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Abstract: The main purpose of the work was examining various methods of decomposition of a net-
work optimization problem of simultaneous routing and bandwidth allocation based on Lagrangian
relaxation. The problem studied is an NP-hard mixed-integer nonlinear optimization problem. Mul-
tiple formulations of the optimization problem are proposed for the problem decomposition. The
decomposition methods used several problem formulations and different choices of the dualized
constraints. A simple gradient coordination algorithm, cutting-plane coordination algorithm, and
their more sophisticated variants were used to solve dual problems. The performance of the proposed
decomposition methods was compared to the commercial solver CPLEX and a heuristic algorithm.

Keywords: green networking; network optimization; multi-criteria; routing; bandwidth allocation;
optimization; MINLP; MIQP; NP-hard problems; branch and bound; Lagrangian relaxation; dual
problem; simple gradient algorithm; cutting-plane method; Pyomo; CPLEX

1. Introduction

As the latest reports say [1,2], during the first wave of the COVID-19 pandemic in the
spring months of 2020, the global Internet traffic increased by almost 40%. This growth was
prompted by telecommuting, sharp demand for video conferencing, online gaming, video
streaming and social networking. It means that at the beginning of the pandemic crisis
there was quite a big capacity surplus in almost all networks. In the same 2020 year, data
transmission networks consumed 260–340 TWh or 1.1–1.4% of global electricity use [1]. It
is expected that a strong growth in demand for the data centre and network services will
continue at least until the end of this decade [3], particularly because of video streaming
and gaming. For example, in 2022, they are supposed to make up 87% of consumer Internet
traffic [1]. On the other hand, at the beginning of 2022, a global energy crisis has started
and we have been observing unprecedented increase in electricity and energy commodities
prices and the threat of their shortages. All this makes it more important than ever to use
the network infrastructure efficiently to guarantee the highest possible quality of service
with the lowest possible energy consumption.

The optimization problem taking into account these two criteria: a penalty for not
achieving the eligible flow rates for connections and the total links cost was first formulated
by Gallager and Golestaani as early as in 1980 [4]. The deep analysis of this model can
be found in [5]. The authors assumed there a multi-path routing and transformed the
problem to a standard multicommodity flow problem, which in the convex case could be
solved efficiently by any continuous, nonlinear solver. Unfortunately, this approach is not
applicable to modern data networks, since such networks have, as a rule, high fixed energy
costs (even at low utilisation) and the link power cost cannot be well described by means
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of a continuous function [1]. Such more realistic formulations with binary variables have
been presented in the last years in a connection with energy-aware aka green networks
idea [6–13].

The first works on two-criteria network control, optimizing simultaneously both
routing and flow rates, appeared in the 1990s [14–16]. Because routing variables are
binary, these problems are of mixed-integer type, which means that they are NP-hard and
as such for larger networks they require specialized suboptimal, heuristic algorithms to
obtain an approximate solution in time acceptable for online application. Such methods
were presented in the multi-path case in the papers [17–19] and in the single-path case
in [14–16,20,21], all for the linear objective function case. Quite often, these heuristics used
Lagrangian relaxation of the problem.

The precise model for quadratic problems, to be solved by a mixed-integer quadratic
programming (MIQP) solver, such as CPLEX or Gurobi, was presented in the paper [22].
Unfortunately, the time of solving this problem and obtaining the exact solution is unac-
ceptable in real-time systems. In this paper, the authors are trying to find an algorithm that
delivers an approximate solution in short time.

This paper studies and analyzes different methods allowing for decomposing mixed-
integer constrained nonlinear optimization problems using Lagrangian relaxation. De-
composition methods solve large-scale problems by splitting them into several smaller
subproblems [23–25]. In most cases, they exploit the special structure of an optimiza-
tion problem. A simple decomposable problem structure contains several independent
subproblems, which are coupled with constraints and, as a result, the problem can be
solved with a lower computational cost, since subproblems are usually much easier to solve
than the original problem; moreover, the independence of these subproblems allows for a
parallel solution.

Lagrangian relaxation was selected as a general decomposition technique allowing
for transforming a problem having an additively separable form [23,24,26]. Usually, in
discrete or mixed-integer nonlinear programming (MINLP), Lagrangian relaxation is used
to retrieve a tight estimate of the optimal objective, and further this estimate can be used in
a combination with other methods such as branch-and-bound. As a result of decomposi-
tion methods’ application, one obtains several independent subproblems (so-called local
problems) and the master problem. They are solved iteratively, and the master problem
provides parameters for local problems. These parameters are Lagrange multipliers. A
deep study on the effectiveness of different optimization algorithms at the master level is
presented in [21]. In the last decade, Lagrangian relaxation became a very popular approach
to find a near-optimal solution in many practical MINLP problems, including: production
planning [27,28], ecology [29], the electrical power industry [30], water distribution [31],
supply chain networks [32–34], transportation [35,36], communication networks [37–39],
and service systems [40].

In our work like in [21], both different versions of relaxations (dualizations) are
analyzed and different approaches to solve the master (coordination) problem are used.
We generalize the model from [16,21] because we analyze problems with a nonlinear
cost function corresponding to QoS. One of our demand relaxations is quite similar to
that of [16,21], but we do not dualize mixed constraints concerning individual arcs, what
reduces the dimension of the coordination (dual) problem.

The paper is organized in the following way: Section 2 presents in detail a problem
of simultaneous routing and bandwidth allocation in green networks, Section 3 discusses
a general decomposition framework used in the paper, Section 4 contains detailed in-
formation about several approaches to the decomposition of the problem formulations
presented in Section 2. In Section 5, coordination algorithms are introduced, and the results
of the numerical tests for the decomposition methods are presented in Section 6. Section 7
summarizes and discusses the results.
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2. Problem Formulation

The problem of the simultaneous routing and flow rate optimization can be described
as finding single path routing and flow rates’ values satisfying network constraints for
every source–destination pair [22].

The following items are used in the mathematical formulation of the problem:
N, i ∈ N - set of all network nodes and a single node, respectively;
A, (i, j) ∈ A - set of all network arcs and a single arc, respectively;
G(N, A) - network (graph) for which the optimization problem is formulated;
L, l ∈ L - set of all labeled links and a single labeled link, respectively;
e : A→ L - one-to-one mapping from arcs to links labeled by a single natural

number;
W, w ∈W - set of all demands and a single demand, respectively;
s(w), d(w) - source and destination node for the specific demand w, respectively;
xw - flow rate for the specific demand w, xw ∈ R+ ∪ {0},
xw, xw - lower and upper bound on the flow rate for the demand w, we assume

that xw > 0;
cl - capacity of the link l;
bwl - binary routing decision variable, whether the link l is used by the

demand w;
γ - positive parameter—weight of the QoS part of the objective function;
δ - positive parameter—weight of the energy usage part of the objective

function,
The problem can be formulated in the following way [22]:

P : min
x,b

∑
w∈W

[
γ
(

xw − xw

)2
+ δ ∑

l∈L
bwl

]
(1)

subject to

∀w ∈W, ∀j ∈ N, ∑
{i∈N|(i,j)∈A}

bw,e(i,j) − ∑
{k∈N|(j,k)∈A}

bw,e(j,k) =


−1 j = s(w)

1 j = d(w)

0 otherwise

(2)

xw ≤ xw ≤ xw, ∀w ∈W (3)

bwl ∈ {0, 1}, ∀w ∈W, ∀l ∈ L (4)

∑
w∈W

bwl xw ≤ cl , ∀l ∈ L (5)

The above formulation will be later referred to as P. Objective function (1) is quadratic
and convex. The first term is a Quality of Service component and expresses a cost for not
delivering the full bandwidth for all connections w ∈ W. The second term expresses the
total cost of energy used in the network and is proportional to the number of used links.
The detailed description of this problem can be found in [22]. Other nonlinear, and even
nonconvex, components of P are constraints (5). Because of the simultaneous usage of the
binary variables bwl and continuous variables xw, this optimization problem has a mixed
domain. It means that P belongs to the MINLP class of the optimization problems and as
such is NP-hard.

2.1. Linearized Constraints

The products of continuous and binary variables in nonlinear constraints (5), which are
nonconvex functions, can be replaced with auxiliary variables ywl and several additional
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linear constraints [22]. The new, added linear constraints ensure fulfillment of the following
equality:

ywl = bwl xw, ∀w ∈W, ∀l ∈ L (6)

The optimization problem formulation with linearized constraints is presented below;
this problem will be later referred to as Pcl :

Pcl : min
x,b,y

∑
w∈W

[
γ
(

xw − xw

)2
+ δ ∑

l∈L
bwl

]
(7)

subject to

∀w ∈W, ∀j ∈ N, ∑
{i∈N|(i,j)∈A}

bw,e(i,j) − ∑
{k∈N|(j,k)∈A}

bw,e(j,k) =


−1, j = s(w)

1, j = d(w)

0, otherwise

(8)

xw ≤ xw ≤ xw, ∀w ∈W (9)

bwl ∈ {0, 1}, ∀w ∈W, ∀l ∈ L (10)

∑
w∈W

ywl ≤ cl , ∀l ∈ L (11)

ywl ≥ xw − xw(1− bwl), ∀w ∈W, ∀l ∈ L (12)

ywl ≥ 0, ∀w ∈W, ∀l ∈ L (13)

ywl ≤ xw, ∀w ∈W, ∀l ∈ L (14)

ywl ≤ xwbwl , ∀w ∈W, ∀l ∈ L (15)

Originally, constraints (12) and (15) used an arbitrarily selected so-called Big M number,
that is a constant of a much higher order than the data of the problem [22], but, according
to [41], replacing it with a smaller value may allow for achieving better numerical results.
Thus, M was replaced with xw—the upper bound on the flow rate xw.

2.2. Alternative Problem Formulation

An alternative problem formulation inspired by [42] may be proposed. This formu-
lation still utilizes variables ywl , but in this case flow conservation law Equations (2) are
expressed with auxiliary variables ywl . This problem formulation will be later referred to
as Palt:

Palt : min
x,b,y

∑
w∈W

[
γ
(

xw − xw

)2
+ δ ∑

l∈L
bwl

]
(16)

subject to

∀w ∈W, ∀j ∈ N, ∑
{i∈N|(i,j)∈A}

yw,e(i,j) − ∑
{k∈N|(j,k)∈A}

yw,e(j,k) =


−xw, j = s(w)

xw, j = d(w)

0, otherwise

(17)

xw ≤ xw ≤ xw, ∀w ∈W (18)

bwl ∈ {0, 1}, ∀w ∈W, ∀l ∈ L (19)

∑
{j∈N|(i,j)∈A}

bw,e(i,j) ≤ 1, ∀w ∈W, i ∈ N (20)
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∑
w∈W

ywl ≤ cl , ∀l ∈ L (21)

ywl ≥ 0, ∀w ∈W, ∀l ∈ L (22)

ywl ≤ bwl xw, ∀w ∈W, ∀l ∈ L (23)

Constraints (20) force single path routing; constraints (23) keep the relationship between
auxiliary variables and binary variables. Formulation Palt is equivalent to Pcl and P pro-
vided that xw > 0, ∀w ∈W.

3. Lagrangian Relaxation

Lagrangian relaxation is one of the most popular relaxation methods [23,24]. In short,
it consists in the replacement of the original optimization problem:

min
x∈X

f (x) (24)

subject to:
g(x) ≤ 0, (25)

h(x) = 0, (26)

where f : Rn 7→ R, g : Rn 7→ Rm, h : Rn 7→ Rr, X ⊆ Rn with a two-step problem

max
λ≥0,µ=0

{
LD(λ, µ) = min

x∈X

[
L(x, λ, µ) = f (x) + λT g(x) + µTh(x)

]}
(27)

The function L(x, λ, µ) is called the Lagrange function or Lagrangian, the function
LD(λ, µ) is called the dual function, the vectors λ ∈ Rm

+ ∪ {0}, µ ∈ Rr are called Lagrange
multipliers. The external optimization in (27) is usually solved iteratively.

The theory says [43] that, if the set X is a convex subset of Rn, the functions f , g are
convex over X, the functions h(x) are affine, the optimal value f ∗ is finite and there exists a
vector x̄ such that g(x̄) < 0, h(x̄) = 0, then there exist Lagrange multipliers such that the
solutions of the primal (24)–(26) and the dual problem (27) are equal.

Lagrangian relaxation is particularly useful when the functions f and g are separable,
that is, they can be expressed as the sums of the components dependent on the same sepa-
rate subvectors of x, and the set X is a Cartesian product of the sets from spaces of the same
subvectors. Such a structure of the optimization problem allows to approximate a large
optimization problem by a set of smaller problems related to the original problem, solved
in a loop together with a coordination problem delivering parameters modifying them.

Another example of a relaxation for the MINLP problem is continuous relaxation,
which removes the integrality constraint and allows all variables to be real. The solution
retrieved from the relaxation can be utilized in the branch-and-bound algorithm to obtain a
solution of the original problem.

Lagrangian relaxation relies on constraints relaxation. For some problems having
decomposable structure, it may result in significant problem simplification. The value of
the dual function is always less than or equal to the optimal value of the primal problem.
This property is called weak duality. Some problems may possess yet one property, called
strong duality. For the strong duality, the optimal value of the dual problem is equal to the
optimal value of the primal problem. The conditions for that are mentioned above. In such
a case, Lagrangian relaxation allows for achieving the optimal value of the primal problem
via solving the dual problem.

Unfortunately, an MINLP problem analyzed in this work operates on a mixed domain
and only weak duality holds. It means that Lagrangian relaxation is able to provide only
the lower bound to the primal problem.

Bounds provided by the Lagrangian relaxation are often used in conjunction with the
branch-and-bound algorithm, and used in the same way as in the case of the continuous re-
laxation. However, usually Lagrangian relaxation provides tighter bounds than continuous
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relaxation [23]. At this point, it is important to introduce relations between primal optimal
solution and dual optimal solution and their optimal decision variables.

Duality gap is the difference in the optimum between primal and dual problems’
objectives. It was noticed that in many practical problems the duality gap is vanishing
when the number of variables grows. Evaluation of the duality gap is described in detail
and proven in [44]. First of all, the duality gap depends on the number of relaxed constraints.
This dependence can be described by the inequality:

in f (P)− sup(D) ≤ (m + 1)E (28)

where in f (P) represents the optimal value of the primal problem objective function, sup(D)
represents the optimal value of the dual problem objective function and in f (P)− sup(D)
is the duality gap. The number of relaxed constraints is denoted by m and E is a parameter
that depends on the problem objective function and its constraints specific properties. The
estimation presented above is valid only if a list of assumptions is fulfilled [44]. Fortunately,
the problem studied in this work satisfies these assumptions. We attempt to utilize the solu-
tion of the dual problem using special structure of the studied problem P. It allows for easy
retrieving the feasible solution for situations when capacity constraints (5) were violated,
but paths defined by routing variables still remain feasible. The method of retrieving such
a feasible solution is described in Section 6.1 as a part of the heuristic algorithm.

4. Decomposition Methods
4.1. Demands Decomposition

The most obvious approach to apply Lagrange relaxation is based on the relaxation
of the capacity constraints binding flows. There is no sense to consider the formula-
tion P because of nonconvexity of the capacity constraints (5). Fortunately, for both Pcl
and Palt formulations, capacity constraints are represented by the same convex functions,
respectively (11) and (21).

The Lagrange function for both Pcl and Palt problems is as follows:

Ldem(x, y, b, λ) = ∑
w∈W

[
γ
(

xw − xw

)2
+ δ ∑

l∈L
bwl

]
+ ∑

l∈L

[
λl

(
∑

w∈W
ywl − cl

)]
(29)

It is separable and, by changing the order of summation operators, we can write it as:

Ldem(x, y, b, λ) = ∑
w∈W

[
γ
(

xw − xw

)2
+ δ ∑

l∈L
bwl + ∑

l∈L
λlywl

]
−∑

l∈L
λlcl (30)

The dual function for the Pcl problem is:

Ldem
Dcl (λ) = min

x, b y
Ldem(x, y, b, λ)

=

{
min

[xw ,(ywl ,bwl ,l∈L),w∈W]
∑

w∈W

[
γ
(

xw − xw

)2
+ δ ∑

l∈L
bwl + ∑

l∈L
λlywl

]}
−∑

l∈L
λlcl (31)

subject to (8)–(10) and (12)–(15).
Since, in the optimization problem (31), constraints (8)–(10) and (12)–(15) can be

partitioned with respect to different flows w ∈W into completely independent, the mini-
mization there can be performed independently for components dependent on particular
flows w with respect to corresponding decision variables. That is, the dual function for Pcl
problem can be calculated in the following way:

Ldem
Dcl (λ) = ∑

w∈W
Ldem

cl,w(λ)−∑
l∈L

λlcl (32)
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where

Ldem
cl,w(λ) = min

xw , [ywl ,bwl ,l∈L]

[
γ
(

xw − xw

)2
+ δ ∑

l∈L
bwl + ∑

l∈L
λlywl

]
(33)

subject to

∀j ∈ N ∑
{i∈N|(i,j)∈A}

bw,e(i,j) − ∑
{k∈N|(j,k)∈A}

bw,e(j,k) =


−1, j = s(w)

1, j = d(w)

0, otherwise

(34)

xw ≤ xw ≤ xw, (35)

bwl ∈ {0, 1}, ∀l ∈ L (36)

ywl ≥ xw − xw(1− bwl), ∀l ∈ L (37)

ywl ≥ 0, ∀l ∈ L (38)

ywl ≤ xw, ∀l ∈ L (39)

ywl ≤ xwbwl , ∀l ∈ L (40)

The dual function for Palt problem is defined as the optimization problem with the
same objective function as for the problem Pcl , but with different constraints, that is:

Ldem
Dalt(λ) = min

x, b y
Ldem(x, y, b, λ)

=

{
min

[xw ,(ywl ,bwl ,l∈L),w∈W]
∑

w∈W

[
γ
(

xw − xw

)2
+ δ ∑

l∈L
bwl + ∑

l∈L
λlywl

]}
−∑

l∈L
λlcl (41)

subject to (17)–(20) and (22)–(23).

In the same way as for the problem Pcl , it may be calculated as follows:

Ldem
Dalt(λ) = ∑

w∈W
Ldem

alt,w(λ)−∑
l∈L

λlcl (42)

where the component functions Ldem
alt,w are

Ldem
alt,w(λ) = min

xw , [ywl ,bwl ,l∈L]

[
γ
(

xw − xw

)2
+ δ ∑

l∈L
bwl + ∑

l∈L
λlywl

]
(43)

subject to:

∀j ∈ N, ∑
{i∈N|(i,j)∈A}

yw,e(i,j) − ∑
{k∈N|(j,k)∈A}

yw,e(j,k) =


−xw, j = s(w)

xw, j = d(w)

0, otherwise

(44)

xw ≤ xw ≤ xw, (45)

bwl ∈ {0, 1}, ∀l ∈ L (46)

∑
{j∈N|(i,j)∈A}

bw,e(i,j) ≤ 1, ∀i ∈ N (47)

ywl ≥ 0, ∀l ∈ L (48)

ywl ≤ bwl xw, ∀l ∈ L (49)
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The dual problem for Pcl , Palt formulations can be presented, respectively, as:

Dcl = max
λ≥0

Ldem
Dcl (λ) (50)

and

Dalt = max
λ≥0

Ldem
Dalt(λ) (51)

As it can be seen from the formulations presented above, in both cases, the problem
was decomposed and the minimization, which is performed to determine the dual function,
can be done independently for every demand w ∈W.

Such a structure was achieved by the relaxation of the coupling capacity constraints.
The number of relaxed constraints is equal to |L|. The number of variables presented in the
studied problem, when no artificial variables ywl were used, is equal to |W|(|L|+ 1). When
ywl were used, the number of variables is equal to |W|(2|L|+ 1). Hence, the relation of the
number of relaxed constraints to the number of variables is acceptable.

Because capacity constraints were relaxed, optimal decision variables of the local
problems may violate them. However, fortunately, the method of optimal feasible flow rate
allocation, described in Section 6.1, can be applied for routes retrieved from the problem
solution, to find a feasible solution.

4.2. Subnetworks Decomposition

Subnetworks decomposition is based on distinguishing subgraphs in the problem
graph G(N, A). These subgraphs, also called subnetworks, are selected groups of nodes,
loosely connected with other nodes. The less the subnetwork is connected with other
subnetworks, the tighter relaxation will be (that is, with the smaller number of the relaxed
constraints). The new problem formulations presented in this subsection introduce sub-
networks gm, m = 1, . . . , S. Every node n ∈ N belongs exactly to one subnetwork; arcs
can belong to one or two subnetworks. Arcs which belong to a pair of subnetworks are
duplicated for every subnetwork, and this encompasses their labeled links and flow rates.
All duplicated components must be equal for keeping this formulation valid.

The following additional components are used in a mathematical problem description
for the subnetworks decomposition, which is an adaptation of the original problems Pcl
or Palt:

{g1, g2, . . . , gS} - division of a given network G(N, A)
into S subnetworks that is G(N, A) =⋃S

m=1 gm; this is not a partition because of
common links on the borders (see below),

Nm - set of all nodes of a subnetwork gm - this
is a partition of the set N that is: N =⋃S

m=1 Nm, Ni ∩ Nj = ∅, i 6= j
Am = {(i, j) ∈ A|j ∈ Nm, i ∈ N}
∪{(j, k) ∈ A|j ∈ Nm, k ∈ N} - set of all arcs of a subnetwork gm

Im = {(i, j) ∈ Am|i, j ∈ Nm} - set of internal arcs of the subnetwork gm

Lm = {l|l = e(i, j), (i, j) ∈ Am} - set of all labels of links of a subnetwork gm

xm
w - flow rate for the demand w in the subnet-

work gm

bm
wl - binary routing variable for the flow w in

the subnetwork gm and link l ∈ Lm
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Em = Am \ Im - set of external arcs (incoming or outgoing)
of the subnetwork gm

Dm = {k|k 6= m, ∃(i, j) ∈ Em : - indices of subnetworks directly connected
(i ∈ Nk) ∨ (j ∈ Nk)} with gm

Um = {l|l = e(i, j), (i, j) ∈ Em} - set of labels of external links for the subnet-
work gm

ξwl =

{
0.5, l ∈ ⋃S

m=1 Um

1, otherwise
- correcting coefficient to avoid adding ex-

ternal arcs twice.
Now, the Pcl problem can be formulated in the following way:

Psub
cl : min

x,y,b

S

∑
m=1

∑
w∈W

[
γ
(

xw − xm
w

)2
+ δ ∑

l∈Lm

ξwlbm
wl

]
(52)

subject to

∑
{i∈N|(i,j)∈Am}

bm
we(i,j) − ∑

{k∈N|(j,k)∈Am}
bm

we(j,k) =


−1, j = s(w)

1, j = d(w)

0, otherwise

,

∀w ∈W, j ∈ Nm, m = 1, . . . , S (53)

xm
w = xn

w, ∀w ∈W, n ∈ Dm, m = 1, . . . , S; n > m (54)

bm
wl = bn

wl , ∀w ∈W, l ∈ Um, n ∈ Dm, m = 1, . . . , S; n > m (55)

xw ≤ xm
w ≤ xw, ∀w ∈W, m = 1, . . . , S (56)

bm
wl ∈ {0, 1}, ∀w ∈W, ∀l ∈ Lm, m = 1, . . . , S (57)

∑
w∈W

ym
wl ≤ cl , ∀l ∈ Lm, m = 1, . . . , S (58)

ym
wl ≥ xm

w − xw(1− bm
wl), ∀w ∈W, ∀l ∈ Lm, m = 1, . . . , S (59)

ym
wl ≥ 0, ∀w ∈W, ∀l ∈ Lm, m = 1, . . . , S (60)

ym
wl ≤ xm

w , ∀w ∈W, ∀l ∈ Lm, m = 1, . . . , S (61)

ym
wl ≤ xwbm

wl , ∀w ∈W, ∀l ∈ Lm, m = 1, . . . , S (62)

The Palt problem will obtain the form:

Psub
alt : min

x,y,b

S

∑
m=1

∑
w∈W

[
γ
(

xw − xm
w

)2
+ δ ∑

l∈Lm

ξwlbm
wl

]
(63)

subject to

∑
{i∈N|(i,j)∈Am}

ym
we(i,j) − ∑

{k∈N|(j,k)∈Am}
ym

we(j,k) =


−xm

w , j = s(w)

xm
w , j = d(w)

0, otherwise

,

∀w ∈W, j ∈ Nm, m = 1, . . . , S (64)
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xm
w = xn

w, ∀w ∈W, n ∈ Dm, m = 1, . . . , S; n > m (65)

bm
wl = bn

wl , ∀w ∈W, l ∈ Um, n ∈ Dm, m = 1, . . . , S; n > m (66)

xw ≤ xm
w ≤ xw, ∀w ∈W, m = 1, . . . , S (67)

bm
wl ∈ {0, 1}, ∀w ∈W, ∀l ∈ Lm, m = 1, . . . , S (68)

∑
(i,j)∈Am

bm
w,e(i,j) ≤ 1, ∀w ∈W, i ∈ Nm (69)

∑
w∈W

ym
wl ≤ cl , ∀l ∈ Lm, m = 1, . . . , S (70)

ym
wl ≥ xm

w − xw(1− bm
wl), ∀w ∈W, ∀l ∈ Lm, m = 1, . . . , S (71)

ym
wl ≥ 0, ∀w ∈W, ∀l ∈ Lm, m = 1, . . . , S (72)

ym
wl ≤ xm

w , ∀w ∈W, ∀l ∈ Lm, m = 1, . . . , S (73)

ym
wl ≤ xwbm

wl , ∀w ∈W, ∀l ∈ Lm, m = 1, . . . , S (74)

Connections between subnetworks do not allow for solving problems independently
for every subnetwork gm, m ∈ 1, .., S. Internetwork connections correspond to the dupli-
cated flow rates and routing variables equalities (54) and (55) or (65) and (66), so these
constraints should be relaxed to achieve decomposable structure.

The Lagrange function for the Psub
cl and Psub

alt problems is the following:

Lsub(x, y, b, α, β) =
S

∑
m=1

∑
w∈W

[
γ
(

xw − xm
w

)2
+ δ ∑

l∈Lm
ξwlbm

wl

]

+
S

∑
m=1

∑
n∈Dm
n>m

∑
w∈W

αmn
w

(
xm

w − xn
w

)
+

S

∑
m=1

∑
n∈Dm
n>m

∑
w∈W

∑
l∈Lm

βmn
wl

(
bm

wl − bn
wl

)
(75)

where αmn
w , βmn

wl for l ∈ Lm, n > m, m = 1, . . . , S, w ∈W are Lagrange multipliers.
The dual function for the Psub

cl problem can be calculated as:

Lsub
Dcl(α, β) = min

x,y,b
Lsub(x, y, b, α, β) (76)

subject to (53), (56)–(62), where the function Lsub(x, y, b, α, β) is given by (75).
The dual function for the Psub

alt problem can be calculated as:

Lsub
Dalt(α, β) = min

x,y,b
Lsub(x, y, b, α, β) (77)

subject to (64), (67)–(74).
The dual function components can be calculated independently for every subnetwork

gm, m ∈ 1, . . . , S because all constraints representing connections between subnetworks
have been relaxed. The number of the relaxed constraints depends on the number of
subnetworks S and on the number of connections between them. These constraints have to
be relaxed for every demand w ∈W.

4.3. Continuous and Binary Variables Decomposition

Decomposition presented in this subsection splits the original MINLP problem into
two subproblems: the first containing only continuous variables and the second containing
only binary variables. Such decomposition can be performed for both problem formulations
Pcl and Palt.
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Continuous and binary variables decomposition is achieved by relaxing constraints
containing binary and continuous variables simultaneously, that is, constraints (12), (15) for
Pcl and (23) for Palt. The Lagrange function for the Pcl problem will be:

Lvar
cl (x, y, b, α, β) = ∑

w∈W

[
γ
(

xw − xw

)2
+ δ ∑

l∈L
bwl

]

+ ∑
w∈W

∑
l∈L

αwl

(
xw − ywl + xwbwl − xw

)
+ ∑

w∈W
∑
l∈L

βwl

(
ywl − xwbwl

)
(78)

The dual function for the Pcl problem with the separation of continuous and binary
variables is calculated in the following way:

Lvar
Dcl(α, β) = Lvar

Dcl_c(α, β) + Lvar
Dcl_b(α, β)− ∑

w∈W
∑
l∈L

αwl xw (79)

where

Lvar
Dcl_c(α, β) = min

x,y ∑
w∈W

[
γ
(

xw − xw

)2
+ ∑

l∈L
αwl xw + ∑

l∈L

(
βwl − αwl

)
ywl

]
(80)

subject to

xw ≤ xw ≤ xw, ∀w ∈W (81)

∑
w∈W

ywl ≤ cl , ∀l ∈ L (82)

ywl ≥ 0, ∀w ∈W, ∀l ∈ L (83)

ywl ≤ xw, ∀w ∈W, ∀l ∈ L (84)

and

Lvar
Dcl_b(α, β) = min

b
∑

w∈W
∑
l∈L

[
δbwl +

(
αwl − βwl

)
xwbwl

]
(85)

subject to

∀w ∈W, ∑
{i∈N|(i,j)∈A}

bw,e(i,j) − ∑
{k∈N|(j,k)∈A}

bw,e(j,k) =


−1, j = s(w)

1, j = d(w)

0, otherwise

(86)

After decomposition, the dual function consists of two parts: the first LDcl_c contains
continuous variables, the second LDcl_b contains binary variables. The binary part of the
dual function consists of the linear objective function and network flow conservation law
rule (86). These constraints can be presented by a unimodular matrix. As a result, LDcl_b has
an integrality property, that is, the problem decision variables at the optimum are always
integer. Thus, the constraints (10) preserving that the route variables are binary can be
safely omitted. Hence, the decomposed problem does not operate on the mixed domain.

Unfortunately, the number of relaxed constraints is rather big—2|L||W|. It may result
in unsatisfactory tightness of the relaxation.

The Lagrange function for the Palt problem with a separation of continuous and binary
variables is:

Lvar
alt (x, y, b, β) = ∑

w∈W

[
γ
(

xw − xw

)2
+ δ ∑

l∈L
bwl

]
+ ∑

w∈W
∑
l∈L

βwl

(
ywl − xwbwl

)
(87)
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The dual function for the Palt problem with the separation of continuous and binary
variables is following:

Lvar
Dalt(β) = Lvar

Dalt_c(β) + Lvar
Dalt_b(β) (88)

where

Lvar
Dalt_c(β) = min

x,y ∑
w∈W

[
γ
(

xw − xw

)2
+ ∑

l∈L
βwlywl

]
(89)

subject to

∀w ∈W, ∑
{i∈N|(i,j)∈A}

yw,e(i,j) − ∑
{k∈N|(j,k)∈A}

yw,e(j,k) =


−xw, j = s(w)

xw, j = d(w)

0, otherwise

(90)

xw ≤ xw ≤ xw, ∀w ∈W (91)

∑
w∈W

ywl ≤ cl , ∀l ∈ L (92)

ywl ≥ 0, ∀w ∈W, ∀l ∈ L (93)

and
Lvar

Dalt_b(β) = min
b

∑
w∈W

∑
l∈L

(
δbwl − βwl xwbwl

)
(94)

subject to

∑
{j∈N|(i,j)∈A}

bw,e(i,j) ≤ 1, ∀w ∈W, i ∈ N (95)

bwl ∈ {0, 1}, ∀w ∈W, ∀l ∈ L (96)

For the alternative problem formulation (16)–(23), continuous and binary variable
decomposition requires the relaxation of constraints (23). The number of the relaxed
constraints in this case is equal to |W||L|. However, the binary subproblem does not possess
integrality property in this case. In addition, violations of the relaxed constraints (23) violate
the relation between routing variables bwl and auxiliary variables ywl , which can result in
the violations of network flow balance constraints (2). Thus, the following conclusions can
be made: decomposition of Palt allows for getting tighter bounds than decomposition of
Pcl , but subproblems of the decomposed Palt are harder to solve than subproblems of the
decomposed Pcl .

5. Coordination Algorithms

A dual problem is solved iteratively. In every iteration for given Lagrange multipliers,
a dual function is computed (local problem) and Lagrange multipliers are updated (the
coordination problem). Several coordination algorithms were used to solve the dual
problems presented in the previous section.

1. Simple gradient algorithms
A simple gradient algorithm to update Lagrange multipliers directly uses the gradient
of the dual function, in the following manner:

• For multipliers of the relaxed equality constraints:

λk+1 = λk + ηk∇LD(λk); (97)

• For multipliers of the relaxed inequality constraints:

λk+1 = max
(

0, λk + ηk∇LD(λk)
)

. (98)
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Parameter ηk (k - iteration number) plays a key role in the simple gradient coordination
algorithm. It is responsible for the algorithm convergence rate. Some simple methods
for ηk parameter computation can be used [45]:

• Square summable, but not summable:

∞

∑
k=1

η2
k < ∞,

∞

∑
k=1

ηk = ∞ (99)

ηk =
p

r + k
, p > 0, r ≥ 0 (100)

• Nonsummable diminishing:

lim
k→∞

ηk = 0,
∞

∑
k=1

ηk = ∞ (101)

ηk =
p√
k

, p > 0 (102)

More sophisticated techniques for ηk evaluation can also be used. Some of them
utilize knowledge of the optimal objective value (or its estimate). One of the most
advanced methods is Goffin and Kiwiel’s algorithm of the simultaneous optimal value
estimation and Lagrange multipliers update [46], which guarantees convergence with
an acceptable rate and relatively easy tuning of parameters. This very version of the
simple gradient coordination algorithm has been used in our numerical tests.
The simple gradient algorithm is strongly dependent on its parameters. Quite often,
its convergence rate can be unsatisfactory. However, this algorithm is relatively easy to
implement and requires rather small computational efforts. Hence, for a large number
of the Lagrange multipliers, this coordination method may be the most appropriate.

2. Cutting plane method
Cutting plane algorithms also utilize dual function gradients, but in a different way
than simple gradient algorithms. Namely, the approximation of the dual function
is based on the dual function gradient in the following manner (for simplicity, we
assume that the problem has only inequality constraints):

Lk
Da
(λ) = min

{
LD(λ0) + (λ− λ0)

T∇LD(λ0), ..., LD(λk−1) + (λ− λk−1)
T∇LD(λk−1)

}
(103)

The approximated dual problem

Dk
a = max

λ≥0
Lk

Da
(λ) (104)

can be reformulated as:

Dk
a = max

z,λ≥0
z (105)

z ≤ LD(λ0) + (λ− λ0)
T∇LD(λ0) (106)

...

z ≤ LD(λk−1) + (λ− λk−1)
T∇LD(λk−1) (107)

In the cutting plane algorithm, dual function approximation Lk
Da

is built iteratively.
New cuts, defined by linear functions which use dual function gradients, are added
in every iteration. The solution of the approximated dual problem is a point where
the new cut will be put. It means that, with every iteration, a better piecewise linear
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approximation of the dual function is achieved. And then, in every iteration of the
algorithm, the optimization problem described by (105)–(107) is solved.
A similar, but more sophisticated algorithm (which will be used in numerical tests) can
also be applied to approximate the dual function and to solve the dual problem [47].
Namely, the dual function can be formulated in the following manner:

Dk
a = max

λ≥0

[
z− 1

2
‖λ− λ̄k‖2

]
(108)

In the case of the (108) formula, a penalty component was added to keep a stable
convergence rate of the algorithm. Two kinds of steps are described in [47] for the
algorithm. The first is a significant step: λ̄k+1 = λk+1, the second is zero-step: λ̄k+1 =
λk. Zero step still uses new Lagrange multipliers to build a better approximation, but
does not update a penalty parameter, so it allows for achieving a better approximation.
Meanwhile, a significant step requires significant reduction of the dual value and is
performed when:

LD(λk+1)− LD(λk) ≤ m
[

Lk
Da
(λk+1)− LD(λk)

]
(109)

where parameter m ∈ (0, 1). The problem of the inactive cuts gathering is also
solved in [47]. They can be safely removed from the dual problem formulation
when Lagrange multipliers of inactive cuts are equal to zero. Thus, after solving
the approximated dual problem (108) in every iteration, Lagrange multipliers of the
cuts (106)–(107) are retrieved and only cuts with nonzero Lagrange multipliers are
kept; those remaining are removed.
To summarize, cutting plane methods are more complicated and require more com-
putational effort for solving an additional optimization problem in every iteration.
The problem considered in this paper may become rather complicated for a greater
number of Lagrange multipliers. Fortunately, this method allows for achieving a more
precise result and is almost independent of parameters tuning.

6. Numerical Tests

The methods described above were studied and tested on several problems. Networks
of different sizes were generated with the sets of demands defined for them. Then, the prob-
lems of simultaneous routing and flow allocation were formulated for these networks. The
tested networks consist of multiple nodes clusters, which are loosely connected. However,
nodes inside the clusters are strongly connected. Such network configuration allows for
performing subnetworks decomposition relaxing a relatively small number of constraints.

First, problems P were solved by an MINLP solver to obtain optimal solutions. Then,
decomposition methods based on Lagrangian relaxation were applied to them. Multiple
local problems obtained from decompositions were solved sequentially (can be solved in
parallel), and the selected coordination algorithm updated Lagrange multipliers. The pro-
cess of solving local problems and updating Lagrange multipliers for them was performed
iteratively until a stop condition was met. All combinations of the Lagrangian relaxation
based decomposition methods and coordination algorithms were studied.

Finally, a simple heuristic method, namely a Heuristic Routes Finding (HRF) algorithm
presented below, was applied to solve these optimization problems in a decomposed manner.

All implementations and numerical tests were performed using a Python program-
ming language. Pyomo software package was used to formulate and analyze optimization
problems. The following optimization software packages were used: CPLEX (local prob-
lems solver, primal problem solver, R problem of the heuristic algorithm solver) and IPOPT
(coordination problem solver). A NetworkX software package was used to generate and
visualize optimization problems’ networks.
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6.1. Simple Heuristic Routes Finding (HRF) Algorithm

Heuristic methods do not guarantee achieving the optimal solution. However, such
methods may allow solving problems at lower costs. Article [48] describes and improves a
certain heuristic method for solving the optimization problem of the simultaneous routing
and flow bandwidth allocation. The heuristic approach presented there separates the
routing problem and flow rate allocation. First, the weight of every arc is calculated as the
minimum of capacity for a given link and flow rate upper bound to prevent flow rates’
upper bound violations. Then, the Dijkstra shortest path algorithm is applied to every
demand w, that is, for every pair of source s(w) and destination d(w) nodes, the optimal
path b∗w is calculated. In the second step, for known optimal paths (routes) b∗, the following
flow allocation problem is solved as a continuous nonlinear programming problem:

R : min
x ∑

w∈W
γ
(

xw − xw

)2
(110)

subject to

xw ≤ xw ≤ xw, ∀w ∈W (111)

∑
w∈W

b∗wl xw ≤ cl , ∀l ∈ L (112)

6.2. Generation of Networks

For numerical tests, two network topologies were generated: the first with a lower
number of variables (referred to as a medium network)—see Table 1 and Figure 1 and the
second with a greater number of variables (referred to as a large network)—see Table 2
and Figure 2. Five seeds were used to formulate randomized problem instances. For every
problem instance, the source and the destination nodes were generated randomly, and so
were the capacities of links. Problem instances were generated for both network topologies.
Several approaches to optimization problem formulation were used. Networks and their
parameters, the results of network decomposition achieved with HRF heuristics and the
results achieved with several Lagrange decomposition methods (in combination with two
coordination algorithms) will be presented in this section.

Table 1. Medium problem instances’ parameters.

Nodes
Number

Arcs
Number

Demands
Number

Flow Rates
Bound

Capacities
Bound

25 82 12 [0.001, 3] [0.3, 1]

Figure 1. Medium network topology.
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Table 2. Large problem instances’ parameters.

Nodes
Number

Arcs
Number

Demands
Number

Flow Rates
Bound

Capacities
Bound

49 146 32 [0.001, 3] [0.3, 1]

Figure 2. Large network topology.

6.3. Comparison of Results for Different Methods

The numerical tests were made only for formulations Pcl and Palt (which differ in flow
conservation equations using, respectively, binary or continuous variables) because the
only nonlinear component in these formulations is a convex quadratic part of the objective
function. Meanwhile, the formulation P has nonconvex constraints, which complicate
solving the problem. All three decomposition approaches that is: demand, subnetworks
and binary/continuous variables were checked.

Numerical experiments were performed according to the following scenario: first,
the CPLEX solver attempted to solve all problem formulations; then, all decomposition
methods were applied; finally, a feasible solution was restored if it was possible.

The following items are used to describe the results of computations:
Objective —value of the problem objective function,
Spent Time —time spent to retrieve solutions in seconds,
Feasibility —solution feasibility validation (for the original problem P); for

infeasible solution number of capacity constraints (5) violations—
“CCV: <number>”, and number of routing constraints (2) viola-
tions
—“RCV: <number>”,

Status —solution status retrieved from a solver,
Dual Objective (LB) —value of the dual problem objective function, which is also a

lower bound for the primal problem,
Heuristic Objective (LB) —value of the problems objective function retrieved using the

HRF Algorithm,
Reallocated (UB) —value of a feasible solution restored from a lower bound solu-

tion routing variables using solution of the R problem, which is
also an upper bound for the primal problem,

LB Relative Gap —ratio of the lower bound gap with respect to the optimal objec-

tive given in percents ( Objective−LB
Objective · 100%)

UB Relative Gap —ratio of the upper bound gap with respect to the optimal

objective given in percents ( UB−Objective
Objective · 100% )

The tests were performed on the machine with Intel Core i7-4710 HQ, 4 core 2.5–3.5 GHz
processor, 16 GB of DDR3-1600, dual-channel memory and 512 GB SSD storage, under
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Ubuntu 18.04 operating system. As it was said before, every numerical test was executed
for five randomly generated problem instances.

The results of optimization obtained by CPLEX solver for medium-sized networks are
presented in Table 3. These results will serve further as a benchmark for us. In particular,
the gaps are calculated in relation to them.

Table 3. Numerical results for medium problems—CPLEX solver.

Objective Spent Time [s] Feasibility Status

Problem Pcl

1 89.62 4.39 Feasible Optimal

2 89.64 34.61 Feasible Optimal

3 83.68 273.25 Feasible Optimal

4 84.35 271.22 Feasible Optimal

5 85.16 725.94 Feasible Optimal

Problem Palt

1 89.62 12.16 Feasible Optimal

2 89.64 825.28 Feasible Optimal

3 83.68 301.64 Feasible Optimal

4 84.35 348.25 Feasible Optimal

5 85.16 2000.09 Feasible Timeout

The average results of tests of different decomposition approaches are presented in
Figures 3–5; the detailed results for all medium-sized networks in Tables 4–7.

Figure 3. Average lower bound relative gap for all decomposition methods—medium problems.
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Figure 4. Average upper bound relative gap for all decomposition methods—medium problems.

Figure 5. Average spent time for all decomposition methods—medium problems.

The demands decomposition method (see Table 4) solved almost all medium problem
instances in a shorter time than CPLEX. Solutions obtained from this method provide
problem lower bounds—relative gaps of these solutions are within the range: 3–11%.
Unfortunately, all retrieved solutions violated capacity constraints. Feasible solutions
(upper bounds) obtained from the lower bounds’ routings are within the range: 3–13%.
Importantly, tighter lower bounds did not always provide tighter upper bounds.
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Table 4. Numerical results for medium problems—demands decomposition.

Dual Objective
(LB)

Reallocated
(UB)

Spent Time
[s] Feasibility LB Relative

Gap [%]
UB Relative Gap

[%]

Formulation Pcl
Coordination: Proximal Cutting Planes

1 86.02 92.9 21.63 CCV: 14; RCV: 0 4.0170 3.6599

2 87.22 101.33 27.86 CCV: 19; RCV: 0 2.6997 13.0411

3 77.17 84.76 26.28 CCV: 8; RCV: 0 7.7796 1.2906

4 80.82 90.16 21.28 CCV: 13; RCV: 0 4.1849 6.8880

5 83.04 91.61 26.04 CCV: 13; RCV: 0 2.4894 7.5740

Formulation Palt
Coordination: Proximal Cutting Planes

1 86.5 93.15 19.49 CCV: 13; RCV: 0 3.4814 3.9389

2 87.31 94.41 22.24 CCV: 19; RCV: 0 2.5993 5.3213

3 77.19 87.3 23.29 CCV: 10; RCV: 0 7.7557 4.3260

4 80.52 87.19 25.07 CCV: 8; RCV: 0 4.5406 3.3669

5 82.95 90.13 22.87 CCV: 11; RCV: 0 2.5951 5.8361

Formulation Pcl
Coordination: Simple Gradient Level Method

1 83.14 91.23 19.77 CCV: 15; RCV: 0 7.2305 1.7965

2 84.62 94.75 29.56 CCV: 19; RCV: 0 5.6002 5.7006

3 74.52 94.37 27.19 CCV: 14; RCV: 0 10.9465 12.7749

4 78.14 86.57 30.81 CCV: 13; RCV: 0 7.3622 2.6319

5 79.49 87.9 27.82 CCV: 19; RCV: 0 6.6581 3.2175

Formulation Palt
Coordination: Simple Gradient Level Method

1 84.42 92.64 16.72 CCV: 14; RCV: 0 5.8023 3.3698

2 84.83 95 18.23 CCV: 20; RCV: 0 5.3659 5.9795

3 74.97 90.07 19.66 CCV: 10; RCV: 0 10.4087 7.6362

4 76.96 86.86 19.12 CCV: 18; RCV: 0 8.7611 2.9757

5 79.52 92.72 17.32 CCV: 19; RCV: 0 6.6228 8.8774

Subnetworks decomposition (see Table 5) spent an unacceptable amount of time to
find solutions for almost all medium-sized problem instances (decomposed problem was
solved much longer than the primal problem). Spent time of Palt formulations is much
shorter than that of Pcl formulations, but still unsatisfactory . Lower bounds provided
by subnetworks decomposition are the tightest: 1–7.5%. Unfortunately, all solutions
retrieved from this decomposition violated routing constraints. Because of that, as well as
because of unacceptable spent times, subnetwork decomposition was not applied to large
problem instances.
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Table 5. Numerical results for medium problems—subnetworks decomposition.

Dual Objective
(LB)

Spent Time
[s] Feasibility LB Relative

Gap [%]

Formulation Pcl
Coordination: Proximal Cutting Planes

1 88.76 37.34 CCV: 18; RCV: 14 0.9596

2 86.26 770.63 CCV: 29; RCV: 24 3.7706

3 80.51 4748.93 CCV: 24; RCV: 18 3.7882

4 80.21 82.85 CCV: 18; RCV: 20 4.9081

5 81.63 3767.56 CCV: 25; RCV: 31 4.1451

Formulation Palt
Coordination: Proximal Cutting Planes

1 88.9 40.87 CCV: 10; RCV: 18 0.8034

2 84.82 132.7 CCV: 20; RCV: 31 5.3771

3 80 221.48 CCV: 14; RCV: 26 4.3977

4 80.7 111.24 CCV: 15; RCV: 30 4.3272

5 82.25 328.37 CCV: 17; RCV: 34 3.4171

Formulation Pcl
Coordination: Simple Gradient Level Method

1 88.13 35.6 CCV: 17; RCV: 4 1.6626

2 85.39 524.38 CCV: 26; RCV: 14 4.7412

3 79.26 2072.34 CCV: 25; RCV: 10 5.2820

4 80.08 51.44 CCV: 30; RCV: 16 5.0622

5 79.88 597.26 CCV: 30; RCV: 18 6.2001

Formulation Palt
Coordination: Simple Gradient Level Method

1 87.02 25.7 CCV: 18; RCV: 14 2.9011

2 83.48 202.28 CCV: 23; RCV: 18 6.8719

3 77.94 215.1 CCV: 22; RCV: 23 6.8595

4 80.1 106.3 CCV: 17; RCV: 26 5.0385

5 78.83 91.08 CCV: 22; RCV: 28 7.4331

The continuous and binary variables decomposition method (see Table 6) was the
quickest from the Lagrangian based decomposition methods. This decomposition method
shows how a large number of Lagrange multipliers increases coordination time for cutting
planes’ algorithms. As it can be seen, it provides a big duality gap for the formulation
Pcl . However, the duality gap for this method is small when formulation Palt is used.
Unfortunately, such gap is achieved for zero-valued Lagrange multipliers, which means
that the bound was not improved (see Figures 6 and 7) by coordination algorithms (zero-
valued Lagrange multiplier are the start point of the coordination).

In addition, feasible solutions (upper bounds) were restored from routings obtained
from continuous and binary variable decomposition for formulation Pcl . The tightness of
these solutions is comparable to the demand decomposition solutions, regardless of the
large duality gap.
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The undesirable properties of continuous and binary variable decomposition method
are derived from a large number of relaxed constraints—comparable to the number of
variables. Because of such unsatisfactory results for medium networks, the continuous and
binary variables decomposition method was not used in further numerical tests.

Table 6. Numerical results for medium problems—continuous and binary variables decomposition.

Dual
Objective

(LB)

Reallocated
(UB)

Spent
Time [s] Feasibility

LB
Relative
Gap [%]

UB
Relative
Gap [%]

Formulation Pcl
Coordination: Proximal Cutting Planes

1 63.38 90.93 14.32 CCV: 19; RCV: 0 29.2792 1.4617

2 65.05 97.68 14.17 CCV: 18; RCV: 0 27.4320 8.9692

3 36.08 89.55 15.04 CCV: 19; RCV: 0 56.8834 7.0148

4 38.75 87.69 15.73 CCV: 29; RCV: 0 54.0605 3.9597

5 34.46 92.54 16.38 CCV: 32; RCV: 0 59.5350 8.6660

Formulation Palt
Coordination: Proximal Cutting Planes

1 85.61 - 14.97 CCV: 0; RCV: 24 4.4744 -

2 85.12 - 14.11 CCV: 0; RCV: 24 5.0424 -

3 75.35 - 13.06 CCV: 0; RCV: 24 9.9546 -

4 79.31 - 14.51 CCV: 0; RCV: 24 5.9751 -

5 81.44 - 15.03 CCV: 0; RCV: 24 4.3682 -

Formulation Pcl
Coordination: Simple Gradient Level Method

1 53.53 97.07 4.04 CCV: 30; RCV: 0 40.2700 8.3129

2 48.27 98.97 4.09 CCV: 41; RCV: 0 46.1513 10.4083

3 24.6 90.62 4.18 CCV: 32; RCV: 0 70.6023 8.2935

4 29.43 92.31 4.33 CCV: 38; RCV: 0 65.1097 9.4369

5 20.5 94.11 4.27 CCV: 39; RCV: 0 75.9277 10.5096

Formulation Palt
Coordination: Simple Gradient Level Method

1 85.79 - 1.86 CCV: 3; RCV: 24 4.2736 -

2 85.34 - 2.02 CCV: 3; RCV: 26 4.7970 -

3 75.55 - 1.87 CCV: 0; RCV: 24 9.7156 -

4 79.51 - 2.13 CCV: 2; RCV: 22 5.7380 -

5 81.7 - 1.95 CCV: 1; RCV: 30 4.0629 -

The heuristic method (see Table 7) was not able to provide neither tight lower bounds
nor tight upper bounds. Times spent by this method were very small, but still not small
enough to use this method in combination with the branch-and-bound algorithm.



Energies 2022, 15, 7634 22 of 28

Figure 6. Dual function value during proximal cutting plane coordination algorithm iterations.
Continuous and binary variables decomposition for Palt, medium problem, instance 1.

Figure 7. Dual function value during simple subgradient level method coordination algorithm
iterations. Continuous and binary variables decomposition for Palt, medium problem, instance 1.

Table 7. Numerical results for medium problems—Dijkstra algorithm based heuristics (HRF).

Heuristic
Objective (LB)

Reallocated
(UB) Spent Time [s] Feasibility LB Relative

Gap [%]
UB Relative Gap

[%]

Dijkstra algorithm based heuristics (HRF)

1 73.1 96.06 4.86 CCV: 14; RCV: 0 18.4334 7.1859

2 71.41 103.29 4.76 CCV: 14; RCV: 0 20.3369 15.2276

3 69.65 94.56 4.48 CCV: 15; RCV: 0 16.7663 13.0019

4 70.35 94.79 3.66 CCV: 16; RCV: 0 16.5975 12.3770

5 73.47 97.44 5.37 CCV: 13; RCV: 0 13.7271 14.4199

From now on, the results of tests for large problems will be presented.
From Table 8, it is seen that the commercial solver CPLEX was able to find the optimal

solutions for only 2 of 10 instances in a time less than 2000 s.
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Table 8. Numerical results for large problems—CPLEX solver.

Objective Spent Time [s] Feasibility Status

Problem Pcl

1 247.08 478.79 Feasible Optimal

2 239.79 1111.43 Feasible Optimal

3 246.62 2000.15 Feasible Timeout

4 248.7 2000.08 Feasible Timeout

5 252.98 2000.12 Feasible Timeout

Problem Palt

1 247.08 2000.6 Feasible Timeout

2 239.79 2000.26 Feasible Timeout

3 246.62 2000.55 Feasible Timeout

4 248.66 2000.47 Feasible Timeout

5 252.98 2000.34 Feasible Timeout

As it was stated before, only a demands decomposition approach was applied and for
comparison of the simple HRF method. The average results are presented in Figures 8–10,
and the detailed ones in Tables 9 and 10.

Figure 8. Average lower bound relative gap for all decomposition methods—large problems.
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Figure 9. Average upper bound relative gap for all decomposition methods—large problems.

Figure 10. Average spent time for all decomposition methods—large problems.

Demands decomposition for large problem instances (see Table 9) was able to provide
tighter lower bounds (1–7.4%) than for medium problem instances. Unexpectedly, the
obtained upper bounds (0–3%) were also much better than for medium problem instances.
Since, as it was stated before, the commercial solver CPLEX failed to find the optimal
solutions for most of the instances in half an hour, while the demands decomposition
method found solutions in few minutes, it is a very good algorithm for real-time systems.

In the case of large problem instances (see Table 10), lower bound relative gaps for
solutions found by the heuristic method are comparable to the gaps for medium problem
instances. However, the obtained upper bounds gaps were smaller than for medium
problem instances, just as with the demands decomposition. Spent times of the heuristic
methods were even shorter than for the demand decomposition.
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Table 9. Numerical results for large problems—demands decomposition.

Dual
Objective

(LB)

Reallocated
(UB)

Spent
Time [s] Feasibility

LB
Relative
Gap [%]

UB
Relative Gap

[%]

Problem Pcl
Coordination: Proximal Cutting Planes

1 239.03 250.01 154.07 CCV: 17; RCV: 0 3.2581 1.1859

2 233.17 239.79 130.02 CCV: 17; RCV: 0 2.7607 0.0000

3 241.33 250.82 137.3 CCV: 15; RCV: 0 2.1450 1.7030

4 234.93 252.54 205.87 CCV: 14; RCV: 0 5.5368 1.5440

5 250.49 257.5 141.15 CCV: 13; RCV: 0 0.9843 1.7867

Problem Palt
Coordination: Proximal Cutting Planes

1 238.97 250.28 345.64 CCV: 16; RCV: 0 3.2823 1.2951

2 233.11 242.78 201.82 CCV: 14; RCV: 0 2.7858 1.2469

3 241.35 249.96 204.16 CCV: 14; RCV: 0 2.1369 1.3543

4 234.99 252.42 230.01 CCV: 17; RCV: 0 5.4975 1.4958

5 249 255.32 225.91 CCV: 15; RCV: 0 1.5732 0.9250

Problem Pcl
Coordination: Simple Gradient Level Method

1 234.52 250.47 111.44 CCV: 30; RCV: 0 5.0834 1.3720

2 230.12 246.14 176.46 CCV: 25; RCV: 0 4.0327 2.6482

3 239.22 248.44 117.68 CCV: 21; RCV: 0 3.0006 0.7380

4 230.37 251.91 132.05 CCV: 22; RCV: 0 7.3703 1.2907

5 245.62 257.05 120.96 CCV: 15; RCV: 0 2.9093 1.6088

Problem Palt
Coordination: Simple Gradient Level Method

1 233.88 251.28 148.46 CCV: 30; RCV: 0 5.3424 1.6999

2 231.22 242.2 182.3 CCV: 24; RCV: 0 3.5740 1.0050

3 239.59 248.88 185.31 CCV: 19; RCV: 0 2.8505 0.9164

4 231.37 254.85 208.15 CCV: 19; RCV: 0 6.9533 2.4729

5 245.86 253.67 233.64 CCV: 36; RCV: 0 2.8145 0.2727

Table 10. Numerical results for large problems—Dijkstra algorithm based heuristics (HRF).

Heuristic
Objective

(LB)

Reallocated
(UB)

Spent
Time [s] Feasibility

LB
Relative
Gap [%]

UB
Relative Gap

[%]

Dijkstra algorithm based heuristics (HRF)

1 199.48 251.52 67.61 CCV: 28; RCV: 0 19.265 1.7970

2 203.27 253.23 84.56 CCV: 40; RCV: 0 15.2300 5.6049

3 190.52 255.81 77.33 CCV: 32; RCV: 0 22.7475 3.7264

4 200.47 256.75 78.81 CCV: 32; RCV: 0 19.3928 3.2368

5 202.66 264.61 91.64 CCV: 32; RCV: 0 19.8909 4.5972
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7. Conclusions

The decomposition methods presented in the paper can approximately solve the
problems of simultaneous routing and bandwidth allocation in energy-aware networks
with less time expenditure than a commercial solver. The quality of the produced solution
is strongly dependent on the problem parameters such as: network topology, number
of demands, capacities of links, and flow rate bounds. The selection of the appropriate
decomposition method should be connected with finding the most scalable component of
the solved problems.

The heuristic method presented in Section 6.1 was the fastest one, but the optimal
solution approximation provided by it was not precise enough. Because of that, an attempt
to combine this method with a branch and bound algorithm was made. Unfortunately, for
large problem instances, this approach failed.

The decomposition methods based on Lagrangian relaxation showed a better precision.
As it turned out, their performance may strongly depend on the optimization problem
formulation. The quality of the solution is better for decomposition methods with a
lower number of relaxed constraints. Because of that, the continuous and binary variables
decomposition method did not present well.

The subnetworks decomposition can produce quite a good approximation of the
optimal value of the primal problem. Unfortunately, this method did not allow for gaining
a satisfactory performance boost for the tested instances—finding local problems solutions
could be enormously long. Local problems retrieved from the demand decomposition or
the subnetworks decomposition are problems of a smaller size, but still mixed-integer and
NP-hard, so their complexity may remain significant. Moreover, the solutions delivered
by this method do not form paths, and it is impossible to restore a feasible solution in a
simple way.

Meanwhile, the demand decomposition method allowed for retrieving a solution with
a relatively small duality gap and made this in a much shorter time than a commercial
solver. In addition, in the case of demand decomposition, a local problem solution can be
used to restore a solution feasible for the primal problem.

Both coordination algorithms used in tests were able to find the solution of the dual
problems. Overall, a cutting plane method with the proximal component provided better
solutions, but the simple gradient level method was able to produce comparable solutions
in a shorter time. Moreover, cutting planes’ methods need much more time with the
growth of the number of Lagrange multipliers, so, for problems involving a large number
of multipliers, simple gradient algorithms may deliver a significant performance increase.

Despite the usage of the presented methods for finding the exact solution of the
primal problem seems to be not promising, the Lagrangian relaxation decomposition
methods for large problem instances are still able to provide a good estimate of the optimal
value of the objective function in a much shorter time than a commercial solver finds the
optimal solution.
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