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Abstract: Asse II salt mine, in Germany, contains low and intermediate-level radioactive waste that
must be retrieved in the upcoming years. Potentially contaminated salts and brines will require
treatment, with 137Cs being the main contaminant. Cs+ is problematic to selectively recover due to its
chemical similarity with Na+ and K+ which are present in high quantities in a salt mine. This paper
offers a novel solution for Cs+ separation from concentrated chloride salt media by solvent extraction
with calixarene-crown-ether extractants in an alcoholic diluent. The proposed solvent extracts Cs+ at
elevated chloride concentrations (3–4 M) while back-extraction is achieved by contacting the solvent
with dilute (0.01 M) hydrochloric acid.

Keywords: Asse II salt mine; radioactive waste; cesium; chloride media; decontamination; extraction;
calixarene-crown-ether

1. Introduction

The Asse II salt mine [1], Germany, contains low and intermediate-level radioactive
wastes that have been emplaced from 1967 to 1978 and stored since then. The Federal Gov-
ernment of Germany ordered the retrieval of these wastes. Contaminated salts and brines
may accrue from the retrieval, requiring an efficient method for their decontamination. One
of the expected contaminants is 137Cs, especially problematic to selectively recover due to
its chemical similarity with sodium and potassium, found in high quantities in a salt mine.

Within the past years, several techniques have been investigated to recover radio-
cesium from contaminated aqueous media, such as adsorption on various inorganic and or-
ganic materials, membrane-based processes, precipitation, and solvent extraction [2,3]. Sep-
aration of radiocesium plays a role in the treatment of Fukushima-contaminated soil [4–8].
Furthermore, radiocesium separation might be part of advanced nuclear fuel reprocessing
schemes [9–18] to decrease the heat load of the waste to be finally disposed of.

Amongst the different possibilities, solvent extraction is a convenient choice when
large volumes need to be treated. Basically, an ionic solute in an aqueous phase forms
a complex with a complexing agent (i.e., the extracting agent) present in an immiscible
organic phase (the solvent). The complex is preferentially soluble in the organic phase—
the solute is extracted. This way, the solute is separated from other solutes not forming
complexes with the extracting agent. Contacting the organic phase with an aqueous
phase of different composition allows for back extracting the solute; the organic phase
can be recycled in a continuous manner. With its inherently low consumption of energy
and chemicals, solvent extraction is advantageous over e.g., membrane processes and
precipitation. Solvent extraction is widely used for separating and purifying ionic species.
It is applied on an industrial level e.g., for the reprocessing of spent nuclear fuels by the
PUREX process and for the large-scale copper production by the SX/EW (solvent extraction,
electrowinning) technique.

The calix [4]crown-ether family has been extensively studied as extracting agents for
alkali metal ions [10,12,15,19–23], as the number of ether groups in the crown-ether allows
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tuning the extractant selectivity by adjusting the size of the ring from four ether functions
for the smaller ions (Li+, Na+) to six for the larger ions (Rb+, Cs+). Their main drawback is
their insolubility in aliphatic diluents and low solubility in most common diluents [10,15].
Still, some diluents with intermediate polarities such as long-chain alcohols can solubilize
these ligands up to 30 mM, which is sufficient for the extraction of micro-amounts of Cs+.

Most of these processes are extracting Cs+ from high nitric acid concentrations, as it is
the usual medium for nuclear reprocessing. However, other media need to be considered
in the case of environmental contamination, such as chlorides and/or sulphates. Although
usually overlooked, the nature of the aqueous medium can greatly impact the extraction
efficiency, as shown by a recent publication [24], where it was found that the anionic
order for Cs+ extraction efficiency almost followed the Hoffmeister series [25], whereas the
presence of competitive cations (Al3+, Mg2+, Ca2+, Na+, Li+, H+) had a lesser effect.

We have studied the extraction of Cs+ by calixarene crown ethers from highly concen-
trated solutions of NaCl, KCl, CaCl2, and MgCl2. The choice of this aqueous medium is
related to the composition of the brines of the Asse II mine. Several calixarene crown-ether
ligands with different structures were compared (Figure 1). Three different structural
parameters of the extractant were investigated: bis-or mono-crown ethers, where alkyloxy
chains replace the second crown, the number of benzene rings attached to the crown-
ether rim, and the size of the alkyl chain (Table 1). The chosen extractants were thus the
in-lab synthesized mono-crown-ethers di-octyloxy-calix[4]crown-ether-6 (DOC[4]C6), di-
octyloxy-calix[4]benzo-crown-ether-6 (DOC[4]BC6), di-dodecyloxy-calix[4]crown-ether-6
(DDC[4]C6), di-dodecyloxy-calix[4]benzo-crown-ether-6 (DDC[4]BC6) and di-dodecyloxy-
calix[4]dibenzo-crown-ether-6 (DDC[4]DBC6), the commercially available mono-crown-
ether di-(3,7-methyl)octyloxycalix[4]benzo-crown-6 (MAXCalix) and the commercially
available bis-crown-ether calix[4]arene-bis(tert-octylbenzo-crown-6) (BOBCalix) represented
in Figure 1. These latter two ligands were originally designed at Oak Ridge National Labora-
tory, USA, for the CSSX (Caustic-Side Solvent Extraction) process and the Next-Generation
CSSX process [26–30] and were used for the decontamination of the alkaline high-level
waste at the U.S. Department of Energy Savannah River Site (SRS).
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Figure 1. BOBCalix (left) and mono-crown-ether compounds representation (right): blue, dibenzo
crown; light brown, benzo crown.

Table 1. Calixarene mono-crown-ethers corresponding to Figure 1 (right).

Number of Benzene Rings
Chain Length R

0
(crown-6) 1 (benzo-crown-6) 2 (dibenzo-crown-6)

di-octyloxy (8 C) DOC[4]C6 DOC[4]BC6 –
di-dodecyloxy (12 C) DDC[4]C6 DDC[4]BC6 DDC[4]DBC6

di-(3,7-methyl)octyloxy
(10 C) – MAXCalix –



Energies 2022, 15, 7724 3 of 10

In addition to the extractant efficiency, several other parameters were studied, includ-
ing finding an efficient diluent and investigating the effect of the concentrations of aqueous
ions, including H+, to determine the feasibility of Cs+ recovery from saline chloride media
by solvent extraction with calixarene crown-ethers.

2. Materials and Methods
2.1. Chemicals

BOBCalix and MAXCalix have been purchased from Marshallton Research Laborato-
ries (USA) and used without further purification. The other five calixarene crown-ether
extractants were provided by Dr. Yuji Miyazaki (JAEA). Diluents were purchased from
Sigma-Aldrich. Aqueous phases were prepared by dissolving MCl (M = Na, K, Cs, Ca, Mg)
salts in water and adding HCl to a concentration of 0.001 M.

2.2. Extraction

The extraction experiments have been conducted using stable CsCl or 137Cs radiotracer.
In both cases, aqueous and organic phases were prepared separately by adjusting the
desired salts and extractant concentrations.

In the case of using stable CsCl, both phases (500 µL each) were then mixed at room
temperature for 30 min (kinetics results provided in Figure S1) and centrifuged for 5 min.
The organic phase was withdrawn for back-extraction into 0.01 M HCl (Table S2) at a
1:1 organic to aqueous volume ratio for 30 min. The aqueous phases of both the extraction
and back-extraction experiments were then measured by ICP-AES (Optima 8300, Perkin
Elmer, Waltham, MA, USA) and atomic emission spectroscopy F-AES (PinAAcle 500,
PerkinElmer), along with the initial concentrations to check the mass balance. The organic
phase concentration is then estimated either by the difference between the initial and the
extracted concentrations or by considering the back-extracted concentration equal to the
organic concentration. Overall uncertainties are considered as 15%.

In the case of using the 137Cs radiotracer, spikes of 137Cs (5 kBq) were added to 500 µL
of a previously prepared aqueous phase containing the desired salts. The solution was
then mixed with the same volume of organic phase for 30 min at 20 ◦C. After 2 min of
centrifugation, both aqueous and organic phases were sampled for gamma counting (NaI
scintillator Packard Cobra Auto-Gamma 5003) or gamma spectroscopy (Ge detector ORTEC
GWL-90-10-S, Oak Ridge, TN, USA). Uncertainties are mainly due to the pipetting errors,
except for very high or very low distribution ratios for which one of the phases has a low
count rate.

The distribution ratio of a solute is the ratio of the solute’s concentration in the organic
phase over its concentration in the aqueous phase, DA = c(A)org/c(A)aq.

3. Results
3.1. Study of the Organic Phase
3.1.1. Diluent Study

Unlike the NG-CSSX process [26,30] that uses a fluoride-based phenol as a modifier,
only CHON diluents were considered in this study, as they can be directly incinerated after
their final usage instead of forming additional radioactive waste requiring further specific
treatment. Several alcohols and their mixture with kerosene were tested. The addition of
kerosene allows for improved hydrodynamic properties such as viscosity.

Cs+ extraction by the diluent 1-octanol itself has been checked as a reference (Figure 2).
Very low distribution ratios were found, even at high chloride concentrations, confirming
its inability to extract Cs+.
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Aqueous phase, NaCl + 0.001 M HCl + 137Cs (10 kBq/mL).

When studying Cs+ extraction by BOBCalix or MAXCalix in alcohol diluents, both the
position of the alcoholic function (1-octanol vs. 2-octanol) and the branching of the alkyl
chain (1-octanol vs. 2-ethyl-hexan-1-ol) were found to influence Cs+ distribution ratios
(Figure 3 and Table 2). Almost one order of magnitude is observed between the distribution
ratios obtained with BOBCalix in 1-octanol and 2-octanol. This result is similar to other
systems studied in the literature [15,31]. However, the ratios of DCs at high to low chloride
concentrations are similar for all three alcohol diluents.
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Figure 3. Cs+ extraction as a function of NaCl concentration. Organic phase, 0.01 M BOBCalix
in 1-octanol, 2-octanol, or 1-octanol/kerosene 3:7. Aqueous phase, NaCl + 0.001 M HCl + 137Cs
(10 kBq/mL).
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Table 2. Cs+ distribution ratios for the extraction from 4 M NaCl or 0.4 M NaCl by BOBCalix and
MAXCalix in several diluents. Organic phase, 0.01 M BOBCalix or MAXCalix. Aqueous phase, (4 M
or 0.04 M) NaCl + 0.001 M HCl + 137Cs (10 kBq/mL).

BOBCalix MAXCalix

1-octanol 4.6–1.6 3.3–1.2
1-octanol/kerosene 3:7 0.44–0.022 0.25–0.034

2-octanol 0.83–0.23 0.38–0.13
2-ethyl-hexan-1-ol n/a 0.62–0.22

In the case of the addition of kerosene, a sharp decrease in extraction ability is observed,
as expected from its low dielectric constant. However, a higher difference between high
and low chloride concentrations is obtained, which is especially interesting from a process
point of view.

3.1.2. Extractant Comparison

Cs+ extraction with BOBCalix (bis-crown representative) and MAXCalix (mono-crown
representative) in several alcohol diluents has been studied (Table 2). Two different NaCl
concentrations, 4 M and 0.04 M, have been used as representatives for extraction and strip-
ping conditions; 0.001 M HCl was added to avoid any precipitation. In all systems, higher
extraction was obtained at high NaCl concentration (4 M) than at low NaCl concentration
(0.04 M). BOBCalix allows for higher Cs distribution ratios. However, it was found to be less
soluble than MAXCalix in all tested diluents, with a maximum solubility of ≈0.01 M versus
≥ 0.03 M for MAXCalix. Consequently, MAXCalix is more suitable for an application.

The ability of the different mono-crown-ethers to extract Cs+ from NaCl media has
been evaluated. Results are displayed in Figure 4. All ligands present about the same
trend of extraction, with rather similar distribution ratios. The two ligands without any
benzene ring, DOC[4]C6, and DDC[4]C6, present the lowest extractability, the dodecyl
chain yielding higher DCs. At high NaCl concentrations, DDC[4]C6, MAXCalix, and
DDC[4]DBC6 show similar distribution ratios. DDC[4]BC6 and DOC[4]BC6 are the ligands
allowing the highest DCs, about 1.5 times that of MAXCalix, despite having the same
benzo-crown-ether ring. The alkyl chain length thus has some influence, maybe because it
modifies the solubility of the ligand in the diluent.
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Due to its commercial availability and suitable properties, most of the following
experiments were conducted with MAXCalix.

3.1.3. Complex Stoichiometry

As reported in the literature [10,15,20], the formation of a 1:1 complex is expected
between Cs+ and the calixarene crown-ethers, according to below equation:

Cs+
aq + Cl−aq + n Lorg 
 CsClLn,org

By plotting Cs(I) distribution ratios, DCs, obtained at a constant chloride concentration
versus the extractant concentration on a double logarithmic scale, the number of extractant
molecules involved, n, is obtained. Figure 5 shows DCs versus the MAXCalix concentration
at two different NaCl concentrations. Slopes are 0.92 and 0.89 for 4 M NaCl and 0.4 M NaCl,
respectively. The values being close to 1 proves the formation of a 1:1 complex.
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3.2. Study of the Aqueous Phase
3.2.1. NaCl and HCl Effects

Figure 6 presents distribution data for the extraction of Cs+ with MAXCalix in 1-
and 2-octanol versus the initial concentrations of HCl or NaCl (HCl was investigated as a
possible medium for back-extraction). As already reported in the literature for the nitrate
systems [10,15], DCs shows a minimum. This effect, despite being important for process
management, has not been fully explained yet, as the actual cesium speciation in the organic
phase at low ionic strength is neither described in the literature nor could be determined
by our experiments. Comparison between NaCl and HCl shows a different extraction
behaviour, with the NaCl system showing less extraction at high chloride concentrations
and more extraction at low concentrations as compared to the HCl system.

For further extraction studies, 3 M NaCl + 0.001 M HCl was selected as the reference
aqueous phase composition.
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3.2.2. Effect of Other Cations

Other salts present may interfere with Cs+ extraction. Focusing on the Asse II salt
mine, KCl, CaCl2, and MgCl2 were considered. Very low extraction of Ca2+ was observed
(with Ca2+ concentrations in the organic phase too close to the detection limit to yield
reliable data). Table 3 shows the distribution ratios of several cations when extracted all
together by MAXCalix 0.02 M dissolved in 75% 1-octanol/25% kerosene. Mg2+ and Na+

distribution ratios are rather low. However, K+ was found to be extractable to some extent,
as previously reported [15,20].

Table 3. Mg2+, Na+, K+ and Cs+ co-extraction. Organic phase, 0.02 M MAXCalix in 1-
octanol/kerosene 75:25. Aqueous phase, 1.9 M MgCl2, 0.87 M NaCl, 0.28 M KCl, 1.5 mM
CsCl + 0.001 M HCl.

Cation Mg2+ Na+ K+ Cs+

D 7.8 × 10−4 ± 150% 1.9 × 10−3 ± 100% 2.3 × 10−2 ± 25% 1.44 ± 15%

Even though the K+ distribution ratio is rather low, a high K+ concentration in the
aqueous phase yields a drastic decrease in Cs+ distribution ratio (Figure 7). At K+ concen-
trations lower or equal to 2 M, which is the maximum concentration expected, this decrease
remains sufficiently small to keep a distribution ratio over 1 (DCs = 1.17 at 2 M KCl + 1 M
NaCl). This proves the feasibility of such a process.

Table 4 gathers Cs+ distribution ratios obtained from a simulate of an Asse II mine
brine (composition, see Table 4). Due to the very low DCs obtained in the conditions
previously studied, 0.02 M MAXCalix in 75% 1-octanol/25% kerosene was used. Attempts
were made at improving those results by further increasing the ligand concentration to 0.025
M and by adding a modifier, nitrophenyloctylether (NPOE). The increase in MAXCalix
concentration showed no effect, most probably due to an increase in K+ extraction that
prevents any additional Cs+ extraction. However, a low concentration of NPOE is able to
increase DCs.
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Figure 7. Cs+ distribution ratios as a function of KCl concentration at a fixed chloride concen-
tration. Organic phase, 0.025 M MAXCalix in 1-octanol/kerosene 75/25. Aqueous phase, 3 M
(K, Na)Cl + 0.001 M HCl + 137Cs (10 kBq/mL).

Table 4. Cs+ extraction and stripping distribution ratios for 3 different organic phases. Aqueous
phase (extraction), 4 M MgCl2, 1 M KCl, 0.3 M NaCl, 0.2 M MgSO4, 1 mM CsCl + 0.001 M HCl.
Aqueous phase (stripping), 0.01 M HCl.

Diluent 25% Kerosene
75% 1-Octanol

25% Kerosene
75% 1-Octanol

25% Kerosene
5% NPO

70% 1-Octanol

MAXCalix
Concentration 0.02 M 0.025 M 0.025 M

DCs extraction 1.23 1.22 1.45
DCs stripping 0.10 0.12 0.15

4. Conclusions

A novel system to separate Cs+ from chloride brines by solvent extraction using
calixarene crown ethers is proposed. Only CHON diluents have been used, namely octanol
and kerosene-octanol mixtures. Several calixarene crown ethers have been screened. Due
to its properties, solubility, and commercial availability, MAXCalix was chosen as a suitable
candidate for an application.

A solvent comprising 0.025 M MAXCalix in 75% 1-octanol/25% kerosene allows
for the extraction of Cs+ from concentrated (3–4 M) chloride solutions. Cs+ is readily
back extracted from the organic phase into 0.01 M hydrochloric acid. K+ suppresses Cs+

extraction as it was found to be co-extracted to a small extent. Nevertheless, the system can
cope with K+ concentrations lower or equal to 2 M.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/en15207724/s1, Table S1, Na+ extraction data; Table S2, stripping
conditions; Figure S1, kinetic data.
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