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Abstract: The simplification of simulation inevitably leads to model mismatch. In this paper, a
once-through steam generator (OTSG) for a small lead bismuth fast reactor (SLBFR) is established
and verified, and the OTSG model is simplified by three different methods. Based on the simplified
OTSG model, IMC and IMC-PID controllers are designed to verify the sensitivity of the controller
to model mismatch. The results show that the sensitivity of the controller to model mismatch is
related to the filter parameters. With the increase in λ, the IMC-PID controller becomes insensitive to
model mismatch caused by model linearization, non-minimum phase characteristics, noise and time
delay. However, the adaptability to model mismatch sacrifices the sensitivity of the system. When λ

is too large, the inertia of the controller is too large, resulting in the deterioration of the fast power
regulation. Through the research of this paper, the time domain response approximation method is
recommended for OTSG model simplification, and λ is recommended to be between 5 and 10 for
feedwater IMC-PID controller.

Keywords: SLBFR; OTSG; IMC-PID; nonlinear; model mismatch

1. Introduction

The lead bismuth fast reactor (LBFR) has become one of the main development direc-
tions of the fourth-generation nuclear reactor because of its unique safety characteristics [1].
Nowadays, building large nuclear reactors is not a favorable option, and hence the trend
for developing small nuclear reactors (SMR) is increasing correspondingly [2].

The once-through steam generator (OTSG), the key component of heat transfer in
primary and secondary circuits, has been widely concerned in the small lead bismuth fast
reactor (SLBFR) [3]. However, the structure of OTSG is complex, and the feedwater at the
secondary side has gone through subcooled region, boiling region and superheated region,
so the properties of water/steam have changed greatly. The experimental method is limited
by conditions and consumes a lot of manpower and material resources [4,5]. Therefore,
most scholars use numerical calculation to study OTSG. However, the drastic property
changes in water/steam in OTSG bring difficulties in modeling.

Many scholars have worked to simplify the model of OTSG [6–9]. The results show that
the four regions model combined with the movable boundary method has high accuracy
for OTSG [10]. Unfortunately, the simplification and construction of the model make the
difference between the model and the actual OTSG. Any parameter change affecting heat
exchange and flow will lead to the change in feedwater demand. In addition, in order to
simplify the calculation, many processes are not considered in the model. For example,
factors such as the axial conduction of the tube, the heat exchange between the OTSG and
the environment, etc., were not taken into account. So, the performance of the controller
will worsen in industrial applications due to the model mismatch. Therefore, the robustness
of the controller has also become the focus of current research [11].

Advanced control algorithms such as DMC [12] and MPC [13] have fundamentally
changed the essence of PID, which will lead to new standards in safety evaluation and
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many difficulties in industrial iteration. Fuzzy PID [14], Adaptive PID [15] and other
PID-based control systems retain the lower logic of PID, but the parameters need to be
adjusted according to the conditions, and the upper logic is still different from PID. IMC-
PID calculates the parameters of PID by using the principle of IMC. It is not different from
PID in application, so it is suitable for guiding and improving engineering controllers.

Garcia and Morari proposed an internal model control structure with model, control
and feedback, called Internal Model Control (IMC) [16]. It has attracted extensive attention
because of its simple structure and strong robustness.

In nonlinear systems, Kazantzidou et al. [17] studied the IMC for keeping and rudder
roll stabilization for a surface marine craft. There is satisfactory roll reduction and the
course-keeping is maintained in the presence of constant input disturbance. Singh et al. [18]
designed a 2-DOF IMC-PID for power system frequency modulation, but an extra degree of
freedom is fixed to cancel the sequences of the added poles of the disturbances. Therefore,
what needs to be designed and calculated is still the traditional IMC. Bhattacharjee et al. [19]
applied IMC to the artificial pancreas system. Through a feedforward control path to the
online tuned IMC, it is proved that the online tuned IMC algorithm is able to compensate
unannounced meal disorders with low infection of insulin does and reduces the risk
of hyperglycemic events for different patient conditions. Li et al. [20] used the GD-DE
algorithm to optimize the parameters of the IMC controller of the nonlinear uncertain
aeroelastic blade system. These studies have shown that even if there is a gap between
the internal model of IMC and the actual controlled object, IMC still has a relatively
satisfactory performance.

In process control, Mesbahr et al. [21] present a general IMC structure with multiple
degrees of freedom for the design of control systems with multiple objectives. The remark-
able feature of the control structure is that the controllers can be designed independently of
each other. Karan et al. [22] studied the IMC of the system with integrated time-delayed
processes (ITDP), and verified the IMC through experiments such as distillation tower and
liquid storage tank. The controller output is calculated by computer simulation software,
which is still a certain distance from the engineering control process. Through research on
the biomass boiler, Schörghuber et al. [23] found that IMC can greatly reduce the controller
parameters and achieve satisfactory control performance. They promoted the industrial
application of IMC through experimental research, but the inaccuracy of the model men-
tioned in the paper has not been studied in detail, especially when the model deviates from
the steady-state point; the control effect should be the focus of future research.

In the context of nuclear reactors, Wang et al. [24] designed the IMC power controller
of pressurized water reactor (PWR) and optimized the parameters by the genetic algorithm.
Zeng et al. [25] designed the core power IMC-PID controller for a molten salt breeder
reactor. Different from Wang’s work, Zeng used the particle swarm optimization algorithm
to optimize the parameters of the approximated First Order Plus Dead Time (FOPDT)
model rather than the controller parameters.

Due to the security of nuclear reactors, the method of on-line parameter tuning is
unrealistic, and there is a certain error between the simulation model and the actual system.
The study of model mismatch has great significance for the performance of IMC and
engineering applications.

On the other hand, PID is still the main controller of industry because of its simple
structure. In the field with high safety requirements, the combination of PID and ad-
vanced control method is also a transition form from traditional PID to advanced control
method. Therefore, it is important for engineering applications to consider the combina-
tion of advanced control methods and PID and the influence of model mismatch on the
controller performance.

In this work, firstly, the model of OTSG for SLBFR is established and verified. Then, the
IMC and IMC-PID controller of OTSG feedwater are designed to control the lead bismuth
eutectic (LBE) outlet temperature of OTSG. The temperature control process is simplified to
three FOPDT models by different methods. The effectiveness of the approximate methods
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are proved by comparison with the nonlinear model. Finally, the performance of IMC-PID
controller designed based on simplified FOPDT model is verified by a nonlinear model
and non-minimum phase system, and the adaptability of IMC-PID to model mismatch is
studied by adding nonlinear elements such as measurement noise and time delay. Finally,
the performance of IMC-PID controller is studied when the model deviates from the
steady state.

2. Modeling and Verification of OTSG

This section consists of two parts. In the first part, the OTSG is modeled by the moving
boundary method and four region model. In the second part, the OTSG model is verified by
steady-state verification, steady-state temperature distribution and transient disturbance.

2.1. Modeling of OTSG

The OTSG is used in the SLBFR. The secondary side water will change to steam in
OTSG, and the heat transfer coefficient changes sharply with the change in vapor fraction.
Therefore, the OTSG is divided into four regions in this work: a subcooled region, nucleate
boiling region, film boiling region and superheated region. In addition, with the change in
working conditions, the length of each region changes, so the movable boundary method is
used. The formula derivation process of different regions and node division can be found
in Ref. [26]. Therefore, in this paper, only the basic equation is given. The model was built
in the MATLAB/Simulink environment. Figure 1 shows the node division diagram of
OTSG, where Lc is the subcooled region, Lb1 is the nucleate boiling region, Lb2 is the film
boiling region and Ls is the superheated region. PLS1–PLS9 are primary side LBE nodes,
SSCL1–SSSL3 are secondary side water/steam nodes and Tm1–Tm9 are tube nodes.
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Figure 1. Node division of once-through steam generator. 
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Figure 1. Node division of once-through steam generator.

The primary side, secondary side and tube can be calculated using the following
formulas. Note that the primary side is liquid metal, which can be regarded as an in-
compressible fluid, so only energy conservation and mass conservation are considered
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in the primary side. The tube does not flow, so only the energy conservation equation
is considered:

A
[

d(ρiLi)

dt
− ρi+1

dzi+1

dt
+ ρi

dzi
dt

]
= Wi −Wi+1 (1)

A

[
d(ρihiLi)

dt
− ρi+1hi+1

dzi+1

dt
+ ρihi

dzi
dt
− Li

dPi
dt

]
= Wihi −Wi+1hi+1 + Qi (2)

1
A

[
dWiLi

dt
−Wi+1

dzi+1

dt
+ Wi

dzi
dt

]
= Pi − Pi+1 − ∆Pi (3)

where Wi is the flow rate of the i-th control body, kg/s; ρi is the average density of the i-th
control body, kg/m3; h is the enthalpy value, J/kg; zi is the position of the lower boundary
of the i-th control body, m; ∆Pi is the pressure drop of fluid flowing through the i-th control
body, including the gravity pressure drop, friction pressure drop and acceleration pressure
drop, Pa; and L is the length of the control body, m. A model with the outlet parameter as
the lumped parameter has better approximation and no initial negative offset. Therefore,
the OTSG is often modeled by the outlet lumped parameter method [26].

The heat transfer coefficient calculations of the four regions are summarized in Table 1.

Table 1. Heat transfer correlations in different regions.

Region Reference Calculation Formula

1.Subcooled region (Re ≥ 2500) Dittus-Boelter [27] Nu = 0.023Re0.8Pr0.4

1.Subcooled region (Re < 2500) Collier [28] Nu = 0.17Re0.33Pr0.43( Pr
Prw

)
0.25

Gr0.1

2.Nucleate boiling region Chen [29]
h = 0.023F

λ0.6
f G0.8(1−x)0.8Cp0.4

f

µ0.4
f De0.2

+0.00122S
λ0.79

f Cp0.45
f ρ0.49

f

σ0.5µ0.29
f h0.24

f g ρ0.24
g

∆T0.24
sat ∆P0.75

sat

3.Film boiling region Miropolskiy [30] Nu = 0.023{Re[x +
ρg
ρ f
(1− x)]}0.8

Pr0.8Y

4.Superheated region Dittus-Boelter [27] Nu = 0.023Re0.8Pr0.4

In Table 1, Cp is the specific heat capacity, J/◦C; Pr is the Prandtl number; Re is
the Reynolds number; F is the Reynolds number factor; and S is the nucleate boiling
inhibition factor:

Y =

[
1− 0.1

(
ρ f

ρg
− 1
)0.4

(1− x)0.4

][
x +

ρ f

ρg
(1− x)

]0.8
(4)

F =

{
1.0, X−1

tt ≤ 0.1

2.35(X−1
tt + 0.213)

0.736
, X−1

tt > 0.1
(5)

X−1
tt = (

x
1− x

)0.9(
ρ f

ρg
)

0.5
(

µg

µ f
)

0.1
(6)

S =


[1 + 0.12Re1.14

TP ]
−1

, ReTP < 32.5

[1 + 0.42Re0.78
TP ]

−1
, 32.5 ≤ ReTP < 70.0

0.1, ReTP ≥ 70.0

(7)

ReTP =
G(1− x)De

µ f
F1.25 × 10−4 (8)

The Nusselt number of primary LBE is calculated by the following formula [31]:

Nu = 4.82 + 0.0185Pe0.827 (9)
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where Nu is the Nusselt number and Pe is the Peclet number. The heat transfer formula of
the primary side can be found in Ref. [26]. The OTSG parameters are listed in Table 2.

Table 2. The OTSG parameters.

Name Value Name Value

Tube inner diameter 21 mm Inlet LBE temperature 430 ◦C
Tube outer diameter 24 mm Inlet feedwater temperature 210 ◦C

Length of tube 20 m Feedwater flowrate 12.76 kg/s
Tube number 60 LBE flowrate 1767.2 kg/s

2.2. Verification

This section verifies the OTSG through steady-state parameters, steady-state tempera-
ture distribution and transient characteristics.

2.2.1. Steady State Parameters Verification

Table 3 shows the calculated and designed values of OTSG model at 100% full power
(FP). It can be seen from Table 2 that the error of the outlet steam temperature is 2%, and
the error of the feedwater flowrate is 1.8%, which shows that the model has high accuracy.
The error of heat exchange length is 5.6%. The length of the superheated region calculated
in this paper is shorter than the design value, and the steam temperature is also lower than
the design value, indicating that the heat exchange coefficient calculated in this paper is
less than the heat exchange coefficient used in the design. However, the error is small,
which proves the accuracy of the model in this paper.

Table 3. Model calculation results at 100% FP.

Name LBE Outlet
Temperature

Steam
Temperature

Feedwater
Flowrate

Length of
Superheated Region

Design value 320 ◦C 368 ◦C 13 kg/s 5.04 m
Calculated value 320 ◦C 360.8 ◦C 12.76 kg/s 4.76 m

Error 0 2% 1.8% 5.6%

2.2.2. Steady-State Temperature Distribution Verification

Because there are few reference data for OTST of SLBFR, we verified the rationality of
this model by comparing the temperature distribution of OTSG of small PWR. Although
they differ in numerical values, the regularity is consistent. The temperature distribution
of OTSG at 100% FP is shown in Figure 2. Figure 3 shows the temperature distribution
calculated in Ref. [32]. By comparing Figures 2 and 3, it can be found that the tempera-
ture distribution calculated in this paper is consistent with the temperature distribution
calculated by RELAP5. Because the pressure loss in the flow is considered in this paper, the
saturation temperature decreases slightly along the flow direction. The difference from the
literature is that the primary side of this paper is LBE and the heat exchange temperature
difference is also different.

2.2.3. Transient Characteristics Verification

We introduced feedwater flowrate disturbance, feedwater temperature disturbance,
LBE flowrate disturbance and LBE inlet temperature disturbance to OTSG, and observed
the change in LBE outlet temperature, as shown in Figure 4. The disturbance of feedwater
flowrate and LBE flowrate is−5% at the rate of−2.45%/s, and the disturbance of feedwater
temperature and LBE temperature is −5 ◦C at the rate of −3.5 ◦C/s. All disturbances are
introduced in 20 s, and the system was 100% FP before the disturbance. It can be seen from
Figure 4 that the feedwater temperature has the least impact on the LBE outlet temperature.
The feedwater flowrate, LBE flowrate and LBE inlet temperature disturbances change the
LBE temperature by +3.72 ◦C, −4.21 ◦C and −3.46 ◦C, respectively.
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Ref. [28] gives the characteristics of the system when four step disturbances are
introduced. In this paper, the ramp signal is used for the consistency of the content of the
article. The content of the step disturbances can be found in Appendix A. Through the
comparison with the reference, it can be found that the law of this paper is consistent with
the reference and conforms to the objective law.

3. Controller Design and Simulation Platform Development

The LBE corrosivity causes the LBE flowrate change to be restricted by the primary
loop, so it is not the best solution to adjust the LBE outlet temperature through the LBE
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flowrate. Adjusting the LBE outlet temperature through feedwater temperature must
consider the rate of temperature change. Due to the large heat capacity of water and the
faster response of the OTSG, adjusting the LBE outlet temperature through feedwater
temperature cannot meet the needs of OTSG. The feedwater flowrate can be regulated by
valves or pumps quickly, which is the best choice to control the LBE outlet temperature.
Therefore, a flowrate controller is designed in this section.

This section contains two parts. Firstly, the principle and design method of IMC
controller are introduced. Through the analysis of the characteristics of IMC, the IMC-PID
is introduced, and the design method of IMC-PID controller is introduced.

3.1. IMC

IMC is a control method based on internal model. Figure 5 shows the general structure
of the IMC controller, where Gc is the IMC controller, G is the controlled object, Gm is the
nominal model (internal model), Y is the output of the controlled object, D is the disturbance
(including measurement noise) and R is the reference of Y. The output of the system can be
expressed as:

Y(s) =
Gc(s)G(s)

1 + Gc(s)(G(s)− Gm(s))
R(s) +

1− Gc(s)Gm(s)
1 + Gc(s)(G(s)− Gm(s))

D(s) (10)
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It is not difficult to see from Equation (5) that when GcGm = 1, the system will achieve
adequate anti-disturbance performance. At this time, if Gm = G, the system also has suitable
tracking performance. Therefore, the controller is designed as follows:

Step 1: Let Gc(s) = G−1
m (s). When Gm(s) has zeros in the right half plane of complex

plane, Gc(s) will be unstable and difficult to achieve in engineering. So, Gm(s) can be
expressed as:

Gm(s) = G+
m (s)G−m (s) (11)

Gc(s) =
[
G−m (s)

]−1 (12)

where G+
m (s) is the non-minimum phase element of Gm(s) and G−m (s) is the minimum phase

part of Gm(s).
Step 2: If G−m (s) is regular, then Gc(s) must be non-strictly regular. The robustness of

IMC can be improved by including a low pass filter:

Gc(s) =
1

(1 + λs)n
[
G−m (s)

]−1 (13)

where n is the order of the filter to ensure the regularity of Gc(s), so n depends on G−m (s),
and this parameter does not need to be tuned; λ is a filter constant, which needs to be tuned
for IMC. It can be seen from Equation (13) that only λ needs to be tuned.

According to the OTSG model established in Section 2, the transfer function from
feedwater flow to outlet LBE temperature can be obtained. Due to the high order, the
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dominant pole method is used to reduce the order of the transfer function, and the reduced
transfer function is (only 100% FP is given here, and other power levels can be found in the
Appendix A):

G100,r =
−0.1482s3 − 1.417s2 − 0.841s− 1.121

s4 + 2.064s3 + 2.13s2 + 1.201s + 0.2044
(14)

Gc(s) designed according to the above steps is (λ = 1 here, and the other calculation
results can be found in the Appendix A):

Gc(s) =
−s4 − 2.064s3 − 2.13s2 − 1.201s− 0.2044

0.1482s4 + 1.565s3 + 2.258s2 + 1.962s + 1.121
(15)

The step change in LBE outlet temperature reference is from 320 ◦C to 325 ◦C at 20 s.
Figure 6 shows the performance of IMC with different controller parameters. Compared
with PID, IMC parameter tuning is simple and clear. Single parameter adjustment avoids
the possibility of more combinations. It can be seen from Figure 6 that the impact of λ on
performance is intuitive. With the increase in λ, the response of the system becomes slower,
but a small λ will cause the controller output to be aggressive.
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In addition, it can be seen from Equation (15) that the order of IMC is higher than PID.
With simple structure, principle and suitable control effect, traditional PID has become the
most important controller in industry. So, combining the advantages of IMC and the easy
implementation of PID is also an important direction of industrial controller research.

3.2. IMC-PID

The structure of the IMC-PID controller is shown in Figure 7. Obviously, when C in
Figure 7 is PID controller, Figure 7 is transformed into traditional PID closed-loop control.
Therefore, the key idea of the IMC-PID controller is to convert C into PID equivalently.
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From Figure 7, the transfer function of C can be obtained as:

C(s) =
Gc(s)

1− Gc(s)Gm(s)
=

[G−m (s)]−1

(1 + λs)n − G+
m (s)

(16)

The transfer function of traditional PID can be expressed as:

CPID(s) = Kp +
Ki
s
+

Kds
Tds + 1

=
(KpTd + Kd)s2 + (Kp + KiTd)s + Ki

s(Tds + 1)
(17)

where Kp, Ki and Kd are the coefficients of proportional, integral and differential ele-
ments, respectively. Since the differential element is difficult to realize, the third term in
Equation (17) is usually used to approximate the ideal differential element, and Td is the
filter constant.

Usually, most of the controlled objects in industry can be represented by the FOPDT
system, which can be expressed as follows:

Gr(s) =
K

Ts + 1
e−θs (18)

The approximation process will bring errors to the model and make Gm(s) deviate from
G. Therefore, in order to study the influence of model deviation on the effect of IMC-PID
control, three different methods are used to approximate the transfer function.

3.2.1. Approximate Method of FOPDT

Method 1: Time domain response approximation method. By introducing the step
signal and analyzing the output, the transfer function of the approximate FOPDT of the
system is obtained. From Equation (18), the response of the system in the time domain can
be derived:

ỹ =

{
K(1− e−(

t−θ
T )), t > θ

0, t ≤ θ
(19)

When s = 0, K = G(0) can be obtained from G(0) = G′(0). Then, by comparing the
nonlinear model output y with the approximate model output ỹ, the parameters θ and T
are identified.

Method 2: Derivative calculation method. The first and second derivatives of Equation (18)
for s are obtained:

G′r(s)
Gr(s)

= −θ − T
1 + Ts

(20)

G′′r (s)
Gr(s)

−
(

G′r(s)
Gr(s)

)2

=
T2

(1 + Ts)2 (21)

Substitute s = 0 into G(s) and Gr(s). Then, the left side of Equations (20) and (21) are
equivalent as follows:

G′(0)
G(0)

=
G′r(0)
Gr(0)

= −θ − T = −Tar (22)

G′′ (0)
G(0)

=
G′′r (0)
Gr(0)

= T2 + T2
ar (23)

where the purpose of dividing G(0) is to eliminate e−θs; the calculation method of K is the
same as Method 1.

Method 3: Suboptimal order reduction method. This method can be obtained from
Ref. [33] and is not introduced here.

The transfer functions from feedwater flowrate to LBE outlet temperature approxi-
mated by three methods at 100% FP are shown in Table 4. The transfer functions at the
remaining power levels can be found in Appendix A.
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Table 4. Approximated transfer functions by different methods.

Name Method 1 Method 2 Method 3

Gr(s)
−5.496

4.527s+1 e−0.91s −5.496
4.055s+1 e−1.11s −5.496

4.334s+1 e−0.967s

Gd(s)
−5.496(1−0.455s)

(4.527s+1)(1+0.455s)
−5.496(1−0.555s)

(4.055s+1)(1+0.555s)
−5.496(1−0.4835s)

(4.055s+1)(1+0.4835s)

The OTSG operates stably at 100% FP at t = 0. Then, the feedwater flowrate step
changes +1% and +5% at t = 20 s. Figure 8 shows the output of nonlinear model, reduced
order model and transfer function listed in Table 4. It can be seen from Figure 8 that the
outputs of the models calculated by the three methods are consistent with the nonlinear
model. Since the three methods calculate K in the same way, the steady-state values of
the three methods are equal. Comparing Figure 8a,b, it can be found that the difference
between the linear model and the nonlinear model increases with the deviation broadening
from the steady state. The comparison showed that the output of Method 1 is closest to the
nonlinear model, easy to calculate, and can be calculated by transfer function or fitted by
system response curve, which is more convenient for engineering applications. Therefore,
Method 1 is recommended. Ref. [34] also provides a method to approximate the frequency
domain characteristics of the system, but this method is limited by the characteristics of the
controlled object and the calculation is complex, so it will not be introduced here.
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3.2.2. Design of IMC-PID Controller

The approximate analysis of time delay terms is performed by the Pade method [25]:

e−θs =
1− θ

2 s

1 + θ
2 s

(24)

So, the IMC-PID controller is designed according to the method in Section 3.1:

Gd(s) =
K

Ts + 1
1− θ

2 s

1 + θ
2 s

(25)

G−m =
K

Ts + 1
, G+

m =
1− θ

2 s

1 + θ
2 s

(26)

Gd(s) calculated by the three methods is summarized in Table 4. Then, substitute
Equation (26) into Equation (16):

C(s) =
1

K(θ+λ)
(Ts + 1)(1 + θ

2 s)

s
[

θλ
2(θ+λ)

s + 1
] (27)

The parameters of the IMC-PID controller can be obtained by comparing
Equations (27) and (17): 

Td =
λ θ

2
λ+ θ

2

Ki =
1

K(λ+θ)

Kp = Ki(T + θ
2 − Td)

Kd =
T θ

2
K(λ+θ)

− KpTd

(28)

The parameters calculated by the three methods with λ = 1 are listed in Table 5.

Table 5. IMC-PID controller parameters (λ = 1).

Name Method 1 Method 2 Method 3

Td 0.2382 0.2630 0.2458
Kp −0.4519 −0.3748 −0.4229
Ki −0.0953 −0.0862 −0.0925
Kd −0.0886 −0.0955 −0.0899

3.3. Simulation Platform

MATLAB/Simulink is used to build the OTSG model and controller model. Figure 9
shows the structure of the OTSG feedwater control simulation platform. In Figure 9, module 1
is the reference, module 2 is IMC-PID controller, module 3 is IMC controller, module 4 is
OTSG nonlinear model G, module 5 is FOPDT model Gr(s), module 6 is non-minimum
phase model Gd(s), module 7 is noise and switch and the module 8 is time delay and switch.
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4. Results and Discussion

This section verifies the adaptability of IMC-PID to model mismatch under different
controller parameters through four ways. Section 4.1 tests the impact of three different
approximation methods on IMC-PID. Section 4.2 studies the performance of IMC-PID
through the nonlinear model and non-minimum phase system. Section 4.3 studies the
performance of IMC-PID under different parameters. In Section 4.4, the adaptability of
IMC-PID to the time delay element under different parameters is studied. In Section 4.5, the
tracking ability of different controller parameters is studied through rapid load reduction.

4.1. Effect of Different Control Parameters

The step change in LBE outlet temperature reference is from 320 ◦C to 325 ◦C at 20 s,
and the influence of different λ values on the performance of IMC-PID controller is studied
by comparing the system output. Figure 10 shows the control performance of IMC and
IMC-PID controller with different parameters.

It can be seen from Figure 10 that with the increase in λ, the adjustment time of the
system gradually increases. At the same time, the output of IMC and IMC-PID are closer.
This shows that as λ increases, the robustness of the system gradually increases and the
sensitivity to model mismatch gradually decreases.

It can be seen from Equation (14) that the filtering element introduces a pole with
a value of − 1

λ and as the λ increases, the pole approaches the origin. This leads to the
more obvious influence of pole − 1

λ on the system with the increase in λ, and gradually
becomes the dominant pole of the system. Therefore, when λ is large, IMC-PID has the
same performance with IMC.
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Figure 10. Comparison of IMC and IMC-PID performance under different parameters.

Figure 11 shows the performance of IMC-PID controller parameters calculated by
three methods. It can be seen from Figure 11 that the performance of the IMC-PID controller
obtained by the three methods gradually disappears with the increase in λ. The results are
consistent with those in Figure 8, which show that with the increase in λ, the system will
become insensitive to model mismatch.
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Figure 11. Comparison of IMC-PID performance of different methods.

As can be seen in Figure 11, the transfer functions obtained by the three approximate
methods can describe the characteristics of the system approximately, and the performance
of the controllers designed by the three methods is not different, especially when λ is large.
Therefore, the results of Method 1 are used for subsequent analysis in this paper.

4.2. Effect of Model Mismatch

According to the established controlled object, the controller performance will be poor
due to the model mismatch in practical application. Therefore, it is important to study
the influence of the controller parameters on model mismatch. It may be assumed that
the nonlinear model G established in Section 2.1 is the actual controlled object 1, Gd(s) in
Table 4 is the actual controlled object 2, and Gr(s) is the model established by simulation
calculation. Gr(s) ignores the nonlinearity of G and the non-minimum phase characteristics
in Gd(s).

Unfortunately, industrial processes use the system identification method to obtain the
system transfer function and design the controller. At the same time, for the convenience of
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controller design, the system is usually approximated as FOPDT, such as Gr(s), to replace
G, thereby ignoring the nonlinearity of original system G and the non-minimum phase
characteristic of Gd(s). This is consistent with our assumption.

Figure 12 shows the control performance of IMC and IMC-PID on models Gd(s) under
different parameters when the LBE outlet temperature reference of the OTSG has a +5 ◦C
step change. The control performance of IMC-PID on nonlinear model G is shown in
Figure 10.
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Figure 12. Performance of IMC-PID on different controlled objects.

By comparing Figures 10 and 12, it can be found that the approximation of the time
delay element using first-order Pade is very effective in Section 3.2.2. When the controlled
object is a minimum phase system, IMC-PID can realize fast regulation without overshoot.
When the controlled object is a non-minimum phase system, the control performance of
IMC-PID deteriorates slightly. With the increase in λ, the output of IMC-PID controller is
gradually conservative and insensitive to non-minimum phase characteristics. It can be seen
from Figure 10 that with the increase in λ, the system is also no longer sensitive to the dis-
turbance of the internal model (model mismatch and non-minimum phase characteristics).

4.3. Effect of Measurement Noise on Control Performance

To simulate the sensor measurement noise, 0.25% of the measurement noise is added
to the output of the controlled object. Figure 13 shows the performance of IMC-PID under
different control parameters. As can be seen from Figure 13, when λ = 1, the system
responds quickly, but it is also more sensitive to measurement noise. When λ = 20, the
measurement noise has little effect on the performance of the IMC-PID controller. The
effect of the controller on G, Gr(s) and Gd(s) is consistent. In addition, the results show that
the PID controller with appropriate parameters can also achieve the effect of disturbance
rejection. Moreover, λ plays the same role in IMC and IMC-PID controller. Therefore,
tuning the PID controller by the IMC method is helpful for practical applications. Three
parameters of PID that need to be tuned are simplified to one, which is convenient for
design and tuning.

4.4. Influence of Time Delay Element

Based on Section 4.3, a time delay element is added to simulate the time of signal
transmission and controller output. Figure 14 shows the performance of the IMC-PID
controller with different parameters when there is a 1 s delay from error generation to
controller output.
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Figure 13. Influence of noise on different controller parameters.
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It can be seen from Figure 14 that when λ = 1, the performance of the controller
is further deteriorated than in Figure 11, resulting in large overshoot. Comparing Figures 10–14, it
can be found that the smaller filter parameters are sensitive to model mismatch caused
by nonlinear elements, non-minimum phase elements, noise and time delay, which can
be regarded as the model mismatch between the actual model and the simulation model
for controller design. It can be found that the larger filter parameters sacrifice certain
sensitivity, but the robustness is strengthened. From Figure 14, it can be found that the
impact of the introduced element in this paper on the performance of IMC-PID with λ = 20
can be ignored. Therefore, if there is a model mismatch problem in the controller design, it
is inappropriate to only use load tracking as the evaluation index of the controller, and the
optimization of the controller is likely to be futile.

Although the increase in λ will make the IMC-PID controller insensitive to model
mismatch, it will also cause the controller output to be too conservative, resulting in poor
control performance.

4.5. Rapid Power Changes

Rapid power changes usually occur in load rejection or emergency shutdown condi-
tions. In these conditions, the powers of the primary and secondary loops of the nuclear
reactor are reduced at the same time. Therefore, the input of OTSG and the reference
change at the same time. This section simulates a rapid power drop from 100% FP to
30% FP. The change in LBE inlet temperature of OTSG due to the simultaneous power
reduction on the primary side is shown in Figure 15. At the same time, the OTSG feedwater
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control system needs to control the LBE outlet temperature to a reference curve to prevent
the coolant temperature from introducing reactivity and causing the core power to change.
The reference of LBE outlet temperature is shown in Figure 15.
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Figure 15. Change in LBE temperature at OTSG inlet during load shedding.

Figure 16 also shows the performance under different controller parameters. It can be
seen from Figure 16 that when λ = 20, the system output fluctuates for a period of time,
and even lower than the initial temperature. The reason is that the LBE flow velocity is
restricted due to the corrosiveness. The change in LBE inlet temperature takes time to
change the outlet temperature. As shown in Figure 4, there is an obvious delay in the
influence of LBE inlet temperature on LBE outlet temperature. At this time, the change in
controller reference reduces the feedwater flowrate to increase the LBE outlet temperature.
Subsequently, the influence of LBE inlet temperature change is transmitted to the OTSG
outlet, resulting in the decrease in LBE outlet temperature, while the output of λ controller
is smaller and the LBE temperature decreases. When the λ is small, the output of the system
is large, and the disturbance of LBE at the inlet becomes less obvious. We can observe that
the slopes of the four curves in Figure 16 change at 30 s.
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Figure 16. Performance of different controller parameters in rapid power reduction.

Based on the research of this paper, λ of IMC-PID feedwater controller for the pre-
sented OTSG of SLBFR is recommended to be between 5 and 10. This research on model
mismatch has universality, and this method can be used to initialize other PID controller
parameters in industrial processes.
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5. Conclusions

We mainly studied the control effect of IMC-PID when the OTSG model is mismatched.
By introducing different disturbances, the control performance was tested and the following
results were obtained:

1. It is feasible to simplify the OTSG model to the FOPDT model and design an IMC-PID
controller. As the system deviates from the steady-state point, the approximate model
error gradually increases.

2. The research on a nonlinear model, non-minimum phase system, system with mea-
surement noise, time delay and large range power regulation shows that with the
increase in λ, the robustness of the IMC-PID controller is enhanced, but the response
of the system is slow.

3. PID controllers have the ability of disturbance rejection (noise and model mismatch),
but there is no guidance for parameter setting. Therefore, it is simple and effective to
adjust PID parameters by the IMC-PID method.

4. We recommend that the λ of OTSG feedwater IMC-PID controller be between 5 and
10 to ensure the load tracking ability and robustness.
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Appendix A

Feedwater flowrate disturbance, feedwater temperature disturbance, LBE flowrate
disturbance and LBE inlet temperature disturbance are introduced to OTSG, and the
changes in LBE outlet temperature are observed. Figure A1 shows the change in LBE
outlet temperature under different disturbances. The disturbance of feedwater flowrate
and LBE flowrate is step change −5%, and the disturbance of feedwater temperature and
LBE temperature is step change −5 ◦C. All disturbances are introduced in 20 s, and the
system was 100% FP before the disturbance.
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Figure A1. LBE outlet temperature variation under different step disturbances.
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Figure A2 shows the change in primary side outlet temperature under different distur-
bances in Ref. [23]. The disturbance of feedwater flowrate is step change −2.3%, and the
disturbance of feedwater temperature and primary side temperature is step change −5 ◦C.
Comparing Figures A1 and A2, it can be seen that the model in this work is consistent
with the RELAP5 model in Ref. [23]. The effect of feedwater flowrate disturbance in the
reference is less than our model, because the feedwater flowrate disturbance introduced in
the reference is only 2.3% and that in this paper is 5%.
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Figure A2. Primary side outlet temperature under different step disturbances in Ref. [23].

Transfer functions of 100%, 70%, 50% and 30% FP are as follows (the input is feedwater
flow (kg/s) and the output is LBE outlet temperature of OTSG (◦C)):

100% FP:

G100 = −321.7s43−9.927e06s42−1.108e11s41−5.297e14s40−1.013e18s39−8.877e20s38−3.761e23s37−8.337e25s36−
s45+3.236e04s44+3.911e08s43+2.174e12s42+5.729e15s41+7.957e18s40+6.083e21s39+2.53e24s38+5.567e26s37+7.331e28s36+

1.113e28s35−9.927e29s34−6.341e31s33−3.051e33s32−1.146e35s31−3.45e36s30−8.498e37s29−1.739e39s28−2.994e40s27−4.376e41s26−
6.396e30s35+3.972e32s34+1.849e34s33+6.687e35s32+1.932e37s31+4.553e38s30+8.891e39s29+1.457e41s28+2.024e42s27+2.402e43s26+
5.473e42s25−5.892e43s24−5.485e44s23−4.433e45s22−3.119e46s21−1.914e47s20−1.026e48s19−4.809e48s18−1.971e49s17−7.065e49s16−
2.452e44s25+2.162e45s24+1.654e46s23+1.101e47s22+6.393e47s21+3.243e48s20+1.438e49s19+5.583e49s18+1.896e50s17+5.635e50s16+
2.213e50s15−6.05e50s14−1.442e51s13−2.987e51s12−5.366e51s11−8.325e51s10−1.11e52s9−1.263e52s8−1.217e52s7−9.815e51s6−

1.463e51s15+3.317e51s14+6.55e51s13+1.124e52s12+1.669e52s11+2.134e52s10+2.337e52s9+2.173e52s8+1.697e52s7+1.096e52s6+
6.512e51s5−3.47e51s4−1.431e51s3−4.287e50s2−8.322e49s−7.924e48
5.746e51s5+2.373e51s4+7.41e50s3+1.636e50s2+2.259e49s+1.442e48

70% FP:

G70 = −312.9s43−9.514e06s42−1.047e11s41−4.941e14s40−9.374e17s39−8.059e20s38−3.272e23s37−6.876e25s36−
s45+3.194e04s44+3.815e08s43+2.103e12s42+5.53e15s41+7.666e18s40+5.816e21s39+2.364e24s38+4.912e26s37+5.926e28s36+

8.593e27s35−7.079e29s34−4.143e31s33−1.817e33s32−6.205e34s31−1.698e36s30−3.801e37s29−7.079e38s28−1.111e40s27−1.484e41s26−
4.629e30s35+2.541e32s34+1.039e34s33+3.296e35s32+8.362e36s31+1.735e38s30+2.994e39s29+4.354e40s28+5.392e41s27+5.733e42s26+
1.7e42s25−1.681e43s24−1.443e44s23−1.078e45s22−7.035e45s21−4.017e46s20−2.01e47s19−8.819e47s18−3.392e48s17−1.144e49s16−

5.265e43s25+4.199e44s24+2.92e45s23+1.775e46s22+9.46e46s21+4.425e47s20+1.819e48s19+6.574e48s18+2.088e49s17+5.829e49s16+
3.375e49s15−8.703e49s14−1.957e50s13−3.829e50s12−6.492e50s11−9.5e50s10−1.193e51s9−1.278e51s8−1.156e51s7−8.728e50s6−
1.428e50s15+3.063e50s14+5.741e50s13+9.374e50s12+1.327e51s11+1.621e51s10+1.695e51s9+1.505e51s8+1.12e51s7+6.892e50s6+
5.402e50s5−2.673e50s4−1.018e50s3−2.806e49s2−5.016e48s−4.45e47
3.43e50s5+1.341e50s4+3.951e49s3+8.181e48s2+1.047e48s+5.984e46

50% FP:

G50 = −289.5s43−8.822e06s42−9.737e10s41−4.627e14s40−8.922e17s39−7.751e20s38−3.139e23s37−6.648e25s36−
s45+3.204e04s44+3.842e08s43+2.133e12s42+5.687e15s41+8.006e18s40+6.158e21s39+2.524e24s38+5.225e26s37+6.204e28s36+

8.402e27s35−6.986e29s34−4.105e31s33−1.796e33s32−6.081e34s31−1.641e36s30−3.609e37s29−6.579e38s28−1.008e40s27−1.312e41s26−
4.72e30s35+2.505e32s34+9.859e33s33+3.003e35s32+7.3e36s31+1.45e38s30+2.396e39s29+3.337e40s28+3.959e41s27+4.037e42s26+

1.462e42s25−1.406e43s24−1.172e44s23−8.504e44s22−5.391e45s21−2.991e46s20−1.455e47s19−6.205e47s18−2.322e48s17−7.62e48s16−
3.561e43s25+2.732e44s24+1.831e45s23+1.075e46s22+5.544e46s21+2.516e47s20+1.006e48s19+3.545e48s18+1.101e49s17+3.009e49s16+
2.19e49s15−5.504e49s14−1.207e50s13−2.304e50s12−3.812e50s11−5.445e50s10−6.677e50s9−6.979e50s8−6.157e50s7−4.525e50s6−
7.236e49s15+1.527e50s14+2.819e50s13+4.537e50s12+6.336e50s11+7.631e50s10+7.866e50s9+6.874e50s8+5.03e50s7+3.033e50s6+
2.721e50s5−1.303e50s4−4.774e49s3−1.258e49s2−2.127e48s−1.754e47
1.475e50s5+5.622e49s4+1.608e49s3+3.222e48s2+3.985e47s+2.225e46

30% FP:
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G30 = −201.3s43−6.149e06s42−6.769e10s41−3.187e14s40−6.026e17s39−5.137e20s38−2.088e23s37−4.77e25s36−
s45+3.214e04s44+3.853e08s43+2.129e12s42+5.635e15s41+7.874e18s40+6.028e21s39+2.474e24s38+5.187e26s37+6.256e28s36+

6.759e27s35−6.346e29s34−4.167e31s33−2.009e33s32−7.404e34s31−2.152e36s30−5.054e37s29−9.777e38s28−1.58e40s27−2.159e41s26−
4.828e30s35+2.595e32s34+1.033e34s33+3.175e35s32+7.782e36s31+1.557e38s30+2.587e39s29+3.62e40s28+4.312e41s27+4.41e42s26+

2.513e42s25−2.51e43s24−2.162e44s23−1.612e45s22−1.043e46s21−5.872e46s20−2.878e47s19−1.229e48s18−4.571e48s17−1.481e49s16−
3.898e43s25+2.995e44s24+2.009e45s23+1.18e46s22+6.081e46s21+2.756e47s20+1.099e48s19+3.857e48s18+1.191e49s17+3.23e49s16+

4.171e49s15−1.02e50s14−2.158e50s13−3.942e50s12−6.187e50s11−8.303e50s10−9.47e50s9−9.11e50s8−7.32e50s7−4.85e50s6−
7.684e49s15+1.598e50s14+2.897e50s13+4.554e50s12+6.174e50s11+7.171e50s10+7.073e50s9+5.864e50s8+4.034e50s7+2.265e50s6+
2.603e50s5−1.102e50s4−3.536e49s3−8.054e48s2−1.155e48s−7.807e46
1.017e50s5+3.543e49s4+9.205e48s3+1.67e48s2+1.876e47s+9.757e45

Model reduction functions based on simplified access to Hankel singular value:
100% FP:

G100,r =
−0.1482s3 − 1.417s2 − 0.841s− 1.121

s4 + 2.064s3 + 2.13s2 + 1.201s + 0.2044
70% FP:

G70,r =
−0.09431s3 − 2.668s2 − 1.271s− 3.022
s4 + 2.5s3 + 3.022s2 + 2.658s + 0.4094

50% FP:

G50,r =
−0.06666s3 − 3.722s2 − 2.323s− 5.129
s4 + 2.81s3 + 4.523s2 + 3.962s + 0.6581

30% FP:

G50,r =
0.2008s3 − 8.507s2 − 7.722s− 6.417

s4 + 3.228s3 + 8.026s2 + 4.368s + 0.8144

Transfer function of IMC controller Gc(s) at different λ values at 100% FP:
λ = 1:

Gc(s) =
−s4 − 2.064s3 − 2.13s2 − 1.201s− 0.2044

0.1482s4 + 1.565s3 + 2.258s2 + 1.962s + 1.121
λ = 5:

Gc(s) =
−0.2s4 − 0.4128s3 − 0.426s2 − 0.2402s− 0.04088
0.1482s4 + 1.447s3 + 1.124s2 + 1.289s + 0.2242

λ = 10:

Gc(s) =
−0.1s4 − 0.2064s3 − 0.213s2 − 0.1201s− 0.02044
0.1482s4 + 1.432s3 + 0.9827s2 + 1.205s + 0.1121

λ = 20:

Gc(s) =
−0.05s4 − 0.1032s3 − 0.1065s2 − 0.06005s− 0.01022

0.1482s4 + 1.424s3 + 0.9118s2 + 1.163s + 0.05605
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