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Abstract: With the high penetration of wind turbines, many issues need to be addressed in relation
to load frequency control (LFC) to ensure the stable operation of power grids. The particle swarm
optimization-based model predictive control (PSO-MPC) approach is presented to address this issue
in the context of LFC with the participation of wind turbines. The classical MPC model was modified
to incorporate the particle swarm optimization algorithm for the power generation model to regulate
the system frequency. In addition to addressing the unpredictability of wind turbine generation, the
presented PSO-MPC strategy not only addresses the randomness of wind turbine generation, but also
reduces the computation burden of traditional MPC. The simulation results validate the effectiveness
and feasibility of the PSO-MPC approach as compared with other state-of-the-art strategies.

Keywords: wind turbines; load frequency control; particle swarm optimization; model predictive control

1. Introduction

Load frequency control (LFC) is one of the significant ancillary services in the power
system. It is used to maintain the frequency of the system through active power output
variation of generator sets. When load disturbances of the power system vary, the nominal
frequency fluctuates accordingly, resulting in a poor load-generation balance [1,2]. The
load frequency controllers of conventional generator sets, such as the proportional integral
(PI) controller [3,4], robust controller [5,6], and fuzzy controller [7–9], offer effective ways
to control the area control error (ACE) of the system. With the development of the world
economy and the improvement of people’s material living standards, the power supply
demand is increasing day by day, as is the power supply gap [10]. However, the traditional
thermal power supply mode releases significant amounts of pollution into the environment,
making environmental and economic sustainability hard to achieve. Thus, the development
of “carbon peak and carbon neutrality” increases the renewable energy (RE) power supply,
which will help balance the load demand in the new era. Wind energy generation is one
of the predominant sources of renewable energy. However, the increasing penetration of
wind turbines will change the way in which the frequency of power grids is controlled, as
compared to the conventional approaches [11].

In recent decades, the power generation model with wind turbine integration has been
widely studied. Due to its intrinsic uncertainty and the large fluctuations caused by the
stochastic wind velocity, there are significant challenges associated with wind turbines
in relation to the stability and controllability of power grids. Through the application of
genetic and fuzzy logic controllers in LFC, the influence of doubly fed induction generator
(DFIG) systems on LFC was evaluated [12]. At present, the wind power model is widely
used for DFIG systems. By combining the original dynamic model of power systems with
the dynamic model of wind turbines, the state space equation for LFC with the participation
of wind turbines was deduced [13]. A model reference adaptive controller (MRAC) was
applied to modify the controller gains during sudden load perturbation. Further, to
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improve its efficacy, a neural network with MRAC was utilized to minimize the error signal
in the conventional MRAC [14]. However, these two kinds of schemes for the parameter
optimization process are relatively complex, and have a great computational burden. When
the region has multiple hybrid power systems (HPS), the interconnected HPS model runs in
different combinations. A Hankel model order reduction method was used to analyze the
stability of the model, and a particle swarm optimization-gravity search algorithm (PSO-
GSA) was employed. In this study, the integral absolute error (IAE) of the control error was
used as the optimization cost function to optimize the gain of the controller and realize
the frequency response of the system [15]. The control strategy considers the traditional
hybrid power generation mode and does not introduce a new energy generation mode.
Considering the load variation of RE and weather intermittency, a hybrid mirror group
optimization gravity search algorithm based on chaos search was proposed. By minimizing
the absolute error of integration time of an HPS, the PID control parameters of LFC were
obtained. Through comparison and a stability analysis, the effectiveness of this strategy was
verified [16]. This method has a large amount of computation and optimization parameters,
which increases the burden of communication and operation. On the other hand, plug-in
electric vehicles (PEVs) can be regarded as manageable energy storage systems with the
ability to respond quickly to load disturbances, and adding a number of PEVs to LFC is
an effective way to achieve rapid regulation. In [17], a distributed LFC strategy was used
to integrate resilient distributed frequency estimation schemes based on credibility. The
proposed credibility-based distributed frequency estimation scheme was verified under
various communication topologies, and the simulation results of a four-area power system
show that the proposed distributed LFC strategy can quickly regulate the frequency after
detecting and isolating the compromised PEVs. According to literature [18], machine
learning and deep learning control strategies have the advantages of low cost, rapid
response, and high accuracy, and have a long-term development prospect. Reinforcement
learning has been applied to the LFC of multi-region power systems. Through the strategy
of centralized learning and decentralized implementation, it was demonstrated that this
method can effectively reduce the control errors caused by random frequency changes
associated with load and new energy power fluctuations [19]. An artificial neural network
was utilized in DFIG-based wind turbines to train the controller gains in [20], which
guarantees the feasibility of controller gains even though the running condition was not
included in the training set. However, this method needs a lot of experimental data and a
long training time, so it may not be able to make a timely response in emergencies.

Model predictive control (MPC) was found to be an alternative approach that can
effectively optimize system performance with a given model [21]. Because of its simple
iteration property, the system can be processed with constraint conditions, resulting in
broad applications in power grids. The exponential increase in the integration of RE
resources and traditional power generation with RE resources has meant that the MPC
technique has been adopted for frequency regulation in a centralized and decentralized
way [22]. With the economic benefit as the starting point, a balance of power generation
and power consumption was achieved under MPC, and the effectiveness was verified using
a four-area system [23]. However, a large number of interconnected networks increase the
burden of network communication and signal interference in neighboring areas. For this
reason, a model-based internal model control was used in [24]. By combining the adaptive
model in the MPC design, a new internal model controller was proposed, which can better
regulate the frequency by reducing the peak response of the prime mover. In the LFC
scheme, partial load fluctuations, frequency deviation, and the generation rate constraint
(GRC) affected the active response of the system to a large extent; therefore, the distributed
model predictive control (DMPC) strategy was proposed for processing the power system
dynamic response and uncertainty [25]. However, the implementation of DMPC strategies
requires the control actions to be repeatedly calculated, which consumes a lot of resources.

To enhance the efficiency and accuracy of iterative computation in MPC, a particle
swarm optimization (PSO) algorithm was used in this study to optimize the iterative
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process. PSO is a swarm-based evolutionary algorithm proposed by Kennedy and Eber-
hart [26], which optimizes the extreme points through fewer iterative calculations by
reaching global minima. The optimization process of PSO does not depend on the initial
position of the particle [27], but ultimately finds the optimal global solution of the objective
function by finding the individual local and optimal global best in the established interval.
In the traditional PID controller, the PSO algorithm is used to optimize its parameters by
minimizing the absolute error of integration time (ITAE) of ACE as an objective function,
which greatly improves the robustness of the system [28–30]. However, the PID controller
performs poorly in complex systems with the participation of renewable energies. In addi-
tion, the PSO uses an artificial neural network (ANN) to train the optimal neural network
model [31]. The mean square error of the model is used as the evaluation criterion to verify
that the optimal neural network model is more effective for frequency regulation. However,
the range of operating points covered by the training set greatly limits the accuracy of the
method. In LFC used in conjunction with wind turbines, particle swarm optimization is
used to optimize their control parameters to further reduce their fatigue compliance and
improve their service life, demonstrating its powerful optimization ability [32]. However,
the stability of the controller in a system where multiple power generation modes coexist
remains to be discussed. While most of the exiting LFC approaches in the literature focus
on PID or single MPC, these control strategies either ignore the fluctuation caused by the
stochastic wind velocity or the complexity of iterative calculations. Thus, these control
solutions need to be improved.

In this paper, we propose a PSO-MPC control strategy that can deal with the uncer-
tainties of wind turbines and can enhance the computation efficiency of MPC. The main
contributions are summarized as follows:

• A PSO-MPC approach is proposed for LFC with wind turbines; it can deal with
the uncertainties associated with wind turbines and can explore the feasibility of
integrating wind turbines into conventional power generation;

• To reduce the computational burden of implementing the MPC strategy, the particle
swarm optimization algorithm is incorporated. The cost function of MPC is taken
as the objective function of PSO, and the control quantity is iteratively optimized.
Moreover, the influences of physical constraints, such as GRC and the governor dead
zone [23], were verified using simulations. The results demonstrate that this method
has a fast dynamic performance.

The arrangement of this paper is as follows. Section 2 establishes the system model,
including the wind turbine model and the traditional thermal power unit model. Section 3
introduces model predictive control and cost function. Section 4 describes the particle
swarm optimization algorithm and objective function formulation. Section 5 establishes the
model predictive controller based on PSO tuning of its parameters. Section 6 verifies the
effectiveness of the presented method using simulations. Section 7 concludes this paper.

2. System Dynamics
2.1. Simplified Wind Turbine Model

This section presents the simplified wind turbine model of a doubly fed induction
generator [12]. Furthermore, the simplified model of a DFIG-based wind turbine is given
in Figure 1, the operations of which are mathematically expressed as follows:

.
iqr = −

(
1
T1

)
iqr +

(
X2

T1

)
Vqr (1)

.
w = −

(
X3

2Ht

)
iqr +

(
1

2Ht

)
Tm (2)

Pe = wX3iqr (3)
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Figure 1. Simplified model of a DFIG-based wind turbine. 
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where 𝐿  is the excitation inductance; 𝑅  and 𝑅  represent the rotor resistance and sta-
tor resistance, respectively; 𝐿  and 𝐿  represent the rotor inductance and stator induct-
ance; 𝐿  and 𝐿  represent the mutual inductance of the rotor and stator; and 𝑤  is the 
synchronous speed. 

2.2. Modelling of Power System 
In this section, the thermal power system model is presented, which mainly consists 

of three components: the secondary controller, the droop and governor control, and the 
turbines, as shown in Figure 2. The simulation parameters are described in Table 1, the 
values of which are given in the simulation. 

Figure 1. Simplified model of a DFIG-based wind turbine.

Via linearization, Equation (3) becomes

Pe = woptX3iqr (4)

Te = iqs = −
Lm

Lss
iqr (5)

The parameters of the wind turbine are defined as follows: wopt is the rotor velocity
at the operating point of the wind turbine; Te is the electromagnetic torque; Tm is the
mechanical power change; w is the rotor speed; Pe is the active power of the wind turbine;
iqr is the Q-axis component of the rotor current; Vqr is the Q-axis component of the rotor
voltage; and Ht is the equivalent inertia constant of the wind turbine. Moreover, the main
parameters for Figure 1 are given as

X2 = 1
Rr

, X3 = Lm
Ls

T1 = Lrr+L2
m/Lss

wsRr

Lss = Ls + Lm, Lrr = Lrs + Lm

(6)

where Lm is the excitation inductance; Rr and Rs represent the rotor resistance and sta-
tor resistance, respectively; Lr and Ls represent the rotor inductance and stator induc-
tance; Lrr and Lss represent the mutual inductance of the rotor and stator; and ws is the
synchronous speed.

2.2. Modelling of Power System

In this section, the thermal power system model is presented, which mainly consists
of three components: the secondary controller, the droop and governor control, and the
turbines, as shown in Figure 2. The simulation parameters are described in Table 1, the
values of which are given in the simulation.
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Table 1. Parameters of the power system.

Parameter Physical Significance

∆ f Deviation of frequency
∆Pm The mechanical power change
∆PL Load disturbance
∆Pg The governor output change
∆Pc Supplementary control action
R Speed drop
Tg Time constant of governor
Tt Time constant of turbine
H Equivalent inertia constant of generator
D Equivalent damping coefficient of generator
β Frequency bias constant
y The system output

The overall generator-load dynamic relationship between the incremental mismatch
power (∆Pm − ∆PL) and the frequency deviation (∆ f ) can be expressed as

∆
.
f =

(
1

2H

)
∆Pm −

(
1

2H

)
∆PL −

(
D

2H

)
∆ f (7)

The dynamic of the governor can be expressed as

∆
.
Pm =

(
1
Tt

)
∆Pg −

(
1
Tt

)
∆Pm (8)

The dynamic of the turbine can be expressed as

∆
.
Pg =

(
1
Tg

)
∆Pc −

(
1

RTg

)
∆ f −

(
1
Tg

)
∆Pg (9)

Equations (1), (2), (7), (8), and (9) are simplified to obtain the state space equation of
load frequency control:

.
x = Ax + Bu + Cz
y = Dx

(10)

where x represents the state of the system; u represents the control input of the system; and
z represents the load disturbance.

x =



∆Pg

∆Pm

∆ f

∆iqr

∆w

, u =

[
∆Pc

∆Vqr

]
, z =

[
∆PL

∆Tm

]
(11)

A =



− 1
Tg

0 − 1
RTg

0 0

1
Tt

− 1
Tt

0 0 0

0
1

2H
D

2H
X3wopt

2Ht
0

0 0 0 − 1
T1

0

0 0 0 − X3

2Ht
0


(12)
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B =



1
Tg

0

0 0

0 0

0
X2

T1

0 0


, C =



0 0

0 0

− 1
2H

0

0 0

0
1

2Ht


(13)

D =
[
0 0 β 0 0

]
(14)

3. Model Predictive Control

In this section, we focus on model predictive control (MPC). MPC is an iterative
optimization control algorithm. Under the given system model, it predicts the performance
of the system in a certain future period to optimize the control action. Considering the
power system as an example through which to better understand the model, the objective
function at time k is

.
x(k) = Ax(k) + Bu(k)

minJ(x(k), u(k))

J =
Np−1

∑
k

e(k)TQe(k) + u(k)T Ru(k) + E(N)T FE(N)

e(k) = y(k)− r(k)

(15)

where Np is the prediction space of the system; Q and R are the weight parameters of the
system; and r(k) is the system reference input value at time k.

In the process of data collection, data are sent or received in groups through the data
collector. Therefore, for the closed-loop optimal control problem, the system is modified by
the following discretization method:

x(k + 1) = Ax(k) + Bu(k) (16)

In this model, r(k) = 0, e(k) is the systematic error at time k; and E(N)T FE(N) is the
final cost function of the system. The objective function of Formula (14) can be transformed
into the following expression:

minJ =
Np−1

∑
i=0

(x(k + i|k )TQx(k + i|k ) + u(k + i|k )T Ru(k + i|k ))

minJ = XTQ̃X + UT R̃U

(17a)

U =
[

u(k|k ) u(k + 1|k ) · · · u(k + Np − 1|k )
]T

X =
[

x(k|k ) x(k + 1|k ) · · · x(k + Np|k )
]T (17b)

where x(k + i|k), u(k + i|k) represent the system state x(k + i|k) predicted at time k and the
control quantity u(k + i|k) predicted at time k. Q̃, R̃ are the optimization cost coefficient
matrices after appropriate augmentation transformation.

Substituting Equation (16) into Equation (17a) and simplifying it, we can obtain

J = XTQ̃X + UT R̃U

J = (Ãxk + B̃U)
T

Q̃(Ãxk + B̃U) + UT R̃U

J = (xk
T ÃT + UT B̃T)Q̃(Ãxk + B̃U) + UT R̃U

J = UT HU + f Txk

(18a)
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Among them,
H = B̃TQ̃B̃ + R̃

f = 2xT
k ÃTQ̃B̃

(18b)

Therefore, the objective function is transformed into a function with only one variable
U, and then we can find the extreme value of the function J to obtain the optimal control
quantity.

To summarize the above formula derivation, it is essentially divided into two steps: the
variable replacement of the future state quantity and the transformation of the optimization
objective function.

4. Particle Swarm Optimization

In the early stage of the study, scholars observed and studied birds’ predation be-
haviors. In 1995, Kennedy and Eberhart [26] proposed the particle swarm optimization
algorithm. When birds hunt for food, they search in the simplest and most effective way.
Each food in PSO represents a feasible solution, and each feasible solution corresponds to a
fitness value, which is used as the basis for judging the merits of the solution. The fitness
value is determined by the particle itself and the defined fitness function.

In a D-dimensional search space, a population is composed of N particles, where the
position of the ith particle in the D-dimensional space is denoted by Xi = (xi1, xi2, · · · xiD)

T .
The corresponding fitness value is calculated by the objective function and the position
coordinate of the current ith particle. In the process of iteration, the velocity and position of
the particles are updated by the iterative formula, and then the individual extreme value
and the group extreme value are updated to obtain the next generation of particles, so as to
find the global optimal solution.

Vk+1
id = ωVk

id + c1r1(Pk
id − Xk

id) + c2r2(Pk
gd − Xk

id) (19a)

Xk+1
id = Xk

id + Vk+1
id (19b)

where ω is the inertia weight of the velocity, which represents the ability of the particle to
inherit the velocity of the particle in the previous step; c1 and c2 are non-negative constants,
e.g., the acceleration factor; r1 and r2 are constants belonging to [0, 1]. d = 1, 2 · · ·D; vt+1

id
and xt+1

id refer to the velocity and position of the d dimension of the ith particle in the (t + 1)
iteration, respectively; pbestt

id denotes the individual extremum of the ith particle in the d
dimension; and gbestt

d denotes the global extremum of the group in the d dimension.
The algorithm process is detailed in steps as follows:
Step 1: Initialize the swarm particles, set the initialization parameters and fitness

function, and randomly generate the position and velocity of all particles.
Step 2: Calculate each particle’s fitness value through the fitness function according to

its own parameters, which is used as the selection standard.
Step 3: Select the optimal particle according to the fitness value of each particle as the

individual extreme value and the group extreme value.
Step 4: Update the particle velocity and position by iteratively updating

Equations (19a) and (19b).
Step 5: Determine the termination condition (usually set as the maximum number of

iterations or the upper and lower limits of fitness value). If it is satisfied, perform Step 6;
otherwise, perform Step 2.

Step 6: Output the global optimal solution.

5. PSO-Based Model Predictive Control

To solve the problem of maximizing the objective function of the equation, in this
paper, we propose a model predictive control strategy based on particle swarm optimization
to optimize the iterative optimization process of the system. The strategy is essentially
divided into the following steps: initializing the system parameters and setting the system
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objective function; calculating the individual extreme value and group extreme value of
the current particle swarm; and obtaining the optimal solution of the system control input
by searching in the global area. The optimal control solution was substituted into the MPC
model for steady-state adjustment. The optimal control procession tuned using intelligent
algorithms is shown in Figure 3.
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Here, we add constraints into the control:

umin ≤ u(k) ≤ umax

To facilitate the implementation of the proposed MPC strategy based on PSO optimiza-
tion, the three steps discussed above are summarized in the flowchart shown in Figure 4.

Energies 2022, 15, x FOR PEER REVIEW 9 of 15 
 

 

Here, we add constraints into the control: 

min max( )u u k u≤ ≤  

To facilitate the implementation of the proposed MPC strategy based on PSO opti-
mization, the three steps discussed above are summarized in the flowchart shown in Fig-
ure 4. 

 Initializing the system parameters and setting 
system objective function

Calculating the individual extreme value and 
group extreme value of the current particle swarm

Obtaining the optimal solution of the system 
control input by searching in the global area

Step 1

Step 2

Step 3
 

Figure 4. Flowchart of the proposed PSO-MPC. 

The initialization process is as follows (Algorithm 1): 

Algorithm 1 Require: 𝑁 , ger 
for 𝑖 = 1 → ger do 

           for each particle 𝑢 ∈ 𝑁  do 
             Initialize 𝑢  with a uniformly random distribution in the search space con-
sidering the limitation (18) (Initialize each particle) 

end for 𝑝𝑏𝑒𝑠𝑡_𝑢 ← 𝑢  (Initialize personal best solution) 
if 𝐽(𝑝𝑏𝑒𝑠𝑡_𝑢) < 𝐽(pbest_u) then 𝑔𝑏𝑒𝑠𝑡_𝑢 ← 𝑝𝑏𝑒𝑠𝑡_𝑢 (Initialize globe best solution, J is cost function (17a)) 
end if 

end for 
The PSO optimization process is as follows (Algorithm 2): 

Algorithm 2 Require: ger, k 
for 𝑗 = 1 → 𝑘 do 

           for 𝑖 = 1 → 𝑔𝑒𝑟 do 
if 𝐽(𝑢 ) < 𝐽(pbest_u) then 

pbest_u← 𝑢  
end if 
if 𝐽(𝑝𝑏𝑒𝑠𝑡_𝑢) < 𝐽(𝑔𝑏𝑒𝑠𝑡_𝑢) then 

gbest_u←pbest_u 
end if 

end for 
x(k + 1) = Ax(k) + Bgbest(k) + Cz(k)  

end for 

Figure 4. Flowchart of the proposed PSO-MPC.



Energies 2022, 15, 8219 9 of 15

The initialization process is as follows (Algorithm 1):

Algorithm 1 Require: Nu, ger

for i = 1→ ger do
for each particle ui ∈ Nu do

Initialize ui with a uniformly random distribution in the search space considering the
limitation (18a) and (18b) (Initialize each particle)

end for
pbest_u← ui (Initialize personal best solution)
if J(pbest_u) < J(pbest_u) then

gbest_u← pbest_u (Initialize globe best solution, J is cost function (17a))
end if

end for

The PSO optimization process is as follows (Algorithm 2):

Algorithm 2 Require: ger, k

for j = 1→ k do
for i = 1→ ger do

if J(ui) < J(pbest_u) then
pbest_u← ui

end if
if J(pbest_u) < J(gbest_u) then

gbest_u←pbest_u
end if

end for
x(k + 1) = Ax(k) + Bgbest(k) + Cz(k)

end for

In the whole iterative optimization process, the cost function J is used as the fitness
function of the PSO optimization algorithm, the fitness value of the control variables u
of the system is calculated under the constraints, and the minimum value of the fitness
value is assigned to the individual optimal value and the group optimal value to obtain
u(k + 1) = gbest_u. The velocity and position are updated by Equations (19a) and (19b),
and a new round of fitness value calculations occurs.

6. Simulation and Discussion

Because of the powerful calculation and programming functions of MATLAB, it is
widely used in mathematical modeling and simulation control. In this study, we used
MATLAB 2019a to validate the effectiveness of the PSO-MPC control strategy with wind
turbines. The specific system parameters are shown in Table 2.

Table 2. Model parameters of the power system with wind turbines.

D = 0.389 pu/Hz wopt = 1.15 rad/s
R = 0.04 Hz/pu Rr = 0.00552 pu

Tt = 0.355 Rs = 0.00491 pu
Tg = 0.806 Ht = 4.5 pu

H = 12 pu·s Lr = 0.1 H
β = 1 Ls = 0.09273 H

Lm = 3.9654 H

Here, we provide the parameter settings of the PSO-MPC controller. According to
Equations (19a) and (19b), the parameter settings of the particle swarm optimization method
are given as follows: according to u =

[
∆Pc ∆Vqr

]T , the feasible solution dimension
d = 2, the maximum number of iterations ger = 100, the particle position parameter limit
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corresponding to MPC controller control quantity u) umin = −0.5, umax = 0.5, the velocity
limit vmin = −0.5, vmax = 0.5, the inertia weight w = 0.8, the individual acceleration factor
c1 = 0.5, and the group acceleration factor c2 = 0.5.

According to Equation (16a), the parameter settings of the model prediction controller
are given as follows: the prediction horizon Np = 10, the control horizon Nc = 10, the weight
parameters Q = diag(100,0,0,100,0) and R = diag(1,0), and the sampling time was chosen
as 0.2 s.

6.1. Comparison with Different Load Disturbance Values

To verify the dynamic performance of the system, two kinds of load disturbance values
were respectively used to verify the system strategy: ∆PL1 = 0.02 ∗ (rand(1)− 0.5) and
∆PL2 = 0.04 ∗ (rand(1)− 0.5).

Figure 5 gives the dynamic response curve of the load frequency deviation under the
PSO-MPC strategy with wind turbines. Figure 5a is the dynamic response curve of the
load frequency deviation under load disturbance ∆PL1 = 0.02 ∗ (rand(1)− 0.5). Figure 5b
is the dynamic response curve of the load frequency deviation under load disturbance
∆PL2 = 0.04 ∗ (rand(1)− 0.5). As can be seen from the frequency response during random
load disturbances, the load frequency deviation of the power system can quickly converge
to zero using the proposed PSO-MPC. This fully proves the effectiveness of the PSO-
MPC strategy designed in this paper, and the feasibility of involving wind turbines in
frequency regulation.
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Figure 5. Dynamic response curve of the load frequency deviation under the PSO-MPC strategy with
wind turbines. (a) Load frequency deviation under ∆PL1; (b) Load frequency deviation under ∆PL2.

Figure 6 illustrates the dynamic response curve of the wind turbine output power
deviation signal ∆Pe under the PSO-MPC strategy with wind turbines. Among them,
Figure 6a,b both rapidly converge to zero after experiencing transient fluctuations un-
der two kinds of disturbances. This verifies the feasibility of using wind turbines as a
supplement to traditional power generation strategies.
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Figure 6. Output power deviation signal ∆Pe of wind turbines under the PSO-MPC strategy with
wind turbines. (a) Output power deviation under ∆PL1; (b) Output power deviation under ∆PL2.
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Figure 7 demonstrates the dynamic response curve of the control input signal ∆Pc
of the traditional generator under the PSO-MPC strategy with the participation of wind
turbines. According to the dynamic response curves of Figure 7a,b under two kinds of
disturbances, it can be seen that the first control component of the designed PSO-MPC
strategy can converge to zero after a short adjustment.
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Figure 7. Control input signals ∆Pc under the PSO-MPC strategy with wind turbines. (a) Control
input under ∆PL1; (b) Control input under ∆PL2.

Similarly, the output deviation of the governor and the output deviation of the valve
body of the traditional generator set under the PSO-MPC strategy with the participation of
the wind turbines are given in Figures 8 and 9. In the case of experiencing two kinds of
disturbances, both converge to zero after a short fluctuation adjustment. This verifies the
feasibility of applying the PSO-MPC strategy in a traditional generator set control.
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Figure 8. Output deviation signal of governor ∆Pg under the PSO-MPC strategy with wind turbines.
(a) Output deviation signal of governor ∆Pg under ∆PL1; (b) Output deviation signal of governor
∆Pg under ∆PL2.
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Figure 9. Output deviation signal of turbine body ∆Pm under the PSO-MPC strategy with wind
turbines. (a) Output deviation signal of turbine body ∆Pm under ∆PL1; (b) Output deviation signal
of turbine body ∆Pm under ∆PL2.
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Figure 10 demonstrates the dynamic response curve of the wind turbine’s control
input signal based on a doubly fed induction machine under the PSO-MPC strategy.
Under ∆PL1 = 0.02 (Figure 10a) and ∆PL2 = 0.04 (Figure 10b) disturbances, the second
control component ∆Vqr of the designed PSO-MPC strategy can converge to zero, and the
convergence velocity is faster than that of the first control component ∆Pc.
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Figure 10. Control input signal ∆Vqr under the PSO-MPC strategy with wind turbines. (a) Control
input signal ∆Vqr under ∆PL1; (b) Control input signal ∆Vqr under ∆PL2.

6.2. Comparison with Control Methods

To verify the dynamic performance of the system, the results of the MPC, PSO-PID,
and PSO-MPC algorithms were compared. Under ∆PL = 0.02 ∗ (rand(1)− 0.5) disturbance,
and the same system parameters, the simulation results were as follows:

Figure 11 shows the system response curves of the load frequency deviation under
three strategies with wind turbines. Under ∆PL = 0.02 disturbance, it can be seen that the
load frequency deviation under the PSO-MPC strategy exhibited a smaller overshoot and
reached stability more quickly as compared with the MPC and PSO-PID control strategies.
This fully proves the effectiveness of the PSO-MPC strategy designed in this paper, and the
feasibility of involving wind turbines in frequency regulation.
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Figure 11. Dynamic response curve of the load frequency deviation under the three strategies with
wind turbines.

Similarly, Figures 12 and 13 show the output deviation signal of the governor and
turbine body under three strategies with wind turbines. Under the MPC, PSO-PID, and
PSO-MPC control strategies, the overshoots of the MPC and PSO-PID control strategies
were larger than that of the PSO-MPC control strategy. In terms of convergence, PSO-MPC
exhibited a faster convergence velocity and better stability performance.
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Figure 12. Output deviation signal of the governor ∆Pg under the three strategies with wind turbines.
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7. Conclusions

In this paper, we propose a particle swarm optimization-based model predictive con-
trol (PSO-MPC) strategy for the load frequency control of a hybrid power system integrated
with wind turbines. Aiming to solve the problems of the uncertainty of wind turbines and
the heavy computation of the MPC strategy, we propose an MPC strategy for LFC with
wind turbines based on the particle swarm optimization algorithm. Under the proposed
PSO-MPC control strategy, the load frequency performed better in view of the large distur-
bances and strong levels of uncertainty associated with wind turbines. Moreover, in the
iterative optimization process of MPC, LFC improves the time of the controller fluctuation
adjustment and the burden of calculation and communication. The simulation results show
that the proposed PSO-MPC strategy can quickly adjust the fluctuations caused by the
disturbance and effectively converge to zero after a short overshoot period.

In addition, the comparisons of the three control strategies, namely, MPC, PSO-PID,
and PSO-MPC, show that the proposed PSO-MPC control strategy significantly improves
the frequency stability of the system. Furthermore, the overshoot of the system response
was reduced, producing a more stable performance. Through the above simulation results,
it is verified that the PSO-MPC strategy proposed in this paper exhibits good performance
in terms of load frequency control with the participation of wind turbines. The strategy
overcomes the problems of slow response, large fluctuations, and low fault tolerance
associated with traditional control methods.

Since parameters such as learning factors are fixed values in the PSO algorithm, the
optimal solution may be missed in the late iteration stage because of the large update step.
In this case, the control strategy may result in a slow iterative operation or produce the
local optimal solution problem. In the future, more general power generation systems with
parameter uncertainties will be explored, and the applicability of neural networks with the
MPC strategy will be tested.
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