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Abstract: Ensemble deep learning methods have demonstrated significant improvements in fore-
casting the solar panel power generation using historical time-series data. Although many studies
have used ensemble deep learning methods with various data partitioning strategies, most have only
focused on improving the predictive methods by associating several different models or combining
hyperparameters and interactions. In this study, we contend that we can enhance the precision of
power generation forecasting by identifying a suitable data partition strategy and establishing the
ideal number of partitions and subset sizes. Thus, we propose a feasibility study of the influence of
data partition strategies on ensemble deep learning. We selected five time-series data partitioning
strategies—window, shuffle, pyramid, vertical, and seasonal—that allow us to identify different
characteristics and features in the time-series data. We conducted various experiments on two sources
of solar panel datasets collected in Seoul and Gyeongju, South Korea. Additionally, LSTM-based
bagging ensemble models were applied to combine the advantages of several single LSTM models.
The experimental results reveal that the data partition strategies positively influence the forecasting
of power generation. Specifically, the results demonstrate that ensemble models with data partition
strategies outperform single LSTM models by approximately 4–11% in terms of the coefficient of
determination (R2) score.

Keywords: solar panels; power generation; solar panels with weather; long short-term memory;
data partition

1. Introduction

Renewable energy refers to the generation of electricity from natural, sustainable re-
sources such as the sun, wind, and water. Solar energy is one of the most popular renewable
energy sources. It supplies electric energy to homes or businesses by capturing sunlight.
Countries have recently been paying attention to solar energy development because of their
advantages: inexhaustible, non-polluting emissions, competitive sources, reducing fossil
fuel and natural gas, R2 and many others [1]. Even during the COVID-19 pandemic, the
solar energy market development did not have a significant impact, excluding some delays
due to lockdowns [2]. Like many other countries, South Korea’s government is interested
in increasing solar energy usage. More specifically, the government declared the goal of a
low-carbon and eco-friendly nation by increasing the renewable energy market to 40% by
2030 from the current 30% [3]. Despite the benefits of solar energy, the provision of electrical
energy from solar panels also has some drawbacks. More specifically, there is a high initial
investment, ample space required for installing solar panels, and inefficient solar panels [1].
Moreover, solar energy is considered to be intermittent because solar panels produce energy
from sunlight. Thus, there are energy storage systems that do not interrupt the power
supply. However, persistent bad weather, such as cloudy, rainy, or snowy weather, can
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result in power outages. Consumers need to monitor weather, electricity production, and
consumption to prevent this potential power outage. Energy production forecasting can
aid the government’s renewable energy policy as well as help consumers and businesses
plan their consumption and develop new products.

Solar panel power generation forecasting is considered a time-series data analysis,
which predicts a future outcome based on historical time-stamped data such as the weather.
Deep learning methods, particularly long short-term memory (LSTM), have been suc-
cessfully applied to forecasting time-series data across many domains, including solar
panels [4–12]. In particular, some studies [4–6] have shown the superiority of LSTM models
by comparing simple LSTM with other state-of-the-art models, such as back propaga-
tion neural networks (BPNN), wavelet neural networks (WNN), support vector machines
(SVM), simple recurrent neural networks (RNN), XGBoost, and artificial neural network
(ANN). Moreover, incorporating simple LSTM and other deep learning methods such as
RNN [7,8], convolutional neural network (CNN) [9–11], and autoencoders [12] achieve
high performance in forecasting power generation. Even though single LSTM models
have achieved significant success in forecasting power generation, single methods may
still be weak in overcoming time-series data challenges [13]. More specifically, effectively
capturing data characteristics, such as trends, seasonality, and noise robustness, is essential
in time-series data analysis.

Ensemble learning-based deep learning methods have shown significant improve-
ments in forecasting the solar panel power generation to overcome these challenges [14–18].
Ensemble learning combines the results from two or more predictive models (i.e., member
or base model) to achieve better accuracy than any base model. A common ideology of
ensemble learning is that, even if a member is weak in a specific case, the other can be strong.
The steps involved in ensemble learning are as follows: (1) base independent models predict
an outcome based on various modeling or training data, and (2) ensemble models combine
the results of all models to produce a final output. Khan et al. [14] forecasted the solar panel
power generation by proposing a stacked ensemble algorithm that combines LSTM and
ANN models. The authors reported that the proposed ensemble method demonstrated an
improvement in the R2 score of 10–12% for a single LSTM and ANN. Pirbazari et al. [15] also
predicted solar panel energy generation and household consumption based on an ensemble
method combined with several sequence-to-sequence LSTM networks. Experiments on
the proposed method showed the potential of the ensemble LSTM to provide more stable
and accurate forecasts. Although numerous studies have employed ensemble methods
with various data partitioning methods, most have emphasized enhancing the predictive
methods by associating many different models or integrating different hyperparameters
and interactions. In practice, the performances of ensemble machine learning models are
highly dependent on the data partitioning strategy, the number of partitions, and subset
sizes. Choosing only a dedicated data partition strategy and subset size may weaken the
prediction model for neglected fluctuations. Liang et al. [19] and Wang et al. [20] mentioned
the problems of ensemble methods: (1) the number of members significantly affects the
accuracy and diversity of ensemble methods, and (2) if the similarity between members is
high, the ensemble method may lead to poor performance. Therefore, a feasibility study of
data partitioning strategies is essential to effectively reveal the characteristics and features
of time-series data and improve the accuracy of power generation forecasting.

We propose a method for an ensemble deep learning method and data partition
strategies to accurately forecast the daily and hourly solar panel power generation. We
conducted empirical experiments, in contrast to existing ensemble learning methods, to
evaluate the influence of time-series data partition strategies, the number of partitions, and
subset sizes. Here, we used an ensemble LSTM model with five time-series data partition
strategies: window, shuffle, pyramid, vertical, and seasonal. These data partition strategies
enable us to recognize different characteristics and features in time-series data. The main
contributions of this study are as follows:
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• First, we propose an accurate methodology for forecasting daily and hourly solar
panel power generation using an ensemble deep learning model and data partitioning.
The method consists of three steps: partitioning time-series data, training models
using partitioned subsets, and aggregating the results of each model to obtain the final
forecasted power generation.

• Furthermore, we use five simple data partition strategies, namely window, shuffle,
pyramid, vertical, and seasonal, to investigate the influence of each strategy on the
accuracy of forecasting the solar panel power generation. Data partition strategies
are selected to divide the datasets into effective subsets with different characteristics
and features in the time-series data. The ensemble model can comprehend multiple
characteristics of data by learning from various characteristics. The experiments
evaluated the subset sizes and the number of partitions.

• Finally, we evaluated the proposed data partition strategies through extensive ex-
periments using LSTM to forecast the power generation of the solar panels. The
experiments examined each data partition using LSTM models with different hyper-
parameters and checked the influence of different numbers of partitions and subset
sizes. We evaluate the experiments on two independent datasets to demonstrate the
applicability of the proposed method.

The remainder of this paper is organized as follows: prior studies on the forecasting
of solar panel power generation are explained and discussed in Section 2; the materials and
methods used in this study are explained in Section 3; the evaluation methods and evalua-
tion results are presented in Section 4; and finally, Section 5 summarizes and concludes this
study and discusses future works.

2. Related Work

This section explains the related works that proposed machine learning and deep
learning methods to forecasting power generation in renewable energy sources such as
wind, hydropower, and solar panels. We explain every study in the following categories:
single and ensemble. Additionally, the distinctions between our methodology and that of
related studies are discussed.

2.1. Single Methods

Lee et al. [5] predicted the daily solar panel power generation using time-sequential
predictive methods: RNN, LSTM, and gated recurrent units (GRU). The monitoring system
in Tainan, Taiwan, provided the data that were used in this study. It contains information
from three sources, including the Central Weather Bureau of Taiwan, the Environmental
Protection Administration of Taiwan, and data from solar power monitoring systems.
Experiments in the single inverter showed an accuracy of 89%. Furthermore, the authors
used the generative adversarial network (GAN) method to extend the number of inverters
to eight. In the experiments, the accuracy (i.e., 93%) of the bidirectional GRU model
outperformed other models, such as GRU and LSTM, by approximately 2–17%. Abdel-
Nasser and Mahmoud [7] forecasted hourly solar panel power generation using a LSTM-
RNN. The experimental results showed that the forecasting error of LSTM was lower
than that of other methods, such as multiple linear regression (MLR), bagged regression
trees (BRT), and neural networks. The authors noted that the recurrent architecture and
memory units of LSTM are efficient for pursuing temporal changes in the solar panel power
generation. However, the authors declared the limitations of the study as follows: the effect
of outliers was not studied, and environmental features were incorporated.

Deenadayalan and Vaishnavi [21] forecasted the future solar panel power generation
and wind turbines using fault identification and remediation. Specifically, the proposed
deep learning method consists of parameter adjustment using modified grey wolf opti-
mization (MGWO), fault identification using a CNN-based classifier, power generation
forecasts using a regression neural network, and fault remediation using a discriminative
gradient. The study dataset was obtained from solar panels and wind turbos in India. The
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performance analysis of the proposed method showed that the proposed system has a lower
error rate than other state-of-art methods. Wang et al. [22] forecasted solar irradiance using
a new direct explainable neural network in which it is easy to interpret the prediction result.
The proposed network can explain the relationship between the input and the output by
extracting the nonlinear mapping features in solar irradiance. The experiments that were
conducted using the solar irradiance dataset from Lyon, France, show better prediction per-
formance and explanation. Zsibor’acs et al. [23] studied the difference between day-ahead
and intraday solar panel power generation forecasts and the actual generation data in the
European Network of Transmission System member states’ operators. The study results
show that the intraday forecasts are less skillful than the day-ahead forecasts in all but one
of the countries, which highlights the significance of further application-related studies
on the intraday horizon. Tu et al. [24] proposed a grey wolf optimization-based general
regression neural network for short-term solar power forecasting. The authors claimed that
the proposed method provides more accurate predictions with shorter computational times.
The performance of their experiments revealed that the proposed method can significantly
enhance the prediction accuracy of PV systems.

2.2. Ensemble Methods

Tan et al. [17] explained that it is challenging to develop an accurate and robust
model to forecast power demand owing to the intense volatility of industrial power loads.
Therefore, they proposed a hybrid ensemble method to forecast ultra-short-term industrial
power demand. The ensemble method employs different ensemble strategies such as
bagging, random subspace, and boosting. The study evaluated the proposed methods
using an open dataset collected from the Australian Energy Market Operator (AEMO), open
half-hourly electricity load data from 2013, and a practical dataset from a real-time practical
steel plant. The proposed method demonstrated that the ensemble method had greater
accuracy and robustness. Wang et al. [18] used a LSTM deep learning model based on
the bagging ensemble method to forecast the inflow of hydropower stations. The bagging
ensemble method integrates the outputs of member models. There are other ways to
integrate the outputs, and this study employs a weighted average, which takes the accuracy
of each member model into account. Data from a hydropower station in southern China
from 2015 to 2017 was used by the authors. In the experiments, the proposed ensemble
method outperformed the other individual models by 0.2% (i.e., deep belief network,
random forest regression, GBRT, and LSTM) to 18.7% (i.e., support vector regression).
Su et al. [25] proposed a modification to improve the ensemble learning framework for
forecasting solar power generation. This study implemented a novel adaptive residual
compensation (ARC) algorithm and an evolutionary optimization technique. ARC increases
the reliability of conventional models by considering the residuals brought on by prediction
mistakes. The authors aimed to forecast the hourly power generation at three solar panel
sites. The experimental results proved that the proposed method improves the traditional
ensemble methods by approximately 12% in terms of the R2 score.

Lotfi et al. [26] presented a novel ensemble method based on kernel density estimation
(KDE) to forecast the solar panel power generation. The proposed method forecasts
inverter AC power using meteorological variables, such as wind speed, temperature, solar
irradiance, precipitation, and humidity. The dataset for one year, from 15 March 2015
to 15 March 2016, was taken from an actual solar panel site located in the vicinity of the
city of Coimbra, Portugal. First, the authors calculated the most similar cases from the
historical dataset using KDE. The results from all individual models were then ensembled
using similar cases in one individual model. The suggested method performed better in
the spring, summer, and fall than the irradiance forecast and neural network methods.
However, it cannot overcome the limitations of the neural network method in winter.
Wen et al. [27] used a hybrid ensemble model to forecast solar panel output intervals. The
ensemble model has four individual models: BPNN, radial basis function neural network
(RBFNN), extreme learning machine (ELM), and Elman NN. First, the ensemble model



Energies 2022, 15, 7482 5 of 20

forecasts the irradiance, temperature, and wind speed. The authors proposed a ship motion
model to predict the power output based on the forecasted features. This study focuses
on solar panels deployed on shipboard, in contrast to other solar panel locations. The
authors emphasized how the location, date, time zone, and local time, as well as the
rolling angle of the ship, affected the solar panel output. The authors designed seven
ensemble combination models, and the seventh model, which has members of the BPNN,
RBFNN, ELM, and Elman NN, showed the lowest error in root mean squared error (RMSE).
Zhang et al. [28] presented an ensemble method to forecast day-ahead power generation
in solar panel systems. The dataset of this study comes from free data sources, such as
the SolrenView server and the North American Mesoscale Forecast System. The authors
combined clustering and blending strategies to improve solar power forecasting accuracy.
The proposed forecasting method reduced the normalized RMSE by 13.8–61.21% over the
three baseline methods. Kim et al. [29] developed a stacking ensemble SARIMAX-LSTM
model for power generation prediction for several solar power plants in various regions
of South Korea. The authors used the spatial and temporal characteristics of solar PV
generation from satellite images and numerical text data were combined and used. The
experimental results revealed that their proposed model outperformed other state-of-art
methods, such as SARIMAX, LSTM, Random Forest, and others.

2.3. Discussions

In the field of renewable energy, forecasting power generation benefits from both
single and ensemble methods. Even though the single machine learning method has been
quite effective in forecasting power generation, the method may not be strong enough
to handle time-series data challenges. Therefore, ensemble learning aims to overcome
these challenges by combining the results from two or more predictive models to create
a more stable and accurate model than single predictive models. Although numerous
studies have employed ensemble methods with different data partitioning methods, most
of them have focused on enhancing the predictive methods by integrating various models
or hyperparameters and interactions. We performed empirical experiments, unlike existing
ensemble learning methods, to evaluate the influence of time-series data partition strategies,
the number of partitions, and subset sizes.

3. Materials and Methods
3.1. Overview

This study aimed to forecast the solar panel power generation using LSTM and
data partitions. Figure 1 illustrates the overall flow of the proposed methodology. This
methodology generally consists of the following steps: data fusion, data partitioning, model
training, and model evaluation. We concatenated the datasets from different domains based
on the DateTime field and applied data preprocessing methods, such as filling missing
hours, filling missing values, filtering hours, and scaling. We trained the data-based
ensemble LSTM models after prepping the data using various data partitions: window,
shuffle, pyramid, vertical, and seasonal. The proposed methodology is evaluated using
R2, RMSE, and mean absolute error (MAE) which are widely used to measure regression
problems. The proposed method is extensively discussed in the subsequent subsections.

3.2. Study Area

This study used datasets from two types of solar panel plants: testbed and actual
(Figure 2). The first location (Site A) was a testbed solar panel plant in Seoul, South Korea.
The installed capacity of the plant was 30 kW/h. The second location (Site B) was an actual
solar panel plant in Gyeongju City, South Korea. The installed capacity of the plant was
1500 kW/h. The datasets of Sites A and B consist of solar panels and weather features,
while the dataset of Site A has some additional features, such as power factor and slope. All
datasets were provided by Daeyeon C&I [30], a South Korean renewable energy company
that has been developing solar power generation and monitoring systems since 1998.
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3.3. Data Collection

Table 1 shows detailed information on the raw datasets before preprocessing. The
dataset of Seoul (Site A) consisted of 12 features and 26,280 samples over three years, and
the dataset of Gyeongju (Site B) had eight features and 35,487 samples over four years.
Both original datasets do not include missing values. The source, name, abbreviation, and
description of all the features of the datasets are listed in Table 2. These features consist
of two primary sources: solar panels and weather. Moreover, we used two more derived
features: month and hour. Implementing machine learning or deep learning models on
a single dataset might not be convincing due to the likelihood that the chosen dataset
could randomly fit the models well. Therefore, we intend to prove the viability of our
proposed methodology based on the different locations, features, and characteristics of the
two datasets.



Energies 2022, 15, 7482 7 of 20

Table 1. Details of the datasets.

Location Number of Features Number of Samples Date

Site A 12 26,280 1 January 2017~31 December 2019
Site B 8 35,487 1 January 2017~31 December 2020

Table 2. Feature description of datasets.

Source Feature Abbr. Site A Site B Description

Solar panel

Power generation PG o o The power output of panels (kWh).
Power factor PF o - The ratio between the utilized and generated power.

Slope SL o - The angle at which the panels are positioned relative
to a flat surface.

Horizontal irradiation HI o - The total solar radiation incident
on a horizontal surface.

Module temperature MT o - The temperature of solar panels (◦C).

Weather

Temperature TE o o Outside temperature (◦C).

Humidity HU o o The concentration of water vapor present
in the air (%).

Cloud CO o o Amount of cloud.
Dew point DP - o Dewpoint (◦C).

Sunshine SS o - Sunlight reaches the ground without
being covered by clouds.

Solar radiation SR o o The amount of solar radiation energy
on the ground (W/m2).

Derived
Month MO o o Month of date stamp.
Hour HO o o Hour of date stamp.

3.4. Data Preprocessing

The data preprocessing part generally comprises two sections: exploratory analysis
and normalization. Time-series data are collected over time intervals, such as minutes,
hours, and days. Time-series data, though, are frequently intermittent in the real world.
This issue causes the daily distribution of our datasets to be uneven. Specifically, there are
usually data of 24 h a day, but on some days, data of 23 or fewer hours are recorded. In
the exploratory analysis, we first filled up these missing hours with NaN values. Next, we
filled in the NaN values using the linear interpolation technique. After the datasets were
combined, we extracted the relevant information from all the raw data. More specifically,
solar panels do not collect power all day, but there are some active hours such as 6 a.m. to
6 p.m. Therefore, data from other hours (i.e., 7 p.m. to 5 a.m.) can affect a prediction model
adversely, and this problem is called “bias in the data” in data analysis. Figure 3 shows the
power generation of the solar panels by the hour in the Site B dataset. Based on the figure
information, data were obtained from 7 a.m. to 5 p.m., and the rest were not used.

Figure 4 shows the correlation between the power generation of the solar panels and
the time in the datasets. The data distributions of the datasets were similar, as demonstrated
by the figures. The rush hours for solar panels are from 10 a.m. to 3 p.m. Additionally,
solar panels produce more power from April to June. The solar panel power generation is
low in July and August because they are the rainiest months in South Korea.

Table 3 describes the statistical information of each feature of the datasets after ap-
plying the exploratory analysis. The features in the datasets differ significantly from one
another. For example, the range of power generation was from 0 to 1400 at Site B, while
the range of temperature was from −13 to 39. Therefore, larger differences between the
data points of features increase the uncertainty of the prediction models. Consequently, we
scaled the datasets using min–max normalization.
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3.5. Data Partition

This study proposes a methodology for ensemble LSTM models using several data
partition strategies: window, shuffle, pyramid, vertical, and seasonal. Each data partition
strategy revealed different characteristics and features in time-series data. These data parti-
tion strategies enable us to recognize different features in the time-series data. Moreover,
different numbers of partitions and subset sizes are assessed in empirical experiments. The
data were first divided by 80% and 20% for learning and testing after preprocessing to
process the experiments of the data partition strategies. The learning data was used to
extract the training and validation datasets. The evaluation of the prediction models and
comparison of the proposed data partition strategies, number of partitions, and subset sizes
were performed using the testing data.
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Table 3. Five statistical indices of the datasets.

Feature
Site A Site B

Count Mean Std Min Max Count Mean Std Min Max

Power generation 12,045 8.89 7.13 0.00 25.76 16,060 525.38 373.94 0.00 1396.85

Power factor 12,045 90.59 22.90 0.00 99.00 - - - - -

Slope 12,045 353.34 257.74 0.00 942.73 - - - - -

Horizontal irradiation 12,045 304.26 219.16 0.00 880.52 - - - - -

Module temperature 12,045 25.09 16.00 −19.79 65.25 - - - - -

Temperature 12,045 16.66 11.83 −16.81 42.21 16,060 16.11 373.94 −12.90 39.20

Humidity 12,045 51.28 20.46 7.00 100.00 16,060 58.59 23.34 0.00 100.00

Cloud 12,045 5.02 4.00 0.00 10.00 16,060 3.11 3.98 0.00 10.00

Dew point - - - - - 16,060 6.81 12.14 −26.90 28.00

Sunshine 12,045 0.60 0.44 0.00 1.00 - - - - -

Solar radiation 12,045 1.18 0.90 0.00 3.59 16,060 313.00 243.47 0.00 975.00

3.5.1. Window Data Partition

The window data partition divides the learning data into a given number of partitions
by moving a fixed-size window through the learning data samples. The extracted subsets
had the same size, and each subset contained similar characteristics because the subsets
covers the similar period. This data partition strategy is a straightforward method for
reducing the noise in large data samples. Because smaller dataset contains less noise than
larger dataset. Algorithm 1 explains the window data partition procedure. The learning
data D, length of the learning data N, length of one partition n, and number of data
partition splitN are the inputs for the algorithm. The output of the algorithm is a set of
partitions P. The length of a partition n and the number of partitions splitN are initialized
in line 1. In line 2, the algorithm calculates the step size stepSize by dividing the difference
between the length of learning data N and the length of one partition n by the difference
between the number of partitions splitN and 1. Line 3 selects the partition index from
the number of partitions splitN. In lines 4–5, the algorithm calculates the start and end
indices for data selection. Then, lines 6–7 select the data between the calculated indices and
place them into the set of partition P. The algorithm is completed in line 8 when the set of
partitions is filled by the given number of partitions.

Algorithm 1. Window data partition

Input:
D← learning data, N← length of learning data,
n← length of a partition, splitN← number of partitions

Output: P← set of partitions

Procedure:

1 Initialize: n, splitN
2 Calculate step size: stepSize = N−n

splitN−1

3 foreach i in range(0, splitN) do
4 Calculate start index: startIndex = i ∗ stepSize
5 Calculate end index: endIndex = startIndex + n
6 Select data between the indices: p = D[startIndex : endIndex]
7 Append p into P
8 end
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3.5.2. Shuffle Data Partition

The shuffle data partition divides the learning data into a given number of fixed-size
partitions. The subsets are the same size as the window data partition, and they all contain
similar characteristics. It has a similar advantage to the window partition in that it selects a
specific part of the training dataset. As opposed to window data partitioning, each partition,
in this case, refers to a random portion of the total data. It is also possible that a particular
part of the total data does not fit any partition. Algorithm 2 shows the procedure for the
shuffle data partition. The inputs and outputs of Algorithm 2 are the same as those of
Algorithm 1. In line 1, the length of a partition n and the number of partitions splitN are
initialized. Line 2 calculates the highest point that can be selected as a random-start index.
If an index exceeds the highest point, we cannot select a partition of n size. In line 3, the
repetition of the number of partitions begins. Line 4 obtains a random start index lower
than the highest point, and line 5 calculates the end index. Then, lines 6–7 select the data
between the calculated indices and put them into the set of partition P. The algorithm is
completed in line 8 when the set of partitions is filled by the number of partitions.

Algorithm 2. Shuffle data partition

Input:
D← learning data, N← length of learning data,
n← length of a partition, splitN← number of partitions

Output: P← set of partitions

Procedure:

1 Initialize n, splitN,

2 Calculate the limit for start index: startLimit = N − n
3 foreach i in range(0, split_n) do
4 Get random start index: startIndex = randomInt(0, startLimit)
5 Calculate end index: endIndex = startIndex + n
6 Select data between the indices: p = D[startIndex : endIndex]
7 Append p into P
8 end

3.5.3. Pyramid Data Partition

The pyramid data partition is a strategy in which the partition size increases from
small to large. The first partition was initiated by a fixed-size partition from the center of the
data samples. Subsequently, the fixed size was broadened to both sides of the total dataset.
Simply put, this data partitioning strategy has the advantage of producing subsets of
different sizes, which the ensemble model can combine. Algorithm 3 shows the procedure
for the pyramid data partition. The inputs and outputs of Algorithm 3 are identical to those
of Algorithms 1 and 2. In line 1, the length of a partition n and the number of partitions
splitN are initialized. In lines 2–3, the first start and end indices were calculated. Line 4
calculates the step size, which broadens the start and end indices. In line 5, the repetition
of the number of partitions begins. In lines 6 and 9, the algorithm selects the data for a
partition. If the start index is equal to or lower than 0, the total learning data is selected as a
partition (Line 7). In contrast, a partition is selected between the start and end indices. In
line 10, the algorithm places the selected data into a set of partitions. In lines 10–11, the
startIndex is updated by subtracting the step size from the start index, and the endIndex is
updated by adding the step size to the end index. The algorithm is completed in line 13
when the set of partitions is filled by the number of partitions.
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Algorithm 3. Pyramid data partition

Input:
D← learning data, N← length of learning data,
n← length of a partition, splitN← number of partitions

Output: P← set of partitions

Procedure:

1 Initialize n, splitN,

2 Calculate the first start index: startIndex = N − n
3 Calculate the first end index: endIndex = startIndex + n
4 Calculate the step size: stepSize = startIndex

splitN−1

5 foreach i in range(0, split_n) do
6 i f startIndex ≤ 0 then
7 Get all dataset p = D
8 else then

9
Get data between the indices:

p = D[startIndex : endIndex]
10 Append p into P
11 Update start index: startIndex = startIndex− stepSize
12 Update end index: endIndex = endIndex + stepSize
13 end

3.5.4. Vertical Data Partition

The vertical data partition strategy splits the learning dataset vertically rather than
horizontally, in contrast to other data partition strategies. It splits datasets by selecting a
subset of relevant variables and reduces dimensionality. It is inspired by variable selection
methods in machine learning. A set of features is first created by manually. Specifically,
all the features of the datasets were divided into several subsets. In Site A, the feature
sets consist of “Slope, Power Factor, Horizontal Irradiation, PV Temperature, Tempera-
ture,” “Power Factor, Horizontal Irradiation, PV Temperature, Temperature, Humidity,”
“Horizontal Irradiation, PV Temperature, Temperature, Humidity, Sunshine,” “PV Temper-
ature, Temperature, Humidity, Sunshine, Solar Radiation,” and “Temperature, Humidity,
Sunshine, Solar Radiation, Cloud.” At Site B, the feature sets consisted of “Temperature,
Humidity,” “Humidity, Dew Point,” “Dew Point, Solar Radiation,” and “Solar Radiation,
Cloud.” Additionally, “Month” and “Hour” features are added to all subsets. Algorithm 4
shows the procedure for the vertical data partition. The inputs for the algorithm are the
learning data D, and feature sets S. The output of the algorithm is a set of partitions P. In
line 1, the feature set S is initialized. Line 2 selects a feature set from all feature sets. In
lines 3–4, the algorithm creates partitions based on the selected features. The algorithm is
completed in line 5.

Algorithm 4. Vertical data partition

Input: D← learning data, S← feature sets

Output: P← set of partitions

Procedure:

1 Initialize S
2 foreach s in S do
3 Select data related to the set s: p = D[s]
4 Append p into P
5 end
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3.5.5. Seasonal Data Partition

Seasonal data partitioning is a two-level data partition strategy. It can be used to catch
the seasonal features of the datasets. Algorithm 5 presents the procedure for seasonal data
partitioning. First, the datasets were divided into subsets by time-logical splitters, such
as monthly or hourly. Monthly, we split the datasets based on seasons, such as winter
(December, January, and February), spring (March, April, and May), summer (June, July,
and August), and autumn (September, October, and November). We split the datasets
based on three hours ranges: morning (7-10), noon (11-14), and evening (15-17). Each
subset was then subjected to a window partition strategy. The datasets were split based
on seasonal factors, which created subsets with similar characteristics and improved the
accuracy and stability of the model. The reason for this is that the predictive model can
always learn from the same time ranges, such as the winter, summer, morning, or evening.

Algorithm 5. Seasonal data partition

Input:
D← learning data, N← length of learning data, S← set of seasonal data n←
length of a partition, splitN← number of partitions

Output: P← set of partitions
Procedure:

1 Initialize: S by splitting D by seasonal (i.e., Monthly or Hourly)
2 foreach s in S do
3 Based on the subset initialize: n, splitN, N
4 Calculate step size: stepSize = N−n

splitN−1
5 foreach i in range(0, splitN) do
6 Calculate start index: startIndex = i ∗ stepSize
7 Calculate end index: endIndex = startIndex + n
8 Select data between the indices: p = D[startIndex : endIndex]
9 Append p into P

10 end
11 end

3.6. Training of LSTM Models

In this study, our principal predictive model was LSTM, an expendable type of RNN
that overcomes the problem of long-term dependencies. Learning important parts and
forgetting less important parts in sequence data makes LSTM prevalent in time-series
data forecasting [31–34]. Figure 5 shows the structures of the LSTM models. It consists of
two concepts: single and data partition ensemble LSTM models. We first used the entire
learning data for different hyperparameters to train n single LSTM models. Single models
were specifically trained using the same data but different hyperparameters. After that,
we used data partition strategies to create a dataset. The set contained n training and
validation data combinations. Subsequently, the data partition ensemble LSTM methods
aggregate the outputs of the same single LSTM models.
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4. Results
4.1. Dataset

This study conducted two types of experiments: a single LSTM and a data partition
ensemble LSTM. The number of training and validation data for each experiment was
slightly different. However, we used the same test data for all experiments to check the
effectiveness of our methodology. Table 4 summarizes the datasets used in the experiments.
The last 20% of the total data were test data at each site. The remaining data were split by
training and validation based on the methodology. We selected the same number of test
data from the training data in the single LSTM models as the validation data. In total, 20%
of the training data were used as validation data in the data partition ensemble methods.

Table 4. Summary of datasets used in experiments.

LSTM
Site A Site B

Train Validation Test Train Validation Test

Single 7231 2407 2407 9640 3210 3210

Data-based
ensemble

Window 7200 1800 2407 8000 2000 3210

Shuffle 7200 1800 2407 8000 2000 3210

Pyramid 8000~9638 1600~1928 2407 8000~12850 1600~2570 3210

Vertical 7231 2407 2407 9640 3210 3210

Seasonal 2991~3618 318~1000 2407 1990~2969 43~1000 3210

4.2. Evaluation Metrics

We evaluated the experiments in this study by using three standard measures of
regression problems. Specifically, R2, RMSE, and MAE are provided in Equations (1)–(3).
Here, i and n are the index of the sample and number of samples, respectively. Moreover, y,
ŷ, and y are the actual values, forecasted values, and mean of the actual values, respectively.
R2 measures the accuracy of a regression model with a value between 0 and 1. A value
closer to 1 indicates that the model fits the data better. We multiplied R2 by 100 to represent
the accuracy as a percentage. The residuals or prediction errors are assumed to be the cause
of the discrepancy between the actual and forecasted values. The standard deviation of the
residuals is known as RMSE. MAE is a measure of errors between actual and forecasted
values without considering their direction. A lower RMSE and MAE suggest that the actual
and forecasted values are closer.

R2 =

(
1− ∑n

i=1(yi − ŷi)
2

∑n
i=1(yi − y)2

)
× 100 (1)

RMSE =

√
∑n

i=1(yi − ŷi)
2

n
(2)

MAE =
∑n

i=1|yi − ŷi|
n

(3)

4.3. Experimental Results

Table 5 lists the hyperparameters of the proposed methods, such as single LSTM,
model-based ensemble LSTM, and data-based ensemble LSTM. Our model consists of two
layers, such as LSTM and fully connected, which returns final prediction value. We found
that the ADAM optimizer with a learning rate of 0.001 was the optimal hyperparameter
during several training sessions with different optimizers and learning rates. The number
of epochs indicates how frequently the model trained the entire training dataset. In model
training, setting the right epoch is crucial because low epochs might cause underfitting
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issues. High epochs, on the other hand, can result in overfitting issues and prolonged
training time. The EarlyStopping function generally stops training if the accuracy cannot
be increased during the number (i.e., patience) of epochs. Therefore, we set epochs to 1000
and early stopping with patience to 30. We trained the individual LSTM models with 60,
70, 80, 90, and 100 units. Subsequently, these single LSTM models were compared with the
ensemble LSTM models.

Table 5. Hyperparameter settings of the LSTM models.

LSTM Optimizer Learning
Rate Epochs Batch

Size Patience Units

Single ADAM 0.001 1000 32 30 60,70,80,90,100

Ensemble ADAM 0.001 1000 32 30 60,70,80,90,100

4.3.1. Hourly Forecasting of Site A

Table 6 exhibits experimental results for forecasting power generation hourly in Site A.
The table shows that all data partition strategies improve the accuracies of single LSTM
models. More specifically, the seasonal data split technique consistently delivers the best
results. The fundamental explanation is that we only train and evaluate the ensemble
model during a particular season, such as the summer. Here, we discover that the ensemble
model of seasonal partition with unit 60 is the best model to forecast the amount of energy
per hour. This model outperforms other single LSTM models by around 3.4–4.7%.

Table 6. Experimental results of hourly forecasting of Site A.

Methods
LSTM60 LSTM70 LSTM80 LSTM90 LSTM100

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

No
partition 94.44 1.56 0.80 94.94 1.49 0.60 94.07 1.61 0.77 93.58 1.68 0.94 93.93 1.63 0.82

Window 97.95 0.95 0.47 97.98 0.96 0.50 97.97 0.94 0.49 97.89 0.96 0.45 98.18 0.89 0.41

Shuffle 97.94 0.95 0.45 97.74 1.00 0.51 97.99 0.94 0.44 97.93 0.95 0.45 98.19 0.89 0.38

Pyramid 96.52 1.24 0.83 96.68 1.17 0.76 96.96 1.16 0.74 96.94 1.16 0.64 97.49 1.05 0.62

Vertical 95.30 1.44 0.74 96.56 1.23 0.68 96.17 1.30 0.68 95.98 1.33 0.68 96.23 1.29 0.66

Seasonal 98.31 0.86 0.33 98.23 0.88 0.34 98.05 0.93 0.33 98.22 0.89 0.32 98.22 0.89 0.34

Figure 6 shows the hourly forecasted power generation results for Site A. In the figure,
we selected the results of the last 32 h of the test datasets, where the blue line represents the
actual values, and the dashed lines represent the best cases in each data partition strategy. It
is difficult to distinguish between the actual and forecasted values if the entire test dataset
is selected. The figure illustrates that the results of data partitioning schemes more closely
match actual observations than the results of a single model.

4.3.2. Daily Forecasting of Site A

Table 7 displays the experimental findings for the daily power generation forecasting
in Site A. The table demonstrates that, with the exception of specific vertical data partition
strategy cases, all data partition strategies improve the accuracy of single LSTM models.
Like the window data partition, the seasonal data partition strategy performs best in all
cases. Here, we find that the best model to forecast the amount of energy per hour is the
ensemble model of seasonal partition with unit 60. This model outperforms other single
LSTM models by around 4–11.2%.
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Table 7. Experimental results of daily forecasting of Site A.

Methods
LSTM60 LSTM70 LSTM80 LSTM90 LSTM100

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

No
partition 90.09 12.84 10.10 93.98 10.00 7.15 92.98 10.80 7.99 87.84 14.22 10.86 86.81 14.81 11.73

Window 95.92 8.30 5.38 95.25 8.96 5.92 94.12 9.97 6.33 95.78 8.45 5.26 94.93 9.25 5.99

Shuffle 95.52 8.70 5.52 95.67 8.55 5.17 94.26 9.85 6.27 96.39 7.81 4.94 96.23 7.98 4.81

Pyramid 93.91 10.14 7.21 92.30 11.40 8.79 90.49 12.68 9.22 94.00 10.07 7.22 93.61 10.39 7.30

Vertical 88.59 13.88 10.16 92.75 11.07 6.93 94.14 9.95 5.79 93.22 10.70 6.81 92.53 11.23 6.77

Seasonal 98.00 5.77 2.88 98.00 5.78 2.91 97.49 6.47 3.16 97.89 5.93 2.92 97.73 6.15 2.95

Figure 7 shows the hourly forecasted power generation results for Site A. In the figure,
we selected the results of the last month of the test datasets, where the blue line represents
the actual values, and the dashed lines represent the best cases in each data partition
strategy. From the figure, we can see that the results of the data partition strategies follow
the actual observations better than those of the single model.
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4.3.3. Hourly Forecasting of Site B

Table 8 shows experimental results for forecasting power generation hourly in Site B.
The table demonstrates how all data partition strategies increase the accuracies of single
LSTM models. More specifically, the seasonal data partition strategy performs best in all
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cases. Here, we find that the best model to forecast the amount of energy per hour is the
ensemble model of seasonal partition with unit 90. This model outperforms other single
LSTM models by around 3.9–4.6%. Figure 8 exhibits the results for hourly forecasting
power generation in Site B. We selected the test dataset results from the most recent 21 h to
exhibit in the figure. The figure demonstrates that the results of data partition strategies
more closely match actual observations than the results of a single model.

Table 8. Experimental results of hourly forecasting of Site B.

Methods
LSTM60 LSTM70 LSTM80 LSTM90 LSTM100

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

No
partition 85.15 140.91 104.32 84.43 144.28 104.83 84.66 143.21 105.55 84.53 143.84 106.33 85.18 140.77 102.98

Window 86.85 132.61 94.09 86.87 132.50 95.01 87.11 131.28 94.05 87.21 130.77 92.85 87.18 130.92 93.09

Shuffle 87.11 131.26 91.97 87.31 130.28 91.38 87.31 130.28 91.93 87.36 130.00 91.26 87.55 129.03 90.76

Pyramid 86.97 131.98 93.33 87.32 130.20 91.80 86.92 132.26 96.40 87.44 129.62 91.23 86.93 132.22 94.12

Vertical 85.78 137.88 100.20 85.58 138.86 99.50 86.13 136.16 98.23 85.95 137.08 98.10 86.44 134.63 95.96

Seasonal 88.64 125.17 89.47 88.60 125.36 89.93 88.42 126.36 91.47 89.05 122.88 88.30 88.69 124.86 88.85
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4.3.4. Daily Forecasting of Site B

Table 9 shows experimental results for daily power generation forecasting in Site B.
The table demonstrates that, with the exception of specific vertical data partition strategy
scenarios, all data partition strategies increase the accuracy of single LSTM models. Like the
window data partition, the seasonal data partition strategy performs best in all cases. Here,
we find that the best model to forecast the amount of energy per hour is the ensemble model
of seasonal partition with unit 60. This model outperforms other single LSTM models by
around 3.6–5.7%.

Figure 9 shows the results of forecasting power generation daily at Site B. In the figure,
we selected the results of the last month of the test datasets, where the blue line represents
the actual values, and the dashed lines represent the best cases in each data partition
strategy. From the figure, we can see that the results of the data partition strategies follow
the actual observations better than those of the single model.

4.3.5. Comparison of Seasonal Partition

We used two types of seasonal splitters, monthly and hourly, in the seasonal partition.
We evaluated these two cases and used the better ones in the following experiments.
Figure 10 shows the monthly and hourly split experimental results by the R2 score. Here,
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using the months outperforms the hourly results, except at Site A. The results were similar
at Site A. Therefore, we used the monthly split in subsequent experiments.

Table 9. Experimental results of daily forecasting of Site B.

Method
LSTM60 LSTM70 LSTM80 LSTM90 LSTM100

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

No
partition 83.68 928.77 677.82 83.84 924.18 664.43 85.76 867.54 624.75 85.07 888.24 633.74 85.69 869.49 635.16

Window 87.19 822.94 613.09 86.47 845.68 640.72 86.34 849.73 639.83 87.36 817.29 603.58 87.90 799.55 581.59

Shuffle 86.67 839.39 615.75 86.68 838.86 625.65 86.06 858.30 639.80 87.10 825.70 612.01 87.08 826.28 591.23

Pyramid 87.22 821.65 596.28 87.11 825.51 616.56 87.34 817.85 605.42 87.12 824.90 605.30 87.14 824.25 593.65

Vertical 83.90 922.40 693.93 84.26 912.06 693.72 82.81 953.26 725.32 82.17 970.77 735.92 83.20 942.34 725.87

Seasonal 89.33 738.98 560.45 87.94 785.68 592.60 89.04 749.03 564.35 88.50 767.23 568.71 88.72 759.93 574.78
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4.3.6. Partition Length and Subset Size

This experiment evaluated the relationship between the forecasting performance
and different numbers of partitions and subset sizes. To this end, we ran three data
partition strategies (window, shuffle, and pyramid) with five combinations of the number
of partitions (5, 8, and 10) and subsite sizes (60%, 70%, and 80% of training data). Table 10
presents the detailed results of these experiments. The results specify the number of
partitions, subset sizes, and optimal data partition strategy for each dataset. Specifically,
the best number of partitions and subset sizes were determined as follows:

• Site A, hourly forecasting: window partition strategy with five partitions and subset
size of 70%.

• Site A, daily forecasting: shuffle partition strategy with ten partitions and a subset size
of 80%.

• Site B, hourly forecasting: window partition strategy with ten partitions and 80%
subset size.

• Site B, daily forecasting: window partition strategy with eight partitions and subset
size of 80%.

Table 10. Experimental results of comparing the partition length and subset size.

Site Method
5_60% 5_70% 5_80% 8_80% 10_80%

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

A/Hourly Window 97.69 1.01 0.46 98.16 0.90 0.41 97.82 0.98 0.53 97.81 0.98 0.49 97.92 0.96 0.49

A/Hourly Shuffle 95.97 1.33 0.67 97.22 1.10 0.61 97.86 0.97 0.50 97.91 0.95 0.47 98.02 0.93 0.44

A/Hourly Pyramid 98.13 0.91 0.41 98.05 0.93 0.45 98.05 0.92 0.45 97.98 0.94 0.48 98.03 0.93 0.45

A/Daily Window 95.49 8.73 5.22 95.71 8.51 5.11 93.65 10.36 6.67 90.86 12.43 8.37 92.16 11.59 8.21

A/Daily Shuffle 93.78 10.25 5.41 94.96 9.23 5.57 96.68 7.49 4.72 96.66 7.50 4.65 96.85 7.30 4.44

A/Daily Pyramid 96.59 7.59 4.66 95.86 8.37 5.06 96.31 7.90 4.72 96.37 7.84 4.70 95.99 8.23 4.99

B/Hourly Window 87.41 129.75 91.54 87.44 129.61 91.81 85.97 137.00 95.11 87.44 129.60 91.44 87.63 128.63 89.72

B/Hourly Shuffle 86.60 133.85 94.93 86.75 133.09 95.28 86.96 132.02 94.19 87.21 130.79 92.12 87.20 130.81 92.87

B/Hourly Pyramid 87.40 129.78 90.67 87.48 129.39 90.60 87.56 128.98 90.34 87.39 129.83 90.24 87.39 129.85 90.94

B/Daily Window 87.25 820.82 595.05 87.31 818.91 600.47 86.25 850.59 620.11 87.93 798.74 615.01 87.66 852.59 625.11

B/Daily Shuffle 86.84 833.96 613.85 87.14 824.47 604.91 87.09 826.10 609.20 87.25 820.96 604.14 87.03 827.99 614.89

B/Daily Pyramid 87.61 809.27 592.22 87.68 806.86 583.62 87.81 802.59 588.31 87.87 800.62 595.06 87.75 804.36 596.45

5. Discussion and Conclusions

This study presented a methodology that forecasts the hourly and daily solar panel
power generation using ensemble LSTM models and five data partition strategies: window,
shuffle, pyramid, vertical, and seasonal. We intended to explore the influences of different
time-series data partition strategies, the number of partitions, and subset sizes on the
performance of the ensemble LSTM model. The extensive experimental results compared
the concepts of LSTM methods using testbed (i.e., Site A) and real-world (i.e., Site B) solar
panel data.

We first implemented five single LSTM models with different units using identical
training and test data. The single models had an R2 scores of 93.6–94.9% and 84.4–85.2%
for Sites A and B, respectively, in hourly forecasting. For daily forecasting, Sites A and
B had R2 scores of 86.8–94% and 83.7–85.8%, respectively. Second, the data partition
ensemble LSTM model outperformed all single LSTM models in the experimental cases.
More specifically, the results were as follows: Sites A and B had R2 scores of 95.3–98.3% and
85.6–89%, respectively, in hourly forecasting and 90.5–98% and 82.2–89.3%, respectively, in
daily forecasting. Particularly, the two-level seasonal data partition strategy showed good
performance improvements. Solar panel power generation depends highly on seasons. If
we compare winter and summer, winter days are shorter than summer days. Because of
shorter days, the sun angle on solar panels changes rapidly in winter. On the contrary,
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the sun goes higher and stays longer in summer. Additionally, the winter months have
more stormy and cloudy weather. Based on these reasons, the collected solar panel power
generation data have different features for each season. Training prediction model for
each season helps us to reduce high variance and bias. Additionally, we investigated
the relationship between performance and the number of partitions as well as the size of
subsets. The results indicated that adding more training data did not improve performance.

The experiments proved that the proposed data partition ensemble LSTM methods
forecast the hourly and daily solar panel power generation more accurately and reliably.
Integrating solar energy monitoring with forecasting models increases the performance
of solar panel systems and provides advantages to all participants in the sector, such as
government, businesses, and consumers. Using this system, solar energy consumers can
reconcile their electricity usage and avoid unexpected power outages and unnecessary costs.
Additionally, businesses can give customers additional options and products. Furthermore,
the data generated from the models can be used to improve and develop plans. Govern-
ments have been promoting renewable energy and have set time-bound goals. Efficient
electricity consumption by consumers will help to make government goals more realistic.

This study demonstrated that data partitioning has positive influences on forecasting
the solar panel power generation, even though we used simple strategies. However, unlike
methods such as clustering, these strategies cannot account for the relationship between
the data. Therefore, we plan to study more logical strategies for data partitioning in future
study. Consequently, each part of the data contains appropriate data points and helps
improve the forecasting performance.
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