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Abstract: Current power systems are undergoing an energy transition, where technological elements
such as distributed generation and electric vehicles through AC or DC microgrids are important
elements to face this transition. This paper presents a methodology for quantifying distributed
resource-based generation and the number of electric vehicles that can be connected to isolated
DC grids without impacting the safe operation of these networks. The methodology evaluates the
maximum capacity of distributed generation considering the uncertainty present in the electric
vehicle charging of fleets composed of five types of electric vehicles. Specifically, the uncertainty
is associated with the following variables: the home arrival time, home departure time, traveled
distance, and battery efficiency. The methodology was applied to a 21-bus DC microgrid and a 33-bus
DC network under different test conditions. The results show that higher penetrations of EVs and
distributed resource-based generation can be introduced while guaranteeing a secure operation of
the DC networks.

Keywords: DC power grids; distributed generation; electric vehicle modeling; hosting capacity;
Monte Carlo simulation

1. Introduction
1.1. Motivation

Due to the energy transition, power systems are facing challenges in the planning,
operation and control of these systems. One of the major challenges is the penetration
of several technological elements such as: non-conventional renewable energy sources
(distributed generation (DG)) through AC and DC microgrids, the electrification of trans-
portation and the incorporation of energy storage systems into these networks [1]. The use
of these technologies provides important benefits to the grid, e.g., reducing the cost of
generation and carbon emission, reducing the stress on transmission systems, and relieving
the dependence of fossil fuels [1]. However, the high penetration of DGs in low-voltage (LV)
and medium-voltage (MV) distribution networks can complicate the standard operation
condition, including voltage violations, reverse power flows, overloading of distribution
lines, and increasing losses [2]. On the other hand, the inclusion of electric vehicles (EVs) to
the power grid is not only to fight against global warming; this penetration can also achieve
efficient operation of the power grid (e.g., increasing the openness of electrical utilities to
renewable generation, ancillary services, solving contingencies) [3]. This inclusion brings
benefits to combat the aforementioned issues. Nevertheless, the penetration of EVs on a
large scale introduces new challenges that must be considered [4]. For example, with this
penetration, not only is an increased amount of the electricity consumption in the power
network evident or the appearance of new load variations, but there are also clear impacts
on transportation, manufacturing or the economy [5]. These repercussions will depend
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on when EVs are connected for charging, where EVs are connected and at which charging
power [5]. Therefore, these factors must be contemplated in the operation, planning and
analysis of the modern power grids such as active distribution networks or grid-connected
microgrids [3].

With the above in mind and in order to prevent compromising the security and
reliability in modern power grids, distribution system operators (DSOs) perform the
EV and DG hosting capacity (HC), which is defined as the amount of new production
or consumption, which can be connected to the grid without adversely impacting the
reliability or voltage quality for other users [6,7]. Therefore, HC evaluation is considered
an important tool for DSOs and DG investors. The HC should be calculated using indices
such as voltage and frequency variations, thermal overload, power quality and protection
problems. However, several authors have demonstrated that the voltage variation is the
main performance indicator for HC calculations [8,9].

1.2. Literature Review

Different strategies have been proposed to analyze the hosting capacity in power grids
considering the penetration of photovoltaic (PV) or wind turbine (WT)-based DG units.
For example, in [8], the authors proposed a methodology to calculate the HC of 17 AC
distributions feeders using the Monte Carlo simulation (MCS) based on a stochastic analysis.
Munikoti et al. introduced a computationally efficient analytical approach to compute the
probability distribution of voltage change due to random behaviors of randomly located
multiple distributed PVs [1]. In [10], the HC of an AC distribution system is computed
using a non-convex optimization problem with realistic constraints. The authors in [11]
proposed a method based on iterative sweep load flow and affine arithmetic to calculate
the hosting capacity of a rural distribution network considering PV and load uncertainties.
In [12], the maximum WT-based DG capacity in an AC distribution network is computed
using a cost–benefit analysis approach. Wang et al. [13] evaluated the maximum housing
capacity for AC distribution networks and improved it using robust optimal operation
considering load tap changers and static VAR compensators. In [14] proposed a convex
optimization problem for computing the maximum hosting capacity of solar energy in an
integrated energy AC distribution system based on the electrical–thermal units. In this way,
many other methodologies have been proposed to determine hosting capacity in modern
power systems with DG [15].

On the other hand, several studies have discussed how to evaluate the hosting capacity
in MV/LV AC distribution networks considering the introduction of EVs. These methods
can be classified into five groups, which include: deterministic [16], probabilistic [17–19],
simulation-based approaches [4,20–22], optimization-based methods [7,23–27] and hybrid
techniques [28–30]. For the deterministic approach, the authors assume unrealistic assump-
tions for EVs based on steady-state environments for the HC evaluation. In the second
group, the EV charging demand is modeled by using random variables (e.g., daily distance
traveled or the charging duration) that follow specific probability distributions. Then,
the authors used a probabilistic power flow method to evaluate the number of EVs that
can be plugged into an AC distribution network. For the simulation-based approaches,
it is very common to find the use of MCS to determine the hosting capacity in AC dis-
tribution networks [4,20–22]. Despite providing accurate results, these MCS methods
are computationally expensive. In the fourth group, the hosting capacity in power grids
is computed based on metaheuristic methods [2,24], linear programming problems [23],
mixed-integer linear programming models [25], stochastic optimization approaches [27],
robust optimization methods [7] and Bayesian optimization problems [6]. In the last group,
the combination of two of the above methods is considered a hybrid methodology. For ex-
ample, [28] proposed to use interval and affine arithmetic, power flow computation and
probability theory for calculating the hosting capacity of a radial AC distribution network.
The authors in [29] solved an AC distribution network electric vehicle HC maximization
problem using robust optimization and MCS. Finally, Calum et al. estimated the headroom
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available for domestic EV charging optimisation in LV AC networks based on both thermal
and voltage limits using a linear programming approach and MCS [30].

From the above, it is shown that there has been considerable effort in determining the
HC of the network by considering DG and EVs separately. A small number of studies have
proposed the evaluation of network HC by simultaneously contemplating DG and EVs.
In [31], the authors proposed a combined PV–EV grid integration and hosting capacity
assessment for a residential LV AC distribution grid based on EV smart charging and PV
curtailment. Specifically, the authors used an optimization problem to compute the optimal
charging power of EVs and the optimal power of PV systems. Although it is a novel ap-
proach, the authors do not consider realistic scenarios for EV penetration and only analyzed
one type of EV. The authors in [32] calculated the HC of an AC distribution system using a
stochastic method (MCS) considering the random location of the EVs. However, the authors
made unrealistic assumptions about the demand for EVs, and they only considered one
type of EVs. Da Silva et al. [25] proposed using an optimization problem based on mixed
integer linear programming to maximize PV generation considering network conditions
and EVs. However, they did not take into account the uncertainty in the EVs. In [33],
the authors performed the dispatch of distributed resources in such a way as to maximize
the level of EVs and PVs. Although they considered the interaction of the AC transmission
and AC distribution systems, they modeled the penetration of EVs as a ZIP load model
(deterministic model) and did not take into account various types of EVs [34]. From the
above, there is an evident need to propose discussion in the evaluation of HC in networks
using simultaneously DG and EVs. On one hand, it is necessary to evaluate the HC for DC
grids, since most studies focus on AC distribution networks or power transmission systems.
As mentioned, these DC systems (microgrids, distribution or multi-terminal systems) have
gained much interest and attention in the energy transition due to their efficiency, reliability
and controllability [35]. On the other hand, it is essential to take into account realistic EV
charging behaviors into the power grid, i.e., to consider the random behaviors of EV users
in the EV charging demand such as the home arrival time, home departure time, traveled
distance, the battery efficiency and different types of EVs.

1.3. Main Contributions

This paper proposes a hybrid methodology to evaluate the HC in networks considering
simultaneously DG and EVs. To do so, an optimization problem is used to maximize the
participation of the DG, and the penetration of EVs is evaluated by simulation. In the
optimization problem, power balance constrains, operational limits of DG, voltages and
currents are considered. The EV integration was performed using the modeling presented
by [36], which was modified to include five types of EVs used in [5]. This study intends
to model the EV penetration using a MCS-based procedure and employ a heterogeneous
fleet of EVs; i.e., five types of EVs were used to calculate the HC in these grids: private EV,
commercial EV, utility EV, goods trucks and bus. The proposed modeling for EV integration
takes into account the state of charge of the batteries and their efficiency, and the random
behaviors of EV users in terms of the home arrival time, home departure time and the
traveled distance. Another noteworthy element of this paper is the analysis of HC in two
isolated DC networks: a 21-bus DC microgrid and a 33-bus DC distribution system, since
there are few studies that provide interesting discussion on this type of networks. The main
contributions of this paper include the following:

• A hybrid methodology to evaluate the HC in networks considering simultaneously
DG and EVs based on genetic algorithms and MCS is proposed.

• The methodology to evaluate the HC is applied in isolated DC networks.
• Five types of EVs and random behaviors of EV users were contemplated in the

methodology to calculate the HC in DC grids.

The rest of this article is organized as follows. Section 2 presents the description of the
DC grid model. Section 3 shows how to model the EV charging considering user realistic
behavior. In addition, this section also shows how to use MCS to calculate the demand
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for EVs. In Section 4, the proposed methodology for determining the HC of DC networks
considering DG and EVs is explained. An analysis of the results obtained when applying
the proposed methodology to two isolated DC networks is shown in Section 5. Finally,
conclusions and future works are presented in Section 6.

2. DC Grid Model

A DC grid is a network that includes renewable energy generation, energy storage sys-
tems, electric vehicles and controlled loads; see Figure 1. Aside from AC networks, the DC
microgrids and multi-terminal high-voltage DC transmission are modern and attractive
electric technologies due to their efficiency, reliability and controllability [35]. These three
properties are the result of considerable advances in power electronics. Nonetheless, it
is not only because of these three properties that one may decide to use and implement
DC grids but also because many of the renewable energy sources, energy storage systems
and residential loads are naturally DC. The penetration of these technologies to power
systems is a sustainable solution to many non-interconnected areas (rural areas or remote
regions) to have electricity supplies [37]. These networks can operate in island mode or
be connected to the AC network through a bidirectional AC/DC converter. Although
DC networks can be considered unaffected by power frequency variations and harmonics
(due to their operation [38]), it is necessary to analyze issues related to the stability of
the integration of these microgrids to conventional AC systems through converters [39]
and disturbances associated to the voltage in the DC networks due to transient behaviors
when these networks are connected to the AC network. However, these dynamic analyses
will not be addressed in this study. Another possible disadvantage of DC networks is the
joint operation with the AC network. Nevertheless, as explained in [35], by means of a
master–slave operation, it is possible to maintain the voltages at the interaction points of
both networks. That is, the slack node imposes the voltage, and the nodes of the microgrid
are adjusted to the voltage value of the slack node due to their operation.
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Figure 1. Example of a seven-bus DC Microgrid that allows the incorporation of distributed genera-
tion based on renewable sources, energy storage elements and EVs.
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According to Zuluaga and Guarnizo in [37], DC grids have gained attention in the
research context, but there is also evidence that it is a key element to support power systems.
For example, two DC systems were installed in the NASA International Space Station [40].
The Duke Energy data center in Charlotte [41] and the Datacenter of the University of
California [42] operate using DC distribution systems. Therefore, it is important to analyze
these technologies incorporated into power systems.

Let us consider a DC grid with master–slave operation, which can be modeled as
follows [37],

I = V0G0 + GV, (1)

where G0 ∈ Rn×1 and G ∈ Rn×n are nodal admittance matrices; V0 corresponds to the
voltage value at the Master Terminal, which is known; V ∈ Rn×1 and I ∈ Rn×1 are the
nodal voltages and currents, respectively. For the DC grids analyzed here, we consider that:
the graph is connected (G is not singular), and the system is represented in per-unit [35].
From the model shown in (1), the power injected to the DC grid can be computed as the
product between the nodal voltages and currents, that is

P = I�V,

P = f(V) = V0G0 �V + GV�V, (2)

where P ∈ Rn×1 includes all the injected active powers, and � is the Hadamard product
(i.e., the element-wise product of matrices). In the island mode operation of these networks,
the master terminal is disconnected. In this case, the reference voltage must be provided by
a secondary control stage [35].

3. EV Charging Probabilistic Modeling

The penetration of EVs in power network analysis studies has been widely ad-
dressed [3], and it has been introduced by following several charging opportunities:
unidirectional charging, bidirectional charging, uncontrolled charging, external charging
strategies, and individual charging strategies [43]. Uncontrolled charging (UCC) represents
EV users traveling and parking as they choose to, and they connect their EVs when there is
a need to recharge the battery. External charging strategies are based on that the charging
may somewhat be controlled externally based on information of the power grid operator.
The individual charging strategies are considered as an UCC approach, but also that indi-
viduals may adjust their charging decisions based on economic incentives. These individual
charging intentions are widely known as grid-to-vehicle (G2V) charging strategies, which
consider power flows in the grid to vehicle direction. The external charging strategies could
be based on either unidirectional charging or bidirectional charging, which consider power
flows in the vehicle-to-grid (V2G) direction. In this article, EV penetration was considered
as a G2V strategy using MCS-based modeling.

The EV Charging Probabilistic (EVCP) model is based on the study presented by
Ahmadian et al. in [36], which was modified to include a specific EV fleet with five types
of EVs: private EV, commercial EV, utility EV, goods trucks and buses [3]. For this model,
the home arrival time ta, home departure time td, and traveled distance d are Gaussian
random variables, and battery efficiency is uniformly distributed. The state of charge (SOC)
after a daily travel distance can be computed as:

SOCij0 = 1− d
Dη

, (3)

where D is the average daily travel distance; η is the efficiency of battery power in driving
cycles in EV; i represents the type of EV and j is the scenario in the MCS. The rated charging
power Pc is modeled as a nonlinear function of the SOC, where the SOC is recursively
calculated as follows:
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SOCt = SOCt−1 +
100Pcη

Cap
, (4)

where η represents the efficiency of the EV during driving; and Cap is the full battery
capacity. Considering the random variables mentioned before and Equation (4), the total
EV power is calculated as,

PEV =
5

∑
i=1

N

∑
j=1

PEVij , (5)

where

PEVij =

{
Pc, td ≤ t and SOCt = 100%,
0, other time.

From Equations (3)–(5) and through a repetitive process (MCS), the random variables
considered above are propagated in order to calculate the probability distributions of the
charging of the set of electric vehicles connected to the power network. This MCS-based
model follows the procedure shown in Figure 2. In the EV input data block, the battery
capacity, EV types, charging power and full endurance mileages are sampled from proba-
bility distributions (see Table 1) to generate a specific EV charging scenario [3,5]. For the
sampling block, the previous samples feed the MCS-based EVCP model to compute the
total EV power. This procedure is repeated N = 1000 times in order to obtain statistics
and generated samples for the total EV power. Different EV types and assumptions about
how to compute the total EV power are used as shown in [5]. For example, private EVs,
commercial EVs, utility EVs, good trucks and buses are contemplated. In addition, it has
been considered that 80% of private EVs are plugged into the power grid from 18:00 to
07:00, and the remaining 20% is recharged during working hours, that is, from 09:00 to
17:00. Likewise, it was assumed that the commercial EVs have three working shifts per
day (see Table 1 for more details). To determine the number of EVs, a Poisson distribution
with expected value λ is used [3]. For each level of penetration, 60% of private EVs are
privately owned, 20% of EVs are utility vehicles, 10% of EVs are taxies, 5% of EVs are
electric goods trucks, and the remaining 5% are electric buses. From Figure 2, the modeling
of EV penetration is achieved by means of an MCS-based procedure. However, as explained
in [3], it is possible to take into account the integration of these elements considering deter-
ministic approaches [44], stochastic process [45] or data-driven methods such as k-Nearest
Neighbors [46], linear regression [47] and random forest [48]. With deterministic methods,
a low computational cost methodology can be achieved but does not contain the random
behaviors of EV users. In contrast, methods that support the variability of these behaviors,
as stochastic processes, MCS-based approaches and data-driven methods, seek to incor-
porate realistic scenarios for the calculation of EV power demand. However, these latter
methodologies are computationally expensive; see [3] for more information.



Energies 2022, 15, 7646 7 of 17

Table 1. Charging EV parameters for probabilistic modeling [3,5]. N (µ, σ) is a Gaussian distribution
with parameters µ (mean) and σ (standard deviation); LN (µ, σ) is the log normal distribution, and
U (a, b) is a uniform distribution with parameters a and b.

EV Type Period Mode Prob. d η ta td

Private
9–17 h Slow 10

LN (3.2, 0.92) U (0.88, 0.9)
N (9, 0.9)

N (7, 2)18–7 h Slow 80 N (18.5, 1)
9–17 h Fast 10 N (9, 0.9)

Utility 9–17 h Fast 30 LN (3.2, 0.92) U (0.88, 0.9) N (18.5, 1) N (17, 2)
18–7 h Slow 70 N (12, 0.9) N (6, 2)

Commercial
0–9 h Fast 70

N (195.49, 49.99) U (0.73, 0.9)
N (4, 2.5) N (16, 2)

9–16 h Fast 20 N (12, 2.5) N (0, 2)
16–24 h Fast 10 N (18.5, 1) N (9, 0.9)

Good Trucks 0–9 h Fast 60 N (201.8, 94.42) U (0.73, 0.9) N (3, 1.5) N (12, 2)
9–24 h Fast 40 N (14.5, 2.8) N (4, 2)

Bus 22–7 h Fast 100 N (155, 10) U (0.73, 0.9) N (22, 0.5) N (5, 2)

Start

EV input data

Sampling Process

EVCP Model

j > N j = j + 1

Statistical Output Information

End

Figure 2. Flowchart for the EV charging probabilistic modeling.

4. DG and EV Hosting Capacity Evaluation

Keeping in mind the DC network model (see Equation (2)) and the computation of
the total demand of the EVs (see Equation (5)), the idea in this section is to determine the
maximum capacity of the DGs in some nodes of the system without incurring operational
problems through an optimization approach. Therefore, the objective is to maximize
distributed generation at some points in the grid, that is, DGHC = max ∑m

i=1 PDG
i , where

PDG
i represents the active power contribution of the distributed generator connected at

node i; and m is the number of DGs that can be incorporated into the power grid. To ensure
the safe operation of the network, the following optimization problem has been proposed,
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DGHC = max
m

∑
i=1

PDG
i , (6)

s.t,

P
(

PDG, PEV

)
−V0G0 �V−GV�V = 0, (7)

0 ≤ PDG ≤ PDG
max, (8)

Vmin ≤ V ≤ Vmax, (9)∣∣Iij
∣∣ ≤ Iij,max, for all branches, (10)

where Vmin ∈ Rn×1 and Vmax ∈ Rn×1 are vectors that contain the lower and the upper
permitted voltages at each node, respectively. Iij is the current between node i and node
j. Iij,max is the maximum value of Iij. PDG ∈ Rm×1 is vector that contains all contributions
from DG units. PDG

max ∈ Rm×1 represents the maximum generation capacity of the DG units.
P
(
PDG, PEV

)
is the active power injected into the grid, which depends on the total power of

the EVs and the DG contribution. The expression P
(
PDG, PEV

)
−V0G0 �V−GV�V = 0

represents all power balance constrains.
From the model shown by Equations (6)–(10), it is possible to discuss the following:

Equation (6) presents the objective function which quantifies the total distributed generation
contribution of the grid. It is important to note that the objective function is convex and
concave (unrestricted) because it is a plane in several variables. Two main challenges can
be highlighted from the above model: the variability due to EV user behaviors and that the
optimal solution must guarantee the energy balance of the grid. For these two reasons, it
was decided to use heuristic solution methodologies. From this model, it is also possible
to carry out planning studies in these power networks. For this case, a multi-objective
optimization problem should be considered, where on the one hand, the investment
and operating cost in the proposed new DG units is minimized, and on the other hand,
the capacity of these units is maximized. It is also necessary to add constraints to ensure
the optimal placement of distributed resources. For more information, see [49].

With the solution of the problem shown in Equation (6), it is possible to find the
maximum contribution of the DG in the network for a single scenario of EVs. Therefore,
an MCS was performed to determine the number of EVs on average that can have the
solution of the model presented in (6). This process is shown in Figure 3. In the input data
block, the network parameters, the characteristics of the EVs, and the operating conditions
of the DGs are imported. Then, in the initial conditions calculation block, the initial
operating conditions of the network are obtained through a power flow based on Newton’s
method [50]. Then, the total power demanded by the EVs is obtained using the procedure
in Figure 2. Using the above information, the problem of Equation (6) is solved. Recall that
lambda is the average number of EVs associated with the Poisson distribution.
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Start

Input data

Compute the initial condiction

Calculate the total EV power

Solve the OP

¿Successful
solution? Increase λ

Output Information

End

Yes

No

Figure 3. Flowchart for the DG and EV hosting capacity evaluation. OP represents the optimization
problem shown in Equation (6).

Solving HC Optimization Problem

The model expressed in Equation (6) has a linear objective function, nonlinear restric-
tions and is in the presence of uncertainty. It is possible to find a set of methods to solve this
model. For example, among the main methodologies for solving this type of problem are:
robust optimization [13] and stochastic optimization or stochastic programming [27,33,34].
Within the stochastic optimization can be found: MCS-based optimization [6,21] and ran-
domized search approaches [24,34], among others. In this paper, genetic algorithms (GA)
were used as the search engine for the optimal solution to the problem presented in Equa-
tion (6). GA have been widely used in the solution of optimization problems in several
engineering fields, for example: power transformer design problems [51], energy efficiency
in industrial refrigeration systems [52], and magnetic gears optimal designs [53] just to
mention a few applications. This search algorithm is based on the generation of new
populations from existing ones by emulating biological evolution. The most important
steps of this method are: selection, crossover, mutation and elimination. In the first step,
the best possible options are set aside as high-quality solutions. In the next step, a crossover
of the best DG contributions is performed. The new DG contributions are then altered by
the mutation of 1 bit to help maintain the change in the process. Finally, the least feasible
contributions are eliminated from the solution set. Figure 4 shows how to apply the above
steps to solve the optimization problem shown in Equation (6).
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Start

Creation of initial Population

Fitness Assessment

Stopping
Condi-
tions

Selection Crossover

Mutation

Choose Best Chromosome

End

Yes

No

Figure 4. Flowchart of GA applied to solve the optimization problem in Equation (6).

From Figure 3, the contribution of the DGs at a predefined location is determined when
considering an EV penetration scenario. If the solution is successful, the EV penetration is
increased. This process is repeated until no solution to the optimization problem is found.
Since there are a number of solutions due to the uncertainty of EV introduction, the best
quality solution is retained. From the above and due to the use of the GA, it is necessary to
perform an exhaustive search for global solutions, since this solution methodology does
not guarantee these solutions. However, this study does not want to focus on the solution
methodology. In other words, the solutions found by the GA will be assumed to be of
good quality. It is more important to know what occurs with the inclusion of the DG and
EVs in DC networks. Therefore, the solution methodology was conceived as a tool for
our analysis.

5. Results and Discussion

In this section, the performance of the methodology when considering the penetration
of EVs and DG simultaneously is presented. For this purpose, the proposed methodology
has been applied to two DC power networks, one with 21 nodes (proposed by [35]) and
the other one with 33 nodes, which was proposed in [54]. In both networks, five types
of EVs have been considered with different operating conditions represented by random
variables such as the home arrival time ta, home departure time td, traveled distance d and
the battery efficiency.

5.1. HC Evaluation for a 21-Bus DC Microgrid

In order to illustrate the penetration of EVs and DG in DC power grids, the behavior
of these two technological elements in a 21-bus DC microgrid [35] was analyzed. This
microgrid is shown in Figure 5. This microgrid is composed of multiple controlled constant
power loads, 21 lines that connect five charging stations and 11 DG units to the main grid.
The parameters of this network can be found in [35]. The charging stations were located
at nodes 8, 9, 17, 20 and 21 and the possible DG locations were placed at nodes 2–5, 7, 8,
10, 14, 16, 18 and 20. The maximum contribution of the DGs is 2 pu, that is, PDG

max = 2 pu.
The minimum and maximum limits of the voltages at the microgrid nodes are 0.95 pu and
1.05 pu, respectively. That is, the voltage has to be maintained within 5% of the base voltage
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based on the recommendation provided by the American National Standards Institute. The
thermal capacity (maximum current) of the branches was set at 1.05 pu. For the charging
station locations, EVs were increased as follows: 10, 20, 50, 100, 200, . . . etc., until the stop
criteria established in Section 4 were satisfied. For the application of the GA, a crossover
fraction of 0.8 was used, a population size of 30, and a maximum number of generations
(or iterations) of 100 were also considered. All tests and simulations were conducted on an
Intel Core i7 PC with a 2.1 GHz processor.

19
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1211
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DG

DGDG

DG

DG

DG

DG

DG

DGDG

DG

Figure 5. A 21-bus DC microgrid proposed in [35].

Figure 6 shows the application of the proposed methodology (see Figure 3) to the
21-bus DC microgrid. On one hand, Figure 6a shows the contribution of all DG units
present in the microgrid considering the penetration of EVs. From this figure, note that for
this network, it was only possible to introduce on average 250 EVs with a contribution of
5.3164 pu of DG without violating voltage, current and power generation limits. In order
to validate this scenario, the experiment was repeated considering sequential quadratic
programming (SQP) and particle swarm optimization (PSO). To apply the PSO algorithm,
c1 and c2, which are constants that influence the local and global best solutions, were both
fixed in 2, and the inertia weight constant ω = 5. From this additional experiment, the SQP
had convergence problems and did not obtain feasible solutions. On the contrary, using
PSO, it was possible to introduce 250 EVs on average with a total contribution of 4.7505 pu
of the distributed resources. On the other hand, Figure 6b shows the contribution of each
DG unit separately considering EVs by means of a color map. This color map reflects by
shades the contribution present in each EV penetration scenario. The shades range from
white to magenta, with white being 0 pu and magenta being 2 pu.

From this color map, the contributions of units at nodes 7, 8, 10, 14 and 18 in all
scenarios are reflected. For the 250 EVs scenario, note that the generation unit of node
14 made a considerable contribution, which was 1.6 pu in the HC assessment. It should
also be noted that the units at nodes 3, 4, 5 and 16 did not supply significantly in the
power generation in the three scenarios. Therefore, it would be interesting to investigate
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the number of these units and its optimal location in order to take full advantage of the
distributed resources. On the other hand, note that when EVs are not considered, i.e., when
the HC of the network is calculated only considering DG, the units connected at nodes 2, 3
and 16 provided generation in this scenario. In other words, the penetration of EVs means
that more DG units must be added (see the units at nodes 7, 8, 10, 14 and 18) to ensure the
safe operation of the network. Finally, Figure 7 shows the behavior of the microgrid losses
with the proposed methodologies and without considering it.
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Figure 6. HC evaluation considering different penetration of EVs in the 21-bus DC microgrid.
The shades range from white to magenta, with white being 0 pu and magenta being 2 pu. (a) DG
Contrubition; (b) Color map of DG contribution.
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Figure 7. Loss behavior considering optimal HC management in a 21-bus DC microgrid.

From Figure 7, the continuous growth of losses when DG penetration is not considered
is evident, which is not the case when considering the proposed methodology. This is
largely due to the fact that some of the DG units coincide with the locations of EV charging
stations. On the other hand, because it is being calculated from optimal DG contribution,
this is reflected in the bidirectional power flows of the grid. The above results validate the
optimal management of the distributed resource when considering the penetration of EVs
while guaranteeing a secure operation of the DC networks. However, it is necessary to
point out that the proposed methodology is computationally expensive. The EV power
calculation step increases as EV penetration increases. This is due to the fact that the
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modeling performed in this study collects daily EV user aspects as reported by Su et al.
in [5] in order to reflect realistic behaviors in DC power networks. In addition, the solution
of the optimization problem takes an average of 6 s per scenario considering this microgrid.
In order to overcome this drawback, Zuluaga et al. in [3] recommend using gamma
probability distributions for low penetration (less than 2000 EVs) of EVs and a normal
probability distribution for high penetration of EVs. On the other hand, the behavior of
the proposed methodology, as shown in the above figures, can be substantially limited due
to the thermal restriction of the conductors or the ampacity of the main microgrid feeder,
as stated by Lamedica et al. in [55] in the case of AC networks. Finally, the impact of the
number of DG units and their maximum capacity on this microgrid was also analyzed.
For the above, the experiments shown in Figure 6a were repeated but considering 7 and
16 DGs units, and the capacity of these units was reduced to 1 pu (PDG

max = 1 pu). Considering
the above, a relationship between the HC of the network and PDG

max is observed. That is,
if the capacity of the DGs is reduced, the HC of the network is also reduced, and vice versa.
On the other hand, if more DG units are added, the HC of the network increases and more
EVs can be introduced, and vice versa.

5.2. HC Evaluation for a 33-Bus DC Grid

After examining the behavior of the proposed methodology in a small-scale network,
the performance of the methodology was analyzed when the number of nodes is increased.
Specifically, a 33-bus DC network proposed by [54] was considered. All variables and
constraints from the previous experiment were taken into consideration; only the properties
of the network and its parameters were changed. The location of the DG was established
at nodes 2, 4, 6, 8, 11, 14, 17, 20, 22, 25, 26, 27, 30 and 32. On the other hand, five charging
stations for EVs were considered, which are located at nodes 6, 13, 20, 26 and 33. Figure 8
shows the behavior of the methodology after considering a penetration of 50 EVs up to 50k
EVs on average.
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Figure 8. HC evaluation considering different penetration of EVs in the 33-bus DC grid. The shades
range from white to magenta, with white being 0 pu and magenta being 2 pu. (a) DG Contrubition;
(b) Color map of DG contribution.

From Figure 8a, note that the optimal HC evaluation was of 9.2 pu and 50k EVs on
average for this network, ensuring a safe operation of this DC grid. From Figure 8b, it can be
seen that the vast majority of the units provide power to the grid. However, the generation
unit at node 25 did not provide power when considering the penetration of EVs. From the
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above graph, it can also be mentioned that the DG units at nodes 2, 4, 17, 20 and 27 make
a significant power contribution in the scenarios considered. Finally, Figure 9 shows the
behavior of the DC network losses when only EVs are considered and when the proposed
methodology is applied. As in the microgrid, the behavior of losses when considering the
proposed methodology shows the improvement compared to when only the penetration
of EVs is considered. This constant behavior of the losses was for the following reasons:
firstly, with the solution of the optimization problem, it is being ensured that the voltages
are between 0.95 and 1.05 pu, which does not happen when the proposed methodology
is not considered. Secondly, several DG units coincide with the locations of EV charging
stations. This makes the relationship between the penetration of EVs and the contribution
of DGs units proportional, i.e., As the penetration of EVs increases, so does the contribution
of DG units. Therefore, currents on the main branches are reduced.
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Figure 9. Loss behavior considering optimal HC management in a 33-bus DC distribution network.

6. Conclusions

This paper presented a hybrid methodology for estimating the hosting capacity of
isolated DC networks considering DG and EVs. This hybrid methodology was performed
by combining an optimization approach and an MCS process. EV charging in estimating DC
network hosting capacity was through MCS-based modeling, which incorporated random
variables such as home arrival time, home departure time, traveled distance and the
battery efficiency from a fleet of five types of EVs. The maximum capacity of the DGs was
performed by solving an optimization problem considering the EV charging probabilistic
model. The methodology was applied to two isolated DC networks: a 21-bus DC microgrid
and a 33-bus DC grid. From the results, we demonstrated the possible penetration of DG
and EVs in isolated DC networks, and it is also possible to reduce the active power losses
without violating the operational limits of these networks. It is necessary to emphasize
that this hybrid methodology, which is based on MCS, is computationally expensive when
increasing the number of nodes of the grid and the number of EVs. As future work, it is
necessary to include the number of DG units, the locations of these units and the charging
stations in the optimization approach to make the best use of distributed resources. It is
also possible to improve the proposed methodology by considering the charger efficiency
of EV charging stations.
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HC Hosting Capacity
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