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Abstract: Intelligent power grid fault diagnosis is of great significance for speeding up fault process-
ing and improving fault diagnosis efficiency. However, most of the current fault diagnosis methods
focus on rule diagnosis, relying on expert experience and logical rules to build a diagnosis model,
and lack the ability to automatically extract fault knowledge. For switch refusal events, it is difficult
to determine a refusal switch without network topology. In order to realize the non-operating switch
identification without network topology, this paper proposes a power grid fault diagnosis method
based on deep reinforcement learning for alarm information text. Taking the single alarm information
of the non-switch refusal sample as the research object, through the self-learning ability of deep
reinforcement learning, it learns the topology connection relationship and action logic relationship
between equipment, protection and circuit breakers contained in the alarm information, and realizes
the detection of fault events. The correct prediction of the fault removal process after the occurrence,
based on this, determines the refusal switch when the switch refuses to operate during the fault
removal process. The calculation example results show that the proposed method can effectively
diagnose the refusal switch of the switch refusal event, which is feasible and effective.

Keywords: alarm information; deep reinforcement learning; fault diagnosis; deep Q-network

1. Introduction

At present, with the continuous development of new power systems with new energy
sources, the power grid structure is becoming more and more complex, and the power
system tends to be power electronic and distribution network active. Power grid faults
show more complex modes, and fast and intelligent power grid fault diagnosis has become
an urgent need for current power grid dispatchment [1].

Power grid fault diagnosis is an effective means to control the development of faults
by analyzing the electrical and non-electrical fault information collected by the monitoring
system to determine the fault area and identify the faulty equipment. Experts and scholars
in the field of electric power have conducted in-depth research on this and have proposed
systems based on expert systems [2], Bayesian networks [3], fuzzy sets [4], and analytical
models [5] as well as other rule-based power grid fault diagnosis methods. These methods
establish a diagnostic model based on the fault occurrence mechanism and power grid
topology, transform the diagnosis process into a model solving problem, and realize
the correct diagnosis of most fault events. However, with the scale expansion, complex
structure and intelligent system of China power grid, the information uploaded from
the secondary measurement monitoring device to the energy management system (EMS)
is rapidly expanding, and it is developing in the direction of a mass scale. The above
diagnostic methods cannot be the direct fault diagnosis of massive alarm information, as
the information still needs to rely on manual experience to screen key information first,
which cannot meet the needs of rapid diagnosis.
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In recent years, artificial intelligence technology represented by deep learning has
become good at dealing with complex and uncertain problems and has strong advantages
in feature self-learning, end-to-end, etc. [6–9], which provide new opportunities for power
grid fault diagnosis ideas. Reference [10] proposes a fault diagnosis method for MTDC
lines that takes into account both rapidity and accuracy in view of the characteristics of the
fast rise of fault currents. A dual-branch structure convolutional neural network—Parallel
Convolutional Neural Network (PCNN)—of the road and fault location branch is proposed,
as is a P-CNN training method based on transfer learning. Reference [11] builds a data-
driven model for fault diagnosis and fault location based on electrical quantities. However,
this research is based on the PMU measurement data and cannot be carried out for alarm
information. In [12,13], the k-means clustering method is applied to realize power grid
diagnosis with the text mining [12] and fault coding [13] of alarm information as model
inputs. Reference [14] proposes a method for the autonomous recognition of alarm events
by fusing a knowledge base and deep learning using a convolutional neural network (CNN)
for the local feature extraction of alarm information to achieve the intelligent recognition
of alarm events. Reference [15] takes the text of power grid fault handling plans as the
research object and proposes a top-down and bottom-up method for constructing a power
grid fault handling knowledge graph and solves the problem of knowledge extraction in
the power field. In [16], the text vectorization of alarm information is completed and a
vector space model of alarm information is established. The fault types are output through
the random forest (RF) model, achieving high diagnostic accuracy. Reference [17] proposes
a fault diagnosis method for a power grid based on a deep pyramid convolutional neural
network (DPCNN). A fault classification model and key information extraction model
based on DPCNN are established for alarm information sets and a single alarm information
text, which realizes fault classification and key information extraction. However, since the
alarm information is a plain text data, it lacks the description of the power grid topology.
For more complex fault types, such as switch refusal and protection refusal, the above
fault diagnosis method still needs to combine the power grid topology to identify the
refusal equipment.

Therefore, how to determine the refusal device only based on the text of the alarm
information in the absence of a network topology needs to be solved urgently. If a single
alarm message of a non-switch refusal sample is used as the research object, the logi-
cal relationship between equipment, protection and circuit breakers contained in each
alarm message is studied, and then the text of the alarm message when the normal fault
is removed can be predicted. The prediction process of alarm information is regarded
as a sequence decision problem, and deep reinforcement learning [18–21] can be used
to analyze data features and make decisions to solve this problem. Deep reinforcement
learning combines the powerful perceptual understanding ability of deep learning and the
decision-making ability of reinforcement learning to achieve a one-to-one correspondence
from perception to action [22,23]. Deep learning uses information from the environment
to extract features and generate a state representation of the current environment. Rein-
forcement learning achieves a desired goal based on the current state. Deep learning uses
information from the environment to extract features and generate a state that represents
the current environment. Reinforcement learning achieves a desired goal based on the
current state. Currently, deep reinforcement learning has achieved remarkable results in
many aspects involving power systems, such as the coordinated control of hybrid energy
storage in microgrids [24], unit trip strategy in emergency situations [25], and AGC strategy
research [26], etc. In turn, it shows its effectiveness in solving decision-making problems.
For example, [26] explored a deep reinforcement learning algorithm for action exploration
perception thinking, namely DDQN-AD, from the perspective of automatic power gen-
eration control. By taking the prediction mechanism of the neural network as the action
selection mechanism of reinforcement learning and introducing the AD strategy with action
exploration perception thinking and taking the regional control error and carbon emission
as the comprehensive reward function, the optimal control strategy in the strong random
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environment is obtained. Then the random disturbance problem caused by the large-scale
access of distributed energy to the power grid is solved

In this paper, a deep reinforcement learning-based grid fault diagnosis method is
proposed to identify refusing equipment in the absence of network topology. First, the text
environment of the alarm information is transformed into a vectorized alarm information
sequence environment and then the state, action and reward of the deep reinforcement
learning agent DQN model are clearly defined in order to complete the connection between
the DQN agent and the alarm information sequence environment interactions; then a deep
reinforcement learning agent that can accurately predict the text of alarm information
can be trained. Then, taking the alarm information of non-switch refusal samples as
the research object, the intelligent agent is used to learn the logical relationship between
equipment, protection and circuit breakers contained in each alarm information, so as to
realize the correct fault removal process after the fault event occurs. Predictions, based on
this, determine the refusal switch when the switch refuses to act during the fault removal
process. Finally, the effectiveness and feasibility of the method are verified based on the
alarm information of the simulation system and the actual power grid.

2. Deep Reinforcement Learning
2.1. Reinforcement Learning

Different from deep learning, reinforcement learning does not need to add labels to a
large number of sample data for supervised training. Feedback can be used to achieve the
purpose of learning and finally find the optimal strategy that solves the problem.

The learning process of reinforcement learning can be represented by a Markov deci-
sion process (MDP), which can be represented by a quadruple (s, a, p, r), defined as the
four elements of reinforcement learning. The elements are defined as follows:

1. State (s): the observation results of the environment, the state is different at different
times, and the state at each time constitutes the state space S;

2. Action (a): The behavior of the agent according to the state, and the actions taken in
different states can constitute the action space A;

3. State transition probability (p): the probability that the agent will transition to a
specific state at the next moment after taking corresponding actions according to the
current state obtained from the environment;

4. Reward (r): The reward value of the environment for the agent to enter the next state
after taking a certain action in the current state.

The Markov decision process is shown in Figure 1. After the process is over, the
agent obtains an action sequence, called a policy, denoted as π, and returns the cumulative
reward of the policy, as shown in Equation (1).
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Figure 1. Markov decision process.

Gt = rt+1 + γrt+2 + γ2rt+3 + γ3rt+4 + · · · =
∞

∑
k=0

γkrt+k+1, (1)

In the formula, Gt is the reward value obtained from the environment at time t and
γ is the discount factor, indicating the weight of the future reward in the cumulative
reward value.
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For the strategy π, the larger the cumulative reward value during the execution
of the entire strategy, the better the strategy. Therefore, the state–action behavior value
function Qπ(s, a) is introduced to evaluate the value of executing action a in a specific
state s, and the Bellman value of Qπ(s, a) is calculated. The optimal strategy is obtained
by the iterative solution of the equation, Qπ(s, a), and its Bellman equation is shown in
Equations (2) and (3).

Q(s, a) = Eπ [Gt|st = s, at = a ], (2)

Qπ(s, a) = Eπ [rt+1 + γQπ(st+1, at+1)|st, at] , (3)

2.2. Deep Q-Network

The Deep Q-network (DQN) is a typical deep reinforcement learning method based
on value function. It uses DNN to approximate the reward value function and solves
the problem of the dimension disaster of iteratively solving the value function when the
state space is large. The DQN algorithm uses a DNN with a weight of θ to approximately
represent the current value function, then calculates the loss function according to the
correct Q value provided by reinforcement learning and continuously updates the network
weight θ by making the loss function L(θ) reach the minimum. L(θ) and the update of the
weight θ are:

L(θ) = E[(Yi −Q(st, at; θ))2] = E[(rt+1 + γmax
a

Q(st+1, at+1; θ)−Q(st, at; θ))2] (4)

θt+1 = θt + α(rt+1 + γmax
a

Q(st+1, a; θ)−Q(st, at; θ))∇θQ(st, at; θ), (5)

Of these, Yi is the optimization objective of the value function, that is, the target Q
value; Q(st, at; θ) is the estimation of Q(st, at); and α is the learning rate.

In order to reduce the strong correlation between the Q value output by the network
and the target Yi and improve the stability of the algorithm operation, DQN uses a separate
network, that is, the target net to generate the target Q value during the training process.
During the training process, the parameters θ of the current network must be updated for
each step, while the parameters θ′ of the target network remain unchanged. Only after the
C-step iteration are the parameters of the current network copied to the target network. At
this point, the loss function is:

Li(θi) = E[rt+1 + γmax
a

Q(st+1, at+1; θ′ i)−Q(st, at; θi))
2
], (6)

In the formula, θi is the parameter value of the current network when running the i-th
step and θ′ i is the parameter of the target network.

Update the current network parameter θ and target network parameter θ′ by the
stochastic gradient descent:

∇θ L(θ) = E(r + γmax Q(st+1, at+1; θ′)−Q(st, at; θ)]∇Q(st, at; θ), (7)

θi+1 = θi + α∇θi Li(θi), (8)

θ′ i = θi+C, (9)

In addition, under the DQN algorithm, the agent usually adopts the ε-greedy strategy
to select the action of each step from the action set, that is, when the probability is less
than ε, the action is randomly selected; otherwise the action with the highest Q value at the
current moment is selected, as shown in the following formula:

π(a|s ) =
{

ε/m + 1− ε i f a = argmax Q(s, a)
ε/m others

, (10)

Of these, m is all optional actions.
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At the same time, DQN introduces an experience replay mechanism, which stores
the experience of each step in the experience pool and forms a replay experience memory
sequence. When training DNN, the corresponding number is randomly selected from
the experience pool according to a certain batch size each time. The historical samples
are used for training and the parameters of the neural network are updated, which im-
proves the update efficiency of the neural network and reduces the correlation between the
sample data.

3. Power Grid Fault Diagnosis Model Based on DQN

The process of alarm information text prediction can be regarded as a sequence
decision problem, so the deep reinforcement learning method can be used for prediction.
In this paper, the deep Q network (DQN) model is selected as the fault diagnosis model.

3.1. Alarm Information Text Processing

Since the alarm information text is completely based on the natural language text
environment, the alarm information text should be digitized first and each alarm informa-
tion should be converted into a digital vector representing its semantics, taking the alarm
information samples shown in Table 1 as an example (the time information of each alarm
information is not necessarily related, so it has been de-sequentially processed).

Table 1. Alarm information example.

Device Protection Protection/Switch State

Yandang station main transformer fault recorder Recorder starts Action
Yandang station 220 kV fault recorder Recorder starts Action
Yandang station 110 kV fault recorder Recorder starts Action
Yandang station 10 kV Yan 957 Line Protect Action
Yandang station 10 kV Yan 957 Line Overcurrent I stage Action

Yandang station 10 kV Yan 957 Line 957 Switch 0 Switch general outlet tripping action
Yandang station 10 kV Yan 957 Line 957 Switch 0 Open

Yandang station 10 kV Yan 957 Line Protect Reset
Yandang station 10 kV Yan 957 Line Overcurrent I stage Reset
Yandang station 10 kV Yan 957 Line Recloser Action

Yandang station 10 kV Yan 957 Line 957 Switch 0 Close
Yandang station 10 kV Yan 957 Line 957 Switch 0 Spring not charged action

Yandang station 10 kV Yan 957 Line Recloser Reset
Yandang station main transformer fault recorder Recorder starts Reset

Yandang station 220 kV fault recorder Recorder starts Reset
Yandang station 110 kV fault recorder Recorder starts Reset

Yandang station 10 kV Yan 957 Line 957 Switch 0 Switch general outlet tripping reset
Yandang station 10 kV Yan 957 Line 957 Switch 0 Spring not charged reset.

It can be seen that each alarm information is determined by device, protection and
protection/switch state. The state composition represents a piece of alarm information as a
quadruple m vectorized by device, protection, protection state and switch state.

m = (d, p, ps, bs), (11)

In the formula, d is the device number, p is the protection number, ps is the protection
state and bs is the switch state. The settings of each parameter are as follows:

1. d is the number of the device in the device set and the device set consists of the devices
included in all training samples. For example, only for the alarm information samples
shown in Table 1, d ∈ {0, 1, 2, 3, 4}, d = 0 can be set to mean “Yandang station main
transformer fault recorder”, d = 1 means “Yandang station 220 kV fault recorder”,
d = 2 means “Yandang station 110 kV fault recorder “, d = 3 means “Yandang station
10 kV Yan 957 Line “ and d = 4 means “Yandang station 10 kV Yan 957 Line 957 Switch“;
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2. p is the number of the protection in the protection set, and the protection set consists
of protections contained in all training samples. For example, only for the alarm
information samples shown in Table 1, p ∈ {0, 1, 2, 3, 4}, where p = 0 means the
recorder starts, p = 1 means protect, p = 2 means overcurrent I stage, p = 3 means
recloser and p = 4 means no protect;

3. ps ∈ {0, 1, 2}, ps = 0 means no protection signal, ps = 1 means protection action and
ps = 2 means protection reset;

4. bs ∈ {0, 1, 2, 3, 4, 5, 6}, bs = 0 means no switch signal, bs = 1 means the switch general
outlet tripping action, bs = 2 means the switch general outlet tripping reset, bs = 3
means the switch is open, bs = 4 means the switch is closed, bs = 5 means the spring is
not charged action and bs = 6 means the spring is not charged to reset.

According to the setting of the above parameters, the entire fault occurrence pro-
cess can be represented by the alarm information sequence M = {m1, m2, · · · , mn}. The
vectorized alarm information vector sequence is shown in Formula (12):

M = {m1, m2, · · · , m13} = {(0, 0, 1, 0), (1, 0, 1, 0), (2, 0, 1, 0), (3, 1, 1, 0), (3, 2, 1, 0),
(4, 4, 0, 1), (4, 0, 0, 2), (3, 1, 2, 0), (3, 2, 2, 0), (3, 3, 1, 0), (4, 4, 0, 4), (4, 4, 0, 5),
(3, 3, 2, 0), (0, 0, 2, 0), (1, 0, 2, 0), (2, 0, 2, 0), (4, 4, 0, 2), (4, 4, 0, 6)}

(12)

3.2. Design of Fault Diagnosis Model Based on DQN

After converting the alarm information text environment into a vectorized alarm infor-
mation sequence environment, it is necessary to clearly define the state, action and reward
of the DQN model of the deep reinforcement learning agent to complete the communication
between the DQN agent and the alarm information sequence environment interaction, and
then train it to obtain a deep reinforcement learning agent that can accurately predict the
text of the alarm information.

In this paper, the text prediction of alarm information is carried out using “multiple
input and single output”, that is, the first n alarm information is input to predict the n + 1
alarm information. At this time, the definitions of status, action and reward are as follows:

1. State: The state is the current input obtained by the agent from the environment. For
the text prediction of alarm information, the environment is the sequence of alarm
information vectors corresponding to the text. Since DQN uses multiple inputs to pre-
dict, the state is set to the quadruple sequence corresponding to n alarm information,
and its initial state s0 is:

s0 = (m1, m2, · · · , mn), (13)

When the input s0 predicts the n + 1th alarm information mn+1, the first n − 1 alarm
information and the predicted n + 1th alarm information quadruple are combined as the
next state, namely:

s1 = (m2, · · · , mn, mn+1), (14)

and so on in order to obtain the next state after each action. Assuming that an alarm
information sample contains one piece of alarm information, the state set corresponding to
the sample is:

S = {s0, s1, · · · , sl−n}, (15)

2. Action: After the agent obtains the current state information from the environment,
it needs to select an action from the action space according to a certain strategy to
predict the next alarm information. Since a single alarm message consists of device
number, protection number, protection state or switch state, the action is designed
as a combination of the above four elements, and the action space is the different
combinations of device number, protection number, protection state and switch state.
The agent achieves state transition by selecting actions from the action space.

A = {(d, p, ps, bs)|d ∈ (1, t), p ∈ (1, k), ps ∈ (0, 2), bs ∈ (0, 5)}, (16)
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Of these, t is the number of devices in the device set, and k is the number of protections
in the protection set.

3. Reward: When the agent selects an action according to the strategy, its state transitions.
At this point, the action needs to be evaluated through the reward function to get the
feedback of the environment on the action. In the text prediction process, the reward
function is set by comparing the prediction result with the actual alarm information,
so as to minimize the difference and maximize the prediction accuracy.

For the predicted alarm information quadruplet, it is necessary to judge whether each
element is the same as the element in the actual quadruple, count the number of different
elements, and the design reward values of different sizes accordingly. The reward function
is shown in the following formula.

reward =

{
2 error = 0

1
error error 6= 0

, (17)

Of these, error is the number of different elements in the predicted quadruple and the
actual quadruple, and error = 0 or 1 or 2 or 3 or 4.

According to the above definitions of states, actions and rewards, the complete inter-
action process between the DQN agent and a single alarm information text environments
can be obtained, as shown in Figure 2. The alarm information vector sequence in the figure
is M = {m1, m2, m3, · · · , mn}, each alarm information is represented by a color, input three
alarm information for prediction, and m′4, m′5, · · · , m′n−1, m′n represent the corresponding
prediction result. If the prediction result does not match the actual alarm information, it
will be distinguished by different colors.
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3.3. Fault Diagnosis Process Based on the DQN

Based on the above design of the DQN model, this paper trains the DQN prediction
model for the set of non-switch refusal alarm information of different fault types to achieve
the accurate prediction of the removal process of various faults and identify the refusal
switch of the switch refusal sample accordingly. Figure 3 is the flow chart of using the DQN
model to identify the refusal switch of the switch refusal fault sample, which is divided
into two parts: agent training and testing.
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The DQN training process is shown in Figure 4. First, samples of different fault types,
such as line faults, bus faults and transformer faults, are converted into corresponding
alarm information vector sequences. The DQN model obtains the state s from it, takes action
a and outputs the predicted next alarm information m′ and the reward r and the next state s′

will be fed back and at the same time, it will be put (s, a, r, s′) into the experience playback
pool. After n-step prediction, judge the prediction accuracy rate of n alarm information.
If the accuracy rate is less than 50%, continue to train the first n alarm information. If it
is greater than 50%, obtain a new state from the alarm information set, and so on. The
training of the DQN model is carried out by randomly sampling samples of a certain batch
size from the experience pool. After multiple training optimizations, the trained model is
saved for use in online fault diagnosis.

During the test, select a switch refusal fault sample, also perform vectorization pro-
cessing on it, obtain the initial state and input it into the saved DQN model, and compare it
with the actual alarm information text for each step of prediction, then output the refusal
through the comparison switch.

The specific steps of grid fault diagnosis based on DQN are as follows:

1. Prepare historical alarm information samples of line, bus and transformer failures
without the switch and refusal to act, perform de-sequencing processing and vector-
ization processing on the samples, and express the alarm information text as an alarm
information vector sequence;

2. Obtain the initial state of the alarm information text and input it into the DQN, and
train the DQN agent through continuous interaction with the environment of the
alarm information vector sequence;

3. Set the number of training rounds (episodes), and repeat Step 2 until the loss function
is the smallest;

4. After the DQN training is completed, vectorize the tested switch refusal fault samples
to obtain the initial state and input it into the DQN model for prediction;

5. For each prediction step, compare the predicted result with the actual alarm informa-
tion, until the comparison result is different, end the prediction and output the switch
that refuses to act.
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4. Example Verification
4.1. Sample Data

In order to reflect the prediction ability of the DQN model for different power grid
data, this paper adopts the TS2000 fault samples and the alarm information set of the actual
power grid to train the model. The composition of the two types of training samples is
as follows:

1. The TS2000 fault samples are non-switch refusal samples with simple faults on lines,
busbars and transformers. Since the deep reinforcement learning agent can contin-
uously repeat training by setting multiple episodes, in order to reduce the training
time and speed up the convergence speed, you can use the A small number of fault
samples are used for training, and the composition of the training samples is shown
in Table 2;

2. The actual alarm information set is the alarm information within a period of time
randomly intercepted according to different time window sizes from the historical
monitoring alarm information. As shown in Table 3, the alarm information sets within
10 min, 20 min, 30 min, 50 min and 1 h were selected as training samples from a certain
moment of historical monitoring and only the first 10 min in the alarm information
set A fault event occurs within the time period, and the alarm information in the rest
of the time period is non-fault information.

Table 2. TS2000 simulation system training sample composition.

Line Fault Busbar Fault Transformer Fault

Number of samples 10 4 10

Table 3. Sample composition of actual alarm information set.

10 min 20 min 30 min 50 min 1 h

Number of alarm information 46 65 90 198 252

4.2. Evaluation Index

1. Average reward: The agent trains multiple episodes, executes a certain number of
steps in each episode, records all the reward values obtained and averages them to
obtain the average reward value for each round;
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2. Average Q value: After determining the set of state–action pairs, the agent tracks
the maximum predicted Q value corresponding to these states at each step in each
training round and takes the average to obtain the average Q value of each round.

4.3. Algorithm Parameter Settings

The DQN model predicts in the way of “multiple input and single output”. The size
of its state dimension (n_features) changes with the number of input alarm information. In
this paper, 2, 3 and 4 alarm information are input, respectively, judging the average reward
value and average Q value under different state dimensions (n_features = 8, 12, 16) and the
experimental results are shown in Figure 5.
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It can be seen that the average reward value and average Q value increase with the
increase of the state dimension. Since the purpose of the alarm information prediction in
this paper is to compare with the rejection samples, the amount of input alarm information
should not be too large, so the state dimension is determined to be 16, the rest of the
algorithm parameters have been trained and tested many times and the parameter values
are determined according to the prediction accuracy, as shown in Table 4.

Table 4. DQN parameter table.

DQN Parameters

learning_rate 0.01
Gamma 0.9

replace_target_iter 200
greedy_increment 0.001

ε 0.95
step 5

episode 5000
batch_size 128

4.4. Analysis of Results

According to the selected alarm information samples and parameters, the DQN model
is trained. As shown in Tables 5 and 6, the prediction results of the models for the simulated
fault samples and the actual fault samples, respectively. Among them, the key information
refers to the alarm information of equipment protection and circuit breaker action.

Table 5. Sample diagnosis results.

Line Fault Busbar Fault Transformer Fault

Total number of
alarm information 44 145 56

Number of key information 16 56 21
Predict the correct

number of key information 16 46 20

Key information
prediction accuracy 100% 82.1% 95.2%

Overall prediction accuracy 93.2% 58.3% 88.5%

Table 6. Sample diagnosis results.

10 min 20 min 30 min 50 min 1 h

Number of alarm information 46 65 90 198 252
Predict the correct number of

alarm information 40 50 65 132 120

Prediction accuracy 86.9% 76.9% 72.2% 66.7% 47.6%

It can be seen from Table 5 above that, in terms of overall alarm information prediction,
the prediction accuracy of line fault samples is the highest, followed by transformer faults,
and the lowest accuracy of busbar faults. This is because there are fewer electrical devices
involved in the alarm message text when the line is faulty, its logical relationship is relatively
simple and the DQN model can easily learn the relationship. In the power grid topology,
transformers and busbars are closely connected with other devices. When the transformer
or busbar fails, the protection and circuit breakers of other devices (except the faulty device)
will also act accordingly. The logic and relationship between the devices are more complex
and it is difficult for the DQN model to accurately learn all the alarm information, but it
can achieve a good prediction effect in the prediction of key information.
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It can be seen from Table 6, with the continuous expansion of the alarm information
time window, the number of alarm information continues to increase and the number
of model training rounds also increases, but the prediction accuracy decreases with the
increase of the number of alarm information. The reasons are as follows:

1. The more alarm information, the more devices and protections, the more complex
the topology connection and action logic relationship, the more difficult the model
learning and the lower the prediction accuracy;

2. There are few fault events in the actual alarm information set. For example, the alarm
information set used for training in this paper contains only one fault event, and
the proportion of fault alarm information is small, most of which is non-fault alarm
information. The logical relationship with the circuit breaker action is not clear, and
the model is not easy to learn.

In order to better evaluate the text prediction ability of the DQN model, this paper
evaluates the model according to the sample complexity and selects three types of samples:
simple fault, switch refusal fault and developmental fault and input them into the model
for training and testing. The average reward and sample prediction accuracy are used
as evaluation metrics. The average reward during training and the average prediction
accuracy of test samples are shown in Figures 6 and 7, respectively.
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It can be seen that the model prediction accuracy is greatly affected by the sample
complexity. The higher the sample complexity, the more complex the logical relationship
between equipment, protection and circuit breakers, the more difficult the model is to learn
and the lower the prediction accuracy.
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4.5. Case Analysis

This section selects the switch refusal samples generated by the TS2000 simulation
system for testing. In the TS2000 simulation system, Yandang Station 10 kV Yan 957 line
is set to have an AB phase-to-phase short-circuit instantaneous fault and the 957 switch
refuses to move.

Using the above fault diagnosis method, the first four alarm messages are used as
input to diagnose the fault case. The results are shown in Table 7. It can be seen that
when the DQN model predicts the alarm information numbered 6, the prediction result is
different from the actual one. The alarm information is different, so it is recognized that the
“Yandang Station 10 kV Yan 957 Line 957 switch“ refuses to move.

Table 7. Diagnosis results.

Number Prediction Result Actual Alarm
Information Diagnosis Results

5 10 kV Yan 957 line
overcurrent section I

10 kV Yan 957 line
overcurrent section I None

6
10 kV Yan 957 line

957 switch general outlet
tripping action

10 kV Yan 957 line
957 switch general outlet

tripping action
None

7 10 kV Yan 957 line
957 switch open

10 kV Yan 957 line
protection

10 kV Yan 957 Line 957
switch refuses to move

. . . . . . . . . . . .

5. Conclusions

In view of the intelligent demand of power grid fault diagnosis, this paper proposes a
power grid fault diagnosis method based on deep reinforcement learning, which realizes
fault diagnosis based on power grid alarm information, which is of great significance for
improving the level of power grid intelligence:

1. This paper proposes a DQN-based power grid fault diagnosis method. Aiming at
the problem that it is difficult to determine the refusal switch under the no network
topology, a deep reinforcement learning fault diagnosis method oriented to alarm
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information is designed and a fault diagnosis model based on DQN is established.
Through the learning and prediction of the implicit logical relationship between
equipment, protection and circuit breaker actions by the reinforcement learning agent,
the normal fault removal process when the fault event occurs is obtained, and then
compared with the fault removal process of the switch refusal sample, which identifies
the refusal switch. The experimental results show that the method can learn the logical
relationship between the equipment, protection and circuit breaker actions contained
in the alarm information without analyzing the network topology structure and then
identify the faulty equipment, which is feasible and effective;

2. The fault diagnosis method based on DQN proposed in this paper is greatly affected
by the complexity of the samples, the prediction accuracy of complex fault samples is
low and the refusal switch of complex faults may not be correctly identified. Therefore,
the follow-up work should further improve the model. It can improve the diagnosis
model, improve the fault tolerance rate of the model for complex fault samples, and
then can correctly diagnose the refusal switch of complex fault samples.
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