating the SNOP respectively. Likewise, the
IMF mode-3 feature of the zero-sequence component changes from 13.24 to 13.17. While
the IMF mode-3 feature of the positive-sequence component slightly changes from 0.001 to
0.0005. Figure 5c,d shows how the IMF mode-3 feature of the negative-sequence component
during HIF alters from 27.85 to 26.99 when SNOP is initiated. Similarly, the IMF mode-3
feature of the zero-sequence component varies from 13.35 to 13.28. Thus, the IMF mode-3
feature of sequence component signals during HIF surpasses LIF. Additionally, initiating
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the SNOP in the distribution grid reduces the IMF mode-3 feature of sequence component
signals during both LIF and HIF. The functionality of MLTs was evaluated in three different
operation modes: NCM, ISM, and dynamic operating mode. Moreover, there are four
different topologies used in the training scenario: radial with NCM, mesh-SNOP with
NCM, radial with ISM, and mesh-SNOP with ISM.
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Figure 5. IMF mode-3 extracted by VMD technique in double-line to the ground on phases AB in
ISM (a) LIF; (b) LIF with the SNOP; (c) HIF; (d) HIF with the SNOP.

4.1. Normal-Connected Operation Mode

Due to the mismatch in fault current magnitude between NCM and ISM, it is chal-
lenging to maintain a protection solution with a constant threshold value. The outcomes of
five MLTs for the radial topology with NCM are stated in Table 3. In total, 132 different
cases were used in a distribution grid with radial topology to evaluate the protection
functionalities of the MLTs. Furthermore, HIF and LIF are initiated in NCM at different
fault locations. The findings showed that both linear discriminant and ensemble boosted
tree method have an accuracy rate of 69.7%, which is the lowest accuracy of the five MLTs.
While the accuracy rate of the linear SVM technique is found to be 78%. However, the
cubic SVM performed slightly better and acquired an 83.3% accuracy rate. The best result
is obtained from the EBTM classifier with an accuracy of one hundred percent.

Table 3. Accuracies acquired by several MLTs.

MLTs

Accuracy %
NCM IsM Dynamic

Radial Mesh-SNOP Radial Mesh-SNOP Radial and
Mesh-SNOP

Linear Discriminant 69.7 69.7 97 97.7 90.2
Linear SVM 78 78 98.5 98.5 90.2
Cubic SVM 83.3 83.3 98.5 98.5 90.2

Ensemble Boosted tree 69.7 69.7 69.7 69.7 90.2
EBTM 100 100 100 100 100

Changing NCM-DN topology from radial to mesh-SNOP can influence the perfor-
mance of five MLTs owing to the imbalanced power distribution in the feeder. The MLTs
have been evaluated for distribution grid protection with 132 test cases in a mesh-SNOP
topology. Additionally, HIF and LIF are initiated using a mesh-SNOP structure with NCM
at different fault locations. Figure 6 depicts a comparative evaluation of the performance
of five MLTs used in this research under radial and mesh-SNOP throughout NCM-DN.
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It has been observed that both linear discriminant and ensemble boosted tree technique
provides the lowest rates of accuracy with 69.7%. While the linear SVM, and cubic SVM
technique accuracy rates are found to be 78, and 83.3%, correspondingly. Conversely, it has
been discovered that EBTM can achieve the highest possible accuracy of 100%.
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Figure 6. Comparative evaluation of the performance of five MLTs used in this research under radial
and mesh-SNOP throughout NCM-DN.

4.2. Island Operation Mode

Conventional over-current relays could have significant relaying challenges because of
the dynamic behaviour of the operating conditions. Table 3 presents the outcomes obtained
by five MLTs in IsM with radial topology. In total, 132 cases in a radial topology were
used to test the protection capabilities of the MLTs. It has been observed that the ensemble
boosted tree method achieved a 69.7 percent accuracy, which is the lowest in comparison to
the other four MLTs. The linear discriminant provided an accuracy rate of 97%. In contrast,
the accuracy rate of the linear SVM, and cubic SVM techniques are observed to be 98.5%.
Our investigative work demonstrated that the proposed EBTM can achieved the ideal
accuracy of 100 percent.

Owing to the dynamic behaviour of the operating conditions, traditional over-current
relays might have a considerable relaying issue. The performances of five MLTs inIsM are
given for mesh-SNOP topology in Table 3. The DN protection abilities of the MLTs have
been tested utilizing 132 cases in a mesh-SNOP topology. HIF and LIF are tested in mesh-
SNOP topology with IsM in different fault locations. Figure 7 illustrates a comparative
evaluation of the performance of five MLTs used in this investigation under radial and
mesh-SNOP throughout the IsM-DN. It was discovered that the ensemble boosted tree
only attained an accuracy of 69.7 percent, which is the lowest rate of accuracy achieved
as compared with the other four MLTs. The linear discriminant provides an accuracy
rate of 97.7%. While, the accuracy rate of both the linear SVM, and cubic SVM are found
to be 98.5%. In contrast, the proposed EBTM reached the substantial ideal accuracy of
100% accuracy.

4.3. Dynamic Operation Mode

The efficiency of five MLTs is evaluated under the NCM and IsM in this section. In
addition, radial and mesh-SNOP topologies are examined to determine the best approach
for achieving high accuracy. The distribution grid protection capabilities of the MLTs
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have been tested over 408 scenarios. Both radial and mesh-SNOP topologies are used to
investigate the HIF and LIF in different fault locations. Figure 8 shows the overall accuracy
of the five MLTs used in this research throughout the dynamic operation mode in DN. The
observation showed that linear discriminant, linear SVM, ensemble boosted tree, and cubic
SVM methods have an accuracy rate of 90.2%. According to the results, EBTM has the
highest degree of accuracy, achieving a rating of 100%.
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Figure 7. Comparative evaluation of the performance of five MLTs used in this investigation under
radial and mesh-SNOP throughout IsM-DN.
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Figure 8. The overall accuracy of the five MLTs used in this research throughout the dynamic
operation mode in DN.
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Table 3 shows that the EBTM outperformed the linear discriminant, linear SVM, cubic
SVM, and ensemble-boosted tree in terms of accuracy. Consequently, the EBTM was used
to address the fault diagnosis problem.

The training data include 40 cases of healthy condition. The healthy data include both
operating mode, radial topology, mesh-SNOP topology, and load change (among +10%,
−10%, and −20%). Additionally, 368 faulty cases are included in the training data. The
HIF data is incorporated with single-line to ground, double-line to ground, and three lines
to ground defects. Moreover, diverse fault positions (between 0.2 and 0.4 km near bus-5)
are also conducted. Figure 9 demonstrates the performance of all MLTs during NCM, IsM,
and dynamic operation mode in terms of recall, precision, F1-score, and accuracy. It can
be observed that EBTM outperformed the other four MLTs in terms of recall, precision, F1
score, and accuracy. The EBTM are then be implemented in MATLAB Simulink utilising the
classification ensemble-predict block. Lastly, VMD and EBTM techniques were examined
in MATLAB Simulink to identify the detection time. Consequently, the proposed technique
detected all kinds of faults, including LIF and HIF, within 1.25 ms. Figure 10 demonstrates
the output fault signal and detection time using the proposed strategy. The yellow line
represents the observed fault signal by the proposed strategy. Once the fault signal reached
1, the trip signal was initiated, and the associated circuit breaker was opened. Moreover, the
functionality of this technique is unaffected by the transition from NCM to IsM operating
conditions. Furthermore, changing the distribution grid topology from radial to mesh-
SNOP has no effect on the performance of this technique. Table 4 presents a comparison of
the proposed technique with several existing strategies. The capability to identify HIF can
be achieved by utilizing two of the existing techniques in [17,37]. Mesh-SNOP has not been
considered by any other approach. It has no effect on the proposed method. The existing
techniques require expensive communication link which is inadequate in a low-voltage
DN. However, the proposed method uses only local information and does not need a
communication link. The proposed technique produces considerably better outcomes in
terms of accuracy and detection time when compared to the techniques listed in Table 4.
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Table 4. Comparison of the proposed technique with several existing strategies.

Ref. Technique Parameter
Used HIF Mesh-SNOP Operation

Mode
Communication
Link Required Accuracy Detection

Time

[14]

Phasor
measurement unit

and Tellegens
theorem

Current and
voltage × × NCM Yes 100% 20 ms

[38]

Intelligent
electronic devices,

load flow, and
sensitivity

computations

Voltage × × Both Yes N/A N/A

[3] Wavelet transform
and SVM Voltage × × NCM - 100% Less than

12 ms

[29]

CIGRE benchmark
parameters and

theoretical
fundamentals

Current and
voltage × × Both Yes N/A N/A

[39] S-transform Voltage and
current × × Both Yes 99.44% N/A

[17]

Active power
differential and

sensitivity
computations

Voltage
√

× Both Yes 100% N/A

[37]
differential

currents, and
S-transform

current
√

× Both Yes
In NCM

100% and
IsM 97.59%

Less than
17 ms

Proposed
Technique VMD, and EBTM Voltage

√ √
Both No 100% 1.25 ms

Where the symbols
√

and × indicate that the aspect is addressed and overlooked, respectively.

5. Conclusions

Increasing DN reliability is accomplished by fast and precise fault detection. Due
to the unique characteristics and operations of DN, traditional protection strategies are
insufficient to address DN challenges. These challenges include altering fault currents
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throughout the operation modes, a diversity of DN topology, and HIFs. The suggested
method offers a cost-effective solution for operation mode transitions from NCM to IsM,
diverse DN topologies (radial and mesh-SNOP), and HIFs. This article proposes a new
voltage-based protection strategy to detect faults quickly and precisely. The presented
technique is developed using VMD, and EBTM. VMD is employed to extract prominent
features from zero-, positive-, and negative-sequence components of a three-phase voltage
signal. Afterward, the IMF mode-3 act as input signal of EBTM to detect fault events. The
results indicated that the suggested technique can rapidly and accurately identify any
type of fault without employing any form of communication channel. Additionally, the
suggested method was evaluated in four different operational conditions (i.e., NCM with
radial, NCM with mesh-SNOP, IsM with radial, and IsM with mesh-SNOP). Additionally,
this technique can be employed to detect both HIF and LIF. Compared to the conventional
machine learning techniques (i.e., linear discriminant, linear SVM, cubic SVM, ensemble
boosted tree), the proposed EBTM provides the highest degree of detection accuracy. The
detection accuracy of the proposed technique is 100 percent, and its detection time is
1.25 ms. The EBTM is reasonable to implement because it relies on local information and
does not have connection latency. Lastly, further research is needed to authenticate the
proposed EBTM in real-time within a hardware-in-the-loop environment. Although EBTM
has demonstrated excellent outcomes in detecting faults under different scenarios, the
training operation can be more effective by considering all possible conditions such as
operation mode changes, various topology, low impedance fault, and high impedance fault
to avoid failure of the proposed technique.
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AI Artificial intelligence
DN Distribution network
EBTM Ensemble bagged trees method
HIF High Impedance Fault
IMFs Intrinsic Mode Functions
IsM Island Mode
LIF Low Impedance Fault
MLTs Machine Learning Techniques
NCM Normal Connected Mode
SNOP Soft Normally Open Point
SVM Support Vector Mechanism
VMD Variational Mode Decomposition
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