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Abstract: There is a strong trend in the development of control systems for multi-rotor unmanned
aerial vehicles (UAVs), where minimization of a control signal effort is conducted to extend the flight
time. The aim of this article is to shed light on the problem of shaping control signals in terms of
energy-optimal flights. The synthesis of a UAV autonomous control system with a brain emotional
learning based intelligent controller (BELBIC) is presented. The BELBIC, based on information from
the feedback loop of the reference signal tracking system, shows a high learning ability to develop
an appropriate control action with low computational complexity. This extends the capabilities of
commonly used fixed-value proportional–integral–derivative controllers in a simple but efficient
manner. The problem of controller tuning is treated here as a problem of optimization of the cost
function expressing control signal effort and maximum precision flight. The article introduces several
techniques (bio-inspired metaheuristics) that allow for quick self-tuning of the controller parameters.
The performance of the system is comprehensively analyzed based on results of the experiments
conducted for the quadrotor model.

Keywords: UAV; quadrotor; optimization; minimum energy control; brain emotional learning;
BELBIC

1. Introduction
1.1. Background

In recent years, there has been a growing interest in unmanned aerial vehicles
(UAVs) [1,2]. Among the various types of UAVs, multi-rotor robots are particularly interest-
ing due to their small size, good flight properties (including the possibility of hovering and
flying stably at very low speeds), and relatively low cost [3]. In each of the diverse missions
(transportation, agricultural, industrial, photogrammetry, reconnaissance, surveillance,
etc.), UAV features such as maximum flight time and smooth, non-overshooted flight tra-
jectories are in demand. These properties determine the safety of control of this inherently
unstable and underactuated plant. The appropriate selection of controllers and their proper
tuning are of prime importance since they allow the optimal use of highly limited energy
resources to generate the appropriate thrust and torques of the particular propulsion units
of the UAV.

Nowadays, numerous types of controllers are used in multidimensional UAV control
systems [4]. In addition to a number of advanced solutions in which the control system is
able to autonomously control the UAV with rapidly changing, time-varying aerodynamic
characteristics during flight (briefly characterized in [5]), techniques based on model predic-
tive control (MPC) [6], fuzzy control [7], sliding mode control (SMC) [8], and adaptive fault-
tolerant control [9] are widely used. In addition to these techniques, many new ones have
appeared [10–13] which are related to advanced intelligent control of nonlinear systems
and may be easily adaptable to UAVs. However, the most common commercially avail-
able multi-rotor UAVs use solutions based on classical fixed-value feedback controllers of
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proportional–derivative (PD) or proportional–integral–derivative (PID) type [14]. They
provide good trajectory tracking and do not require a UAV dynamics model.

1.2. Research Motivation

The research motivation was based on the idea that the quality of the above-mentioned
fixed-value feedback controllers may be improved by:

• The use of appropriate techniques to optimize their gains.
• Inclusion of fixed-value controllers in the structure of intelligent controllers.

In this article, both improvement solutions are presented. The research was also
indirectly inspired by [15], where the SafeOpt algorithm (based on Bayesian optimization)
was proposed to solve the problem of automatic adjustment of the controller parameters
to ensure a more precise flight. Interesting results are also presented in [16], in which
the authors, via an in-flight run of the modified relay feedback test, looked for near-
optimal tuning of the quadrotor attitude controllers. In previous articles [17–19], we
proposed deterministic optimization methods based on modified zero-order iterative
algorithms (Fibonacci-search, golden-search) for in-flight auto-tuning of UAV controllers.
These methods of automatic tuning of the gains of fixed-value controllers on the basis
of machine learning (iterative learning) algorithms allow, by comparing the obtained
values of the cost function for various combinations and of gains, to search for the (locally)
optimal gains for specific expectations expressed by the mathematical formula of the cost
function. As a result, controllers capable of increasing the tracking precision of the UAV
reference trajectory are obtained, and in the case of [19], the energy consumption of the
UAV is indirectly optimized by introducing a penalty mechanism for large picks of control
signals (included in the optimized cost function value). This mechanism forms the basis
for the minimum energy control considerations in this paper. Moreover, in the current
article, attention is focused on batch tuning of controllers, as our previous techniques for
in-flight tuning of gains of fixed-value UAV controllers do not guarantee stability during the
tuning process. Therefore, the in-flight approaches are predefined more for the successive
improvement of controller gain in the daily exploitation of drones, and pre-tuning can be
performed based on the approach proposed here.

In the synthesis of UAV control systems, in the process of optimizing gains described
above, techniques inspired by examples from nature have been used successfully [20].
Naturally, since 2014, when Duan and Li published their book, at least a dozen new
and now well-recognized algorithms have been proposed. The most interesting include,
among others, the cuttlefish algorithm (CFA) [21], Harris hawks optimization [22], a
mayfly optimization algorithm [23], jellyfish search [24], golden eagle optimizer [25], and
firebug swarm optimization [26]. In this article, it was decided to use two of them in
the synthesis of a UAV autonomous control system with a neurobiologically inspired
intelligent controller. They are, respectively: the particle swarm optimization (PSO) and
cuttlefish algorithm, used in the author’ earlier works, including optimization in nonlinear
MPC [27] and auto-tuning of a UAV altitude controller [21]. The preliminary research and
the promising results obtained in the previous works were a direct motivation for the
selection of these algorithms.

1.3. The State of the Art

Since obtaining perfect accuracy of the nonlinear mathematical model of UAV dy-
namics is a challenging task, model-free, soft-computing-based controllers are preferred.
Especially those that are robust and can deal with real-world environmental complexities
and disturbances. Furthermore, the capability of self-learning is expected (with a small
computational cost and with simple self-adapting mechanisms). Thus, intelligent con-
trollers (especially PID-type-based) with learning capability are a prime solution to provide
appropriate control actions in UAV autonomous low-level control. It is expected that these
controllers will have a simple structure and fewer parameters to be tuned than the neural
networks and fuzzy equivalents.
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Within the universe of model-free neurobiologically inspired intelligent controllers, so-
lutions with low computational complexity are gaining in importance every year—especially
those offering a transparent, analytical structure of the control system, as well as reward-
and penalty-based learning mechanisms in the controller’s response to external emotional
stimuli. Emotional learning is one of the leading psychologically motivated learning strate-
gies (Figure 1), which is then used to produce control actions (emotional response) in the
output of intelligent neuromorphic controllers based on the desired and actual system
response (sensory input). The emotional learning process is based on emotional evalua-
tions. According to [28], ‘emotions play an essential role in rational decision-making, perception,
learning, and a variety of other cognitive functions’. Additionally, emotions help humans
survive and react immediately in an emergency or danger. Emotional stimuli (for example,
fear, aggression, and anxiety) cause emotional behaviors and the brain’s quick reactions
to danger, often far from the complex reasoning and logic. The evaluation of the effect of
such an emotional reaction is firmly established in the learning process. Additional actions
are not caused only by rational reasoning but are determined and biased by emotions.
Thus, emotions may be considered as ‘a tacit expert system’ [29]. In [30], the concept of
dividing brain work into rational mind and emotional mind is presented. The latter has a
key important feature, which is an extremely fast reaction. Fast emotional processing is
possible [31] due to synapses (inhibitory connections) and short pathways in the limbic
system of the emotional brain.

Figure 1. Block diagram of the BEL model (briefly characterized in Section 1.4), proposed by Moren
and Balkenius [29], where: SI—sensory input, ES—emotional signal, OC—orbitofrontal cortex,
A—amygdala, MO—memory output.

In 2004, Lucas Caro et al., in [32], proposed the idea of a brain emotional learning
based intelligent controller (BELBIC), where context processing and an open-loop cognitive
amygdala-OFC model created by Moren and Balkenius [29] in 2000 were used (Figure 1).
Since 2000, BELBIC controllers have been successfully used, e.g., in developing a new fuzzy
neural network by incorporating a BELBIC with fuzzy inference rules [33]. Its performance
was evaluated on the model of an inverted double pendulum system. In [34], implementa-
tion of the intelligent adaptive controller for an electrohydraulic servo system based on
the brain emotional learning (BEL) mechanism was presented. Joao Paulo Coelho et al.
adapted BELBIC controllers into two control systems: (a) one with a mathematical model
of magneto-rheological (MR) damper [35], and (b) one with a model of a non-collocated
three-story building with MR [36], respectively. Lucas Caro et al. applied an intelligent
controller to the neurofuzzy microheat exchanger model in [37,38] to control the laboratory
overhead travel crane in a model-free and embedded manner. Another interesting paper by
Lucas Caro et al. is the control of the speed and flux of induction motors using a BELBIC
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controller [39]. The last publication worth mentioning is [40], where fuzzy inference is
designed to tune the BELBIC reward function parameter online that is used to control the
electrohydraulic actuator.

There is relatively little research on this control strategy in the field of aviation and
aerospace. In [41], intelligent autopilot design may be found for a nonlinear model of
an autonomous helicopter using an adaptive emotional approach. Valencia and Kim,
in [42], used BELBIC to build a control system capable of autonomously operating multiple
quadrotors in the leader–follower configuration. Interesting research may be found in the
works of Jafari et al., especially [43,44], where real-time flocking control of multi-agent
systems in the presence of system uncertainties and dynamic environments and distributed
intelligent flocking control of networked multi-UAS were considered, respectively.

1.4. BELBIC—General Idea and Areas for Improvements

A mathematical model of the limbic system of the human brain (Figure 1) with areas
responsible for emotional learning and processing such as the orbitofrontal cortex, the
amygdala, the sensory cortex, and the thalamus has been developed in BELBIC controllers
with the use of an artificial network with adaptable parameters (adjustable gains)—details
of mathematical formulas are provided in Section 2.3. In both cases, i.e., biological and
artificial brain models, two networks affecting each other: sensory neural network (SNN)
and emotional neural network (ENN) build an internally interconnected system. SNN is
used to simulate the brain’s orbitofrontal cortex and is responsible for the major output
of the BELBIC controller, while the ENN is used to represent the amygdala cortex, and
it undergoes stimulation by external factors and has indirect impact on the SNN. This
structure of the brain model conforms to Mowrer’s cognitive theory of the learning process.
The theory states that emotional evaluation (connection of response with stimulus) occurs
after association of the stimulus with an emotional consequence. Therefore, emotions in the
sensory learning system can be used as constant feedback. They also provide information
to evaluate the level of success in applying control actions and to provide a new control.

The emotional response from the emotional brain will appear when input of stimuli
from environments will put the state of the limbic system out of balance. This reaction is
learning- and adaptation-oriented to provide a higher level of robustness to a constantly
changing environment. In the sensorial switching station, which is the thalamus, stimulus
inputs are gathered and preprocessed. That sensory data are being properly distributed
to the amygdala or to the cerebral cortex (sensory and orbitofrontal cortex). A center for
the processing of emotional behavior is the amygdala, which communicates with all other
areas of the limbic system. It responds to emotional stimuli, since here, as LeDoux found in
1992 [45], the association between a stimulus and its emotional consequence has a place. The
stimulus in the learning process needs to be paired with a primary reinforcer (the reward
and penalty), which in the artificial BEL model can be freely chosen. The amygdala interacts
with the OFC, which evaluates the response of the amygdala and prevents inappropriate
responses based on the context. In the OFC, negative reinforcement signals are being
generated. These signals are used to inhibit and mitigate inappropriate signals generated
by the amygdala, when there is a difference between the expected prediction of the system
and the actual emotional signal received. OFC controls learning extinction in the amygdala
to give a proper emotional signal.

In the context of the control theory, using the mimicry of the cognitive functions of the
brain, introducing in the control system additional information from the feedback from the
control signal to the controller input and the reinforcement critic mechanism, allows for a
smooth transition from fixed-value control to the intelligent model-free BELBIC. During the
control system synthesis, the emotional signal and sensory input are considered as arbitrary
cost functions of signals such as control error, control signal or reference signal—depending
on the needs and expectations of the control system designer. It is worth mentioning that
finding an appropriate cost function is not a trivial task.
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One needs to remember that the BELBIC controller has basically two disadvantages.
The first one is similar to fuzzy and neural network controllers—it requires some initial
knowledge (expert knowledge) about the control system in its synthesis process. However,
unlike these controllers, here, just the functions of sensory input and reward (emotional)
signal need to be appropriately arbitrarily chosen by the control system designer. The
second drawback is, unfortunately, the difficult design of such controllers during UAV
flight, because there is no guarantee of full stability [46]. Therefore, in this article, it
was decided to use at the prototyping stage the closed-loop control system model with
controllers and plant models—although the BELBIC controller itself is of the “model-free”
type. The advantage of this approach is also the possibility of using bio-inspired heuristic
optimization methods for shaping transients in flight trajectories.

1.5. Main Contribution

It is proposed to extend the capabilities of the brain emotional learning based intelli-
gent controller in the field of autonomous UAV control, using metaheuristic optimization
techniques to conduct the most precise flight of the drone in a minimal energy manner.

The added value of this research is as follows:

• Synthesis of the autonomous drone control system with the BELBIC controller in the
proposed controller structures and model of UAV dynamics.

• Formulation of an optimization problem in order to optimize the gains of the BELBIC
controller in terms of minimizing the energy expenditure of the UAV flight for selected
optimization solvers.

• Evaluation of the performance of the proposed control system by means of numerical
experiments, including providing knowledge of whether the proposed method of
control can extend the flight time of the drone while increasing the precision of the
flight in relation to the fixed-value controller approach.

1.6. Study Outline

The paper is organized as follows: in Section 2, the synthesis of the autonomous
control system is presented. Furthermore, here, one may find details of the UAV model.
The BELBIC controller paradigm is explained. Section 3 is the most important one, since
here the proposed improvements to BELBIC are shown to obtain the minimum energy
control of the UAV. The optimization problem is outlined for the chosen sensory input
and emotional signal functions. Furthermore, this section contains the necessary details of
bio-inspired optimization algorithms used to find the solution of the optimization problem,
i.e., gains of BELBIC controllers to autonomously control the UAV. In Section 4, one may
find the representative results obtained from the numerical experiments carried out to
validate the minimum energy control of the UAV. Extensive performance analysis of the
BELBIC-based UAV autonomous control system is shown. Section 5 summarizes the article
and future research plans are described. The meaning of symbols used in the paper are
found in Table 1.

Table 1. Meaning of symbols used in the paper.

Symbol Meaning

a1, a3, a3 translational air drag coefficients
a4, a5, a6 aerodynamic friction coefficients

b thrust constant
ci, si cognitive, social vectors of PSO algorithm

d drag factor
e(t) control error
Fd translational drag force
FT thrust force generated by UAV rotors
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Table 1. Cont.

Symbol Meaning

g gravitational acceleration
I UAV symmetrical inertia matrix

IR rotor inertia
J performance index (cost function in optimization procedure)

k1, . . . , kn gains of BELBIC controller
l distance between the propulsion unit axis and the UAV’s center of the mass
m UAV mass
p vector of measured coordinates of UAV position

pi, vi position, velocity vectors of PSO algorithm
R rotation matrix
th flight time horizon

u(t) control signal (in time domain)
Vi amygdala i-th gain
Wi orbitofrontal i-th gain
w UAV output vector

xd, yd, zd reference, desired coordinates of UAV position
x, y, z measured position of the UAV
y(t) output signal
α, β learning coefficients for the amygdala and orbitofrontal cortex

φ1, φ2 cognition and social constants in PSO algorithm
φd, θd, ψd reference, desired pitch, roll, and yaw angles

Ω vector of measured UAV angles
BF body frame of reference
EF Earth frame of reference

τx, τy, τz roll, pitch, and yaw torques applied to the body of the UAV
Γ weight coefficient for the control error in J cost function
Ψ weight coefficient for the control signal in J cost function
λ inertia weight in PSO algorithm

2. Control System Synthesis
2.1. Autonomous Control of the UAV

Let us consider the autonomous control system of a quadrotor UAV from Figure 2,
where four input signals are enough to stabilize all of the drone’s six degrees of freedom
(expressed by position and orientation vectors in 3D space) and to provide precise tracking
of the predefined drone flight path. It is possible, since there are two control loops: (a) posi-
tion control (outer, slower) and (b) attitude control (inner, faster). In this architecture, input
signals may be written as a reference vector:

v =
[
xd yd zd ψd

]T , (1)

where xd, yd, and zd reference the desired coordinates of UAV position in 3D, and ψd the
desired rotation around the z-axis. All four reference signals are defined according to the
Earth coordinate system {EF} (see Figure 3 for details).

To describe the UAV measured orientation and position in the 3D space during its
autonomous flight, two vectors are introduced. The first one, describing the UAV measured
position according to {EF}, is

p = [x, y, z]T , (2)

where x, y, and z are current coordinates of the UAV position in 3D.
The second vector used in the UAV output description is

Ω = [ϕ, θ, ψ]T (3)

for current orientation, where ϕ, θ, and ψ are the roll, pitch, and yaw measured angles,
respectively.
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On the base of Equations (2) and (3), the UAV output may be written as a following
vector:

w =
[
p Ω

]T
=
[
x y z ϕ θ ψ

]T . (4)

Often, first, second, and even third derivatives of a vector’s w elements are used in
struggling with UAV stabilization and for desired trajectory tracking. In this research, in
every moment of flight, one may use the comparison (difference) between corresponding
elements of v and w vectors—known as control errors. These control errors are used next
in BELBIC controllers to provide proper control actions, as well as to calculate the cost
function value in controller gains optimization in order to find minimum energy control of
the UAV—details in Section 3.

Figure 2. Block diagram for autonomous control of the UAV (thrust and torques ui for i = 1, . . . , 4 are
defined in Equation (15).

Figure 3. Reference frames related to the X4-flyer II simplified graphics. Left (4) and right (2)
propulsion units rotate clockwise, while the front (1) and rear (3) counterclockwise.

2.2. Quadrotor Model

Quadrotor UAVs are currently the most widely used multi-rotor drones. Therefore,
let us consider the nonlinear model of such a UAV dynamic, originally published in [47]
and adapted here with an additional translational drag effect. It is further assumed in
the research that the quadrotor UAV behaves like a rigid body with construction mass
accumulated to its geometric center, and it has four rotors with symmetrically distributed
propellers at each cross-type frame end.

Model of the UAV from Figure 3 is based on ‘+’ type layout configuration, where the
x-axis of the UAV’s local coordinate system (body frame–{BF}) coincides with the line
drawn from the back propulsion unit to the front one, the y-axis is perpendicular to the
right, and the z-axis is looking down according to the right-hand rule, respectively. These
axes conventions with regard to the observer’s coordinate system (Earth frame—{EF}) is
the so-called North–East–Down (NED). In the UAV control and measurements, conversions
between {BF} and {EF} are necessary. The rotation matrix R ∈ SO3 from {BF} to
{EF} is

RZYX(ψ, θ, ϕ) = RZ(ψ)RY(θ)RX(ϕ), (5)
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where RZ(ψ), RY(θ), and RX(ϕ), are Euler angle matrices as follows

RZ(ψ) =

cosψ −sinψ 0
sinψ cosψ 0

0 0 1

, (6)

RY(θ) =

 cosθ 0 sinθ
0 1 0

−sinθ 0 cosθ

, (7)

RX(ϕ) =

1 0 0
0 cosϕ −sinϕ
0 sinϕ cosϕ

. (8)

Using Equations (6)–(8), the matrix RZYX(ψ, θ, ϕ) from Equation (5) can be written as

RZYX(ψ, θ, ϕ) =

cψcθ cψsθsϕ− sψcϕ cψsθcϕ + sψsϕ
sψcθ sψsθsϕ + cψcϕ sψsθcϕ− cψsϕ
−sθ cθsϕ cθcϕ

, (9)

where c = cos, and s = sin.
The mathematical model that describes the UAV position may be written according to

Newton’s second law of motion as

mp̈ = −Fg + FT − Fd, (10)

where m—UAV mass, Fg =
[
0 0 g

]T—gravitational force on Earth, g—gravitational

acceleration, and FT =
[
0 0 T

]T—thrust force generated by four rotors, and

T = b
4

∑
i=1

ω2
i , (11)

where b—thrust constant and ωi—rotational speed of the rotor i.
For UAV’s airframe, the translational drag force may be written as

Fd =
[
a1 ẋ a2ẏ a3ż

]T , (12)

where a1, a2, and a3—translational air drag coefficients.
It is now possible to rewrite the Equation (10) for the position of the UAV in the

following form:

p̈ = −g

0
0
1

+ R
b
m

4

∑
i=1

ω2
i

0
0
1

− 1
m

a1 ẋ
a2ẏ
a3ż

, (13)

while its orientation is considered according to Euler’s rotation equation:

IΩ̈ = −Ω̇× IΩ̇−
4

∑
i=1

IR

Ω̇×

0
0
1

ωi +

τx
τy
τz

+

a4 ϕ̇2

a5θ̇2

a6ψ̇2

, (14)

where I—symmetrical inertia matrix, IR—rotor inertia, τx, τy, and τz,—roll, pitch, and yaw
torques applied to the body of the vehicle, and a4, a5, and a6—aerodynamic friction coefficients.
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For the considered quadrotor UAV in ‘+’ type layout configuration, the control input
vector is 

u1
u2
u3
u4

 =


T
τx
τy
τz

 =


−b −b −b −b
0 −lb 0 lb
lb 0 −lb 0
d −d d −d




ω2
1

ω2
2

ω2
3

ω2
4

, (15)

where l—distance between the propulsion unit axis and the UAV’s center of the mass, and
d—drag factor.

After transformations, Equations (13) and (14) formulate the final description of the
UAV’s dynamics 

ẍ = (sinϕsinψ + sinθcosϕcosψ) u1
m −

a1
m ẋ

ÿ = (−sinϕcosψ + sinθcosϕsinψ) u1
m −

a2
m ẏ

z̈ = −g + cosϕcosθ u1
m −

a3
m ż

ϕ̈ = (
Iyy−Izz

Ixx
)θ̇ψ̇− IR

Ixx
θ̇ωd +

u2
Ixx
− a4

Ixx
ϕ̇2

θ̈ = ( Izz−Ixx
Iyy

)ϕ̇ψ̇ + IR
Iyy

ϕ̇ωd +
u3
Iyy
− a5

Iyy
θ̇2

ψ̈ = (
Ixx−Iyy

Izz
)ϕ̇φ̇ + u4

Izz
− a6

Izz
ψ̇2

, (16)

where Ixx, Iyy, and Izz—inertias on the main diagonal of the matrix I, and

ωd = ω2 + ω4 −ω1 −ω3. (17)

2.3. BELBIC Controller Design

Let us consider the BELBIC controller structure illustrated in Figure 4, introduced by
Lucas Caro in [32], where he adjusted Moren and Balkenius’s computational model of emo-
tional learning in the amygdala (so-called BEL model) [29] to create a feedback mechanism
in the closed-loop control system with Sensory Input (SI) function and Emotional Signal
(ES) generator—both need to be defined by the user. Since the amygdala is responsible
for reinforcement and the orbitofrontal cortex for penalty, one needs to know that the
amygdala will never unlearn the emotional response once learned; thus, the orbitofrontal
cortex’s role is to inhibit the inappropriate response of the BELBIC controller. The BELBIC,
here, is more a control paradigm than a typical controller with fixed structure, but even
with this flexibility in the selection of SI and ES, it always operates on two inputs (SI and
ES) and one model output (MO), defined as

MO = ∑
i

Ai −∑
i

OCi, (18)

where i—number of sensory inputs.
From Equation (18), the difference between the provocative amygdala outputs (Ai)

and the prohibitive orbitofrontal cortex outputs (OCi) is calculated. The Ai and OCi are
defined as follows [48]:

Ai = ViSIi, (19)

OCi = Wi × SIi, (20)

where Vi, Wi—weight parameters (the amygdala and orbitofrontal gains), and SIi is the
i-th sensory input. During control, the weights Wi, Vi are updated according to the
following formulas:

∆Vi = α× SIi ×max

(
0, ES−∑

i
Ai

)
, (21)

∆Wi = β× SIi × (MO− ES), (22)



Energies 2022, 15, 7566 10 of 23

where α, β—learning coefficients for the amygdala and orbitofrontal cortex (usually be-
tween 0 and 1).

The last important equation in the BEBLIC model is the one for the Ath signal from
the thalamus to the amygdala:

Ath = Vth ×max(SIi), (23)

where Vth—weight parameter.

Figure 4. (a) BEL computational model, (b) SISO closed-loop control system with BELBIC controller.

3. Minimum Energy Control of Quadrotor UAV
3.1. Optimization Problem

By introducing the structure of the BELBIC controller from Figure 4 into the au-
tonomous drone control system of Figure 2, the aim is to obtain: (a) stabilization of the
system from Figure 5 during UAV flight and (b) to provide minimum energy control. Since,
the BELBIC controller is considered as ‘an action selection methodology’ [49], the ES and
SI signals need to be properly chosen by the designer. In general, these are functions
defined as:

ES = G(e, u, r, y), (24)

SI = F (e, u, r, y), (25)

where e—control error, u—control signal, r—reference signal, and y—output signal.



Energies 2022, 15, 7566 11 of 23

Figure 5. MATLAB-based block diagram of the UAV autonomous control system with BELBIC
controllers (inputs: UAV’s desired position in xd, yd, and zd axis and desired yaw angle ψd; while
output: UAV state vector of current position and orientation).

Since UAV autonomous control systems use at most six separate controllers (usually
PD or PID type), it is proposed to use inner and outer control loops (see Figure 5), following
functions ESl and SIl for l = {1, . . . , 6} in their BELBIC counterparts

ESl = kl1el(t) + kl2

∫ th

0
el(t)dt + kl3

d
dt

el(t), (26)

SIl = kl4el(t) + kl5
d
dt

el(t), (27)

where th—time horizon of control, and kl1, . . . , kl5, are positive gains of ESl and SIl functions
of l-th PID- and PD-type controllers based on el(t) tracking error.

Based on its high flexibility, the PID-type controller was chosen for ESi, and since
UAV as an unstable plant is often approximated by a linear double-integrating term that
can be counteracted by the derivative term of simple PD-type controller, this structure
was proposed for SIi. Furthermore, according to the control theory, in the autonomous
control system of the UAV, in Formulas (26) and (27), gains kl1 and kl4 adjust the UAV
settling time, gains kl3 and kl5 reduce the overshoot, and kl2 determines the steady-state
error, respectively.

The ES function reflects information about the deterioration of the control quality,
i.e., when l-th control error increases, it mimics a negative emotion in BEL. Thus, the
l-th BELBIC controller will work via the l-th SI according to the Algorithm 1 to provide
proper control signal for the UAV. To force the BELBIC to work more energy efficiently and
precisely, optimization mechanisms can be easily adapted. Accordingly, the optimization
task for minimum energy control of the UAV is formulated as follows:
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• Goal: Ensure the smallest tracking errors during the UAV flight:

ep = pd − p, (28)

eψ = ψd − ψ, (29)

at lowest possible energy effort.
• Cost function (performance index) J(t):

J(t) =
∫ th

0
(Γ|e(t)|+ Ψ|u(t)|)dt, (30)

where Γ and Ψ—weight coefficients for the control error and the control signal of a
particular controller, respectively.

• Optimization problem formalism:

min
k1,k2,...,kN

J(t) =
∫ th

0 (Γ|e(t)|+ Ψ|u(t)|)dt,

s.t.

0 ≤ k1 ≤ kmax
1

0 ≤ k2 ≤ kmax
2

. . .
0 ≤ kN ≤ kmax

N

(31)

where kmax
1 , kmax

2 , . . . , and kmax
N are predefined by designer upper bounds of ranges where

the optimizer explores the search space for optimal gains of N controller parameters.

Gains k1 and k5 for each of the BELBIC controllers may be found using bio-inspired
optimization algorithms.

Remark 1. Γ and Ψ are used to profile the UAV output signals in a meaning of energy efficient
flights, that is, penalizing by using larger values of Ψ will cause more smooth flight characteristics,
avoiding large control signal and aggressive controller work, and thus the flight time will be extended.

Algorithm 1 The BELBIC-inspired algorithm for UAV control

1: Variables initialization Set: Vi = 0, Vth = 0, W = 0, for i = 0,. . .,6
2: Define ESi = cost f unction, for i = 0,. . .,6
3: for Each iteration t = ts do
4: for Each control inputs l do
5: Compute ESl = kl1el(t) +kl2

∫ th
0 el(t)dt + kl3

d
dt el(t)

6: Compute SIl = kl4el(t) + kl5
d
dt el(t)

7: Compute Al = VlSIl
8: Compute OCl = WlSIl
9: Compute Ath = Vthmax(SIl)

10: Compute MOl
11: Update Vl
12: Update Wl
13: Update Vth
14: end for
15: end for

3.2. Bio-Inspired Optimization Algorithms

In optimization tasks, where an approach based on a control system model is possible,
nature- and bio-inspired algorithms have been used successfully for years [20]. By means
of numerical calculations, they allow the J index to be calculated for a large number of
combinations of controller gains. On the basis of the state of the art, it was decided to
use two: the “classical”, well-known particle swarm optimization (PSO) and the “rising”
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cuttlefish algorithm (CFA). In this paper, only the mathematical formulas for both are
presented. For more details, see [50,51].

3.2.1. Particle Swarm Optimization

The PSO algorithm mimics the behavior of a group of animals that live in flocks and
communicate with each other, e.g., to find the best food supplies. Each particle in the
optimization method is treated as a set of controller gains. The PSO algorithm starts with
an initial set of particles and, by the movement of these particles, explores the constrained
search space of size m. The movement of each i particle in the subsequent iteration of the
PSO algorithm is determined by its individual and social behavior. The velocity of the
particle vi = [vi1, vi2, . . . , vim]

T and its position xi = [xi1, xi2, . . . , xim]
T in the t iteration can

be updated according to the following equations

vi(t + 1) = vi(t) + ϕ1ci(t) + ϕ2si(t), (32)

xi(t + 1) = xi(t) + vi(t + 1), (33)

where φ1 and φ2 are cognition and social constants to explore the search space. They are
usually chosen as values from 0 to 2 to establish the proper balance between cognitive (ci)
and social (si) oriented exploration. Vectors ci = [ci1, ci2, . . . , cim]

T and si = [si1, si2, . . . , sim]
T

are defined as
ci(t) = pi(t)− xi(t), (34)

si(t) = gi(t)− xi(t), (35)

where the vector pi = [pi1, pi2, . . . , pim]
T is the best position obtained from the particle i

until the current iteration t, and the vector gi = [gi1, gi2, . . . , gim]
T is the best position of all

particles in iteration t.
In 2001, Eberhart and Kennedy proposed in [50] the modification of their PSO algo-

rithm (32)–(35) by introducing an additional inertia weight λ for a better convergence of
the algorithm to the optimum; thus, in the equation:

vi(t + 1) = λ(t)vi(t) + ϕ1ci(t) + ϕ2si(t) (36)

higher values of λ provide more social (global) exploration and smaller, more cognitive
(local) exploration in the available search space, respectively.

3.2.2. Cuttlefish Algorithm

Cuttlefish, in danger, can very quickly change color to be as invisible as possible in the
water environment or, contrarily, become stunningly visible. This behavior is mimicked in
the cuttlefish optimization algorithm, where the color change mechanism (based on the
reflection and visibility processes) is used to solve optimization tasks. In nature, all the colors
and patterns on the skin of cuttlefish come from reflected light from different layers of cells,
which are stacked together. These mirror-like cells are chromatophores, iridophores, and
leucophores. In the first effect, reflection, light can be reflected from cells in six combinations.
In the second effect, which is visibility, the cuttlefish try to mimic the patterns of their water
environment. In CFA, that is the difference between the best and current solutions of the
optimization task. Using the effects of reflection and visibility, as well as the division of cells
into four groups, the CFA algorithm (Figure 6) explores the search space of cells. Groups no.
1 and 4 are used for the local search, while no. 2 and 3 are used for the global search. All
groups share the best solution and work independently. In the case considered in the article,
each cell represents a particular combination of controller gains, and a new solution (newP)
is calculated in every iteration t of the CFA algorithm according to the following equation

newP = re f lection + visibility. (37)
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Figure 6. The CFA algorithm [51].

To start the CFA algorithm (Figure 6), a population P (cells) of N initial solutions
P = cells = {points1, points2, . . . pointsN} is spread over d size search space at random
positions (points) using:

P[i].points[j] = random · (upperLimit− lowerLimit) + lowerLimit
i = 1, 2, . . . , N; j = 1, 2, . . . , d

, (38)

where upperLimit and lowerLimit are the upper and lower limits in the problem domain,
since random is a value between 0 and 1.

In the CFA algorithm, a single cell in the population is represented by pointsi. It is
also associated with two values: fitness and a vector of continuous values of dimension d.
Best keeps the best solution, while AVBest stores the calculated average of Points. These
metrics are used in calculations performed in each of six cases for four cell groups:
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• Cases no. 1 and 2 for Group G1:

Re f lection[j] = R · G1[i].Points[j] (39)

Visibility[j] = V · (Best.Points[j]− G1[i].Points[j]) (40)

• Cases no. 3 and 4 for Group G2:

Re f lection[j] = R · Best.Points[j] (41)

Visibility[j] = V · (Best.Points[j]− G2[i].Points[j]) (42)

• Case 5 for Group G3:

Re f lection[j] = R · Best.Points[j] (43)

Visibility[j] = V · (Best.Points[j]− AVBest) (44)

• Case 6 for Group G4—Equation (38), where i—i-th cell of group G1, Points[j]—j-th
point of i-th cell, R—degree of reflection, and V—degree of visibility.

The values of R and V are calculated according to the following equations

R = random · (r1 − r2) + r2, (45)

V = random · (v1 − v2) + v2, (46)

where random()—function to generate random numbers between (0, 1), while r1, r2, v1,
and v2—constant values that determine the stretch interval of the chromatophores cells
and the visibility degree interval of the final view of the pattern, respectively.

4. Simulation Tests
4.1. Simulation Environment

For the performance analysis of the proposed control system, due to the number of
repetitions necessary to determine the best gains of particular BELBIC controllers, the
possibilities of computer simulation were used. For this purpose, a drone model widely
recognized and validated by the UAV community was selected, that is, the X4-flyer II
proposed by Paul Pounds et al. in [52]. This quadrotor UAV was built at the Australian
National University. Its important construction and dynamical parameters are summarized
in Table 2. The X4-flyer II model, as well as BELBIC controllers, were implemented with
the use of open source software, i.e., Robotics Toolbox created by Peter Corke et al. [53] for
MATLAB/Simulink. In this environment, elements of Brain Emotional Learning Toolbox [54]
were also implemented and optimization algorithms (PSO and CFA) were integrated.

Table 2. Parameters of the UAV quadrotor X4-flyer II (in SI units) [52,53].

Parameter Symbol & Value

UAV mass m = 4
Rotational inertia matrix J = diag([Ixx Iyy Izz]), Ixx = Iyy = 0.082, Izz = 0.149

Height of rotors above CoG h = 0.007
Length of flyer arms d = 0.315

Number of blades per rotor n = 2
Rotor radius r = 0.165
Blade chord c = 0.018

Flapping hinge offset e = 0.0
Rotor blade mass Mb = 0.005

Estimated hub clamp mass Mc = 0.010
Blade root clamp displacement ec = 0.004

Non-dim. thrust coefficient Ct = 0.0048
Lift slope gradient a = 5.5
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All simulation tests were carried out using a Dell Inspiron 3543 laptop, with an Intel
Core i5-5200U CPU@2.2 GHz processor, with 8 GB RAM memory under the 64-bit Windows
8.1 operating system. For the calculations, the MATLAB/Simulink 2016a was used.

The selected, most important, representative, and interesting research results regarding
the tuning process of BELBIC controllers to provide minimum energy control are presented
in the following subsections.

4.2. Experiment No. 1: Preliminary Adjustment

The autonomous control system of the UAV in Figure 2 is considered with the dy-
namical model of X4-flyer II and the parameters of Table 2. Nominal PD-type controllers
from [53] are used to stabilize angles φd, θd, and ψd, while the movement of the drone in x,
y, and z are controlled by the BELBIC type. In the preliminary stage of research, the trial-
and-error tuning approach is usually the first choice. This approach allows one to acquire
‘expert knowledge’ and to know the useful gain ranges. One needs to remember that in the
case of each BELBIC controller (Equations (26) and (27)), there are ten different parameters
that need to be tuned, i.e., K1–K5, α, β, Vi, Wi, and Vth, and this is not a trivial task.

The results of an interesting example of BELBIC position controllers’ pre-tuning are
shown in Figure 7 and on the AeroLab website (animated, recorded flight trajectories from
the simulation tests discussed in the article are available at http://www.uav.put.poznan.pl
and https://youtu.be/iVDeJbMYlQQ, accessed on 20 May 2022). They were obtained in
the mission, where the UAV starts from the initial position (−1, 0, 0), rises to 1.5 m, and
flies to draw a square-shaped shape within the time horizon of 20 s. For the X and Y axes,
the same controller gains were used due to the symmetric construction of the drone.

With respect to Figure 7, an interesting effect is visible. The drone accelerates rapidly,
but there are overshoots and it takes a long time to obtain the expected precision around the
control waypoints. It can be seen that BELBIC-type position controllers are over-reactive
and force a change in the altitude of the drone instead of its tilt only when moving forward
and sideways.

4.3. Experiment No. 2: PSO-Based Gains Selection vs. Path-Tracking Precision
(Altitude Controller)

In experiment no. 2, toward minimum energy control in the problem of proper gains
selection, research was conducted to give the answer to the question: How do the gains of the
designed BELBIC controllers determine their performance in reference path tracking?

It was decided to implement the following modifications regarding the configuration
of the setup from Experiment No. 1:

• Only the BELBIC-type altitude controller is analyzed, the rest are native PD-type
controllers with the gains from [53].

• In the reference trajectory, a circle was introduced in place of the square shape (avoid-
ing sudden moments of position switching at this stage of gains selection).

• During flight, the UAV aims to rotate simultaneously around the Z-axis of {EF}.
• The integral of the absolute error (IAE) was introduced as a measure of flight perfor-

mance assessment:

IAE =
∫ th

0
|e(t)|dt, (47)

• The PSO algorithm was used to search for the optimal gains of the BELBIC controller
according to Table 3.

Table 3. Parameters for tuning the BELBIC-type altitude controller using the PSO algorithm.

K1 K2 K3 K4 K5 α β V Vth A

min 0.01 0.01 0.01 0.01 0.01 0.01 0.01 1 1 0.001
max 700 700 700 100 100 0.1 0.1 const const const
best 699.99 0.01 256.62 32.31 11.28 0.09 0.01 const const const

http://www.uav.put.poznan.pl
https://youtu.be/iVDeJbMYlQQ
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Figure 7. Experiment No. 1: An exemplary test of the effectiveness of square-shaped path tracking
for the X-4 Flyer II drone model in a system with BELBIC controllers tuned by trial and error:
(a–c) reference (desired) and actual (measured) positions of the UAV on the X, Y, and Z axes, (d) flight
trajectory in 3D.

In the search for optimal gains, a swarm consisting of 20 particles was used. The
values of K1, K2, and K3 were changed with a step equal to 50, and the PSO algorithm was
repeated three times in each case to average the IAE value obtained for the best result, as
shown in Figure 8, where the function IAE = f (Ki) (for i = 1, . . . , 3) is presented.

In experiment No. 2, the PSO algorithm was initialized 45 times, and 289,660 com-
binations of the BELBIC altitude controller gains were checked. As shown in Figure 8,
good performance close to optimal solution is obtained by the limits of Ki equal to 400.
Since in BELBIC we are based on the PID structure in ES, higher actuation (through K1 and
K3) is favored by a better response of the controller (see Figure 9), and theoretically better
precision can be achieved by proper selection of other parameters. However, it should be
remembered that in the closed-loop autonomous control system of the UAV, the control
signal of the BELBIC controller is saturated to protect the propulsion units, and a high
value of the control signal will simply be saturated.

For further synthesis and performance analysis of the BELBIC-based energy-saving
control, a maximum gains limit of 400 was selected. For this limit, the results obtained
with an exemplary combination of gains from Table 4 are shown in Figure 10, where the
altitude controller works dynamically and generates just minimal overshoot, which in the
considered case is still desirable, since in subsequent experiments additional restrictions in
the form of a penalty function will be imposed on the control signal, due to which it will be
possible to slow down the controller’s emotional response (and thus reject the overshoot)
to ensure the expected tracking precision.
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Figure 8. Experiment No. 2: Function IAE = f (Ki) (for i = 1, . . . , 3).

Figure 9. Experiment No. 2: Function IAE = f (K1, K2, K3) for gains limited to the value of 400 and
α = 0.1, β = 0.01.

Table 4. Parameters of the BELBIC altitude controller used in Experiment No. 2.

K1 K2 K3 K4 K5 α β V Vth A

value 399.9993 182.3310 31.4309 11.3261 0.0999 0.01 0.01 1 1 0.001



Energies 2022, 15, 7566 19 of 23

Figure 10. Experiment No. 2: Test of the performance of circle-shaped path tracking for the X-4
Flyer II drone model in a system with BELBIC altitude controller: (a) reference (desired) and actual
(measured) positions of the UAV in the Z axes and (b) flight trajectory in 3D.

4.4. Experiment No. 3: Gain Tuning for Minimum Energy Control of the UAV
(Altitude Controller)

In the next experiment considered, attention was focused on the first 5 s of the UAV
flight, where how savings in generating the control signal affect the quality of the reference
path tracking was analyzed. In the optimization process, the smallest value of the cost
function of the Equation (30) was searched by increasing the value Ψ (see Table 5), which is
a penalty for too large control signals. To be able to compare the results of the experiments,
the integral of absolute error (IAE) is analyzed as a measure of control precision and the
integral of absolute of the control signal (IAU) as the equivalent of the energy expenditure
in this (altitude control) part of the drone control system. Analyzing the results shown in
Figure 11, it can be seen that, depending on the expectations expressed by the value of Ψ,
using the optimization algorithm, one can search for the gains of the altitude controller
that will provide a slower flight profile (with a smoother shape), which is desirable, for
example, during video recordings with the use of a drone. When comparing the results
for Ψ = 0 and Ψ = 0.005, there is a difference in the output signal response by 0.2 s (IAE
deteriorated by 14.19%), and energy expenditure is reduced by 32.16%. In the case of the
highest difference in the value of Ψ, the obtained value of IAU is double. It seems intuitive
to introduce a mechanism that allows controllers to modify/switch gains depending on the
needs or type of particular drone mission (agile maneuvers, cargo, filming, etc.).

Table 5. Results of the tuning of the BELBIC-type altitude controller using the PSO algorithm (Ψ = var,
Γ = 1).

K1 K2 K3 K4 K5 α β IAE IAU

min 0.01 0.01 0.01 0.01 0.01 0.01 0.001 — —
max 400 5 200 100 50 1.0 0.01 — —

Ψ = 0.000 399.99 0.06 156.55 91.76 30.15 0.998 0.001 0.895 167.0
Ψ = 0.001 298.49 0.01 159.35 47.79 19.08 0.038 0.001 0.901 164.0
Ψ = 0.002 264.44 0.01 185.18 46.65 20.19 0.023 0.001 0.937 138.0
Ψ = 0.003 259.92 0.01 199.99 44.99 20.46 0.020 0.001 0.959 128.6
Ψ = 0.004 209.15 0.02 162.11 46.42 22.65 0.046 0.003 1.003 126.8
Ψ = 0.005 215.31 0.01 199.99 46.40 24.08 0.012 0.001 1.022 113.3
Ψ = 0.006 197.87 0.01 199.99 44.99 25.74 0.010 0.002 1.061 105.6
Ψ = 0.007 263.42 0.01 112.22 41.01 28.31 0.999 0.001 1.083 108.1
Ψ = 0.008 121.44 4.70 86.730 85.22 38.19 0.984 0.010 1.138 101.7
Ψ = 0.009 157.10 0.02 187.15 33.15 25.29 0.010 0.004 1.251 89.93
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Figure 11. Experiment No. 3: (a) Z = f (t) [m] of the X-4 Flyer II drone model in a system with
BELBIC altitude controller in 5 s flight time horizon for Ψ = var, and Γ = 1, (b) IAE and IAU values.

4.5. Experiment No. 4: Performance Evaluation of Position Controllers

A similar experiment was conducted as before for the square-shaped flight profile
with position controllers in a time horizon of 10 s. The most important obtained results are
summarized in Table 6. It can be noticed that the use of the CFA algorithm to optimize the
PID controller gains improved the flight performance in the Z-axis, which in turn had a
positive effect on the precision of the drone positioning in the X and Y axes, with a slightly
worse tracking of ψ changes. The last interesting case is the fourth one in the Table 6, where
the minimum energy control of the yaw angle was obtained with the imposed penalty for
the too large control signal of the BELBIC-type controller. A slight slowing down of the
rotation angle changes interferes with the results for the X and Y axes. The slower turning
of the aircraft minimally deteriorates the tracking (higher IAE value recorded).

Table 6. Results obtained for the square-shaped flight profile with different position controllers in a
time horizon of 10 s.

Ψ Value Z-Axis ψ-Axis X, Y Axes IAE (Z) IAE (ψ) IAE (X,Y)

0 PD PD PD and PD 2.608 1.642 9.170
0 PID (PSO) PD PD and PD (PSO) 1.222 1.801 3.751
0 PID (CFA) PD PD and PD (PSO) 1.091 1.838 3.519

3× 10−3 PID (CFA) BELBIC (PSO) PD and PD (PSO) 1.111 1.810 4.032

5. Conclusions

The minimum energy fine-tuning control methodology is proposed for the predefined
quadrotor UAV path-tracking task. The autonomous cascade control system with the
nonlinear six DoF mathematical model of the X4-flyer II drone and neurobiologically
inspired intelligent controller is used to find the best possible gains that will provide a
good tracking quality with the lowest possible control signal effort. The synthesis of the
control system is presented for the chosen BELBIC-type controller structures, bio-inspired
optimizers, cost functions, and gains ranges (on the basis of expert knowledge). The
performance analysis of the proposed control method is validated on two simple flight
missions. By means of numerical experiments, new knowledge is provided, i.e., how
long for altitude and X, Y axes control tasks; it is possible to extend the flight time of
an unmanned aircraft (while increasing the precision of tracking) using brain emotional
learning based intelligent controllers in the proposed shape. path tracking task

The results presented from five selected experiments illustrate the potential of the
proposed fine-tuning BELBIC-based control methodology to be applied to very demanding
hardware applications with limited energy sources, such as the one that is the next target
for real-world scenario controller applications in our fault-tolerant Falcon V5 drone, which
is a coaxial X8 quadrotor (details in [55]). It is also planned to verify the performance of the
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solution on our flapping-wing microdrones. Furthermore, in parallel, comparative studies
of the tracking quality of the proposed solution are conducted with the optimal regulators
based on the linear quadratic regulator (LQR), coefficient diagram method (CDM), dynamic
pole motion (DPM) approach [56], and State-Dependent Riccati Equation (SDRE) technique.
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The following abbreviations are used in this manuscript:

BEL Brain Emotional Learning
BELBIC Brain Emotional Learning Based Intelligent Controller
CDM Coefficient Diagram Method
CFA Cuttlefish Algorithm
CoG Center of Gravity
ENN Emotional Neural Network
IAE Integral of the Absolute Error
LQR Linear Quadratic Regulator
ES Emotional Signal
MO Model Output
MPC Model Predictive Control
MR Magneto-Rheological (Damper)
OFC Orbitofrontal Cortex
PD Proportional–Derivative (Controller)
PID Proportional–Integral–Derivative (Controller)
PSO Particle Swarm Optimization
SI Sensory Input
SISO Single-Input Single-Output
SMC Sliding Mode Control
SNN Sensory Neural Network
SDRE State-Dependent Riccati Equation
UAV Unmanned Aerial Vehicle
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