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Abstract: Partial discharge (PD) online monitoring is a common technique for high-voltage equipment
diagnosis. However, due to field interference, the monitored PD signal contains a lot of noise.
Therefore, this paper proposes a novel method by integrating the flower pollination algorithm,
variational mode decomposition, and Savitzky-Golay filter (FPA-VMD-5SG) to effectively suppress
white noise and narrowband noise in the PD signal. Firstly, based on the mean envelope entropy
(MEE), the decomposition number and quadratic penalty term of the VMD were optimized by
the FPA. The PD signal containing noise was broken down into intrinsic mode functions (IMFs)
by optimized parameters. Secondly, the IMFs were classified as the signal component, the noise
dominant component, and the noise component according to the kurtosis value. Thirdly, the noise
dominant component was denoised using the SG filter, and the denoised signal was mixed with the
signal component to reconstruct a new signal. Finally, threshold denoising was used to eliminate
residual white noise. To verify the performance of the FPA-VMD-5G method, compared with
empirical mode decomposition with wavelet transform (EMD-WT) and adaptive singular value
decomposition (ASVD), the denoising results of simulated and real PD signals indicated that the
FPA-VMD-SG method had excellent performance.

Keywords: variational mode decomposition; flower pollination algorithm; SG filter; mean envelope
entropy; denoising; partial discharge

1. Introduction

A healthy insulation condition is the premise for ensuring the stable running of power
equipment [1]. Partial discharge (PD) is one of the primary features that can effectively
reflect the internal insulation defects of power equipment [2]. Online PD measurement
has been particularly developed and widely used because of its high sensitivity and
accuracy of insulation conditions [3]. However, field noise, which includes white noise,
periodic narrowband interference, and pulse interference, can influence the detection and
identification of the PD signal. Effectively suppressing field noise interference is an essential
issue for monitoring the insulation conditions of power equipment [4]. White noise that
conforms to the Gaussian distribution produces erratic interference from the field erratic
interference. The principal sources of periodic narrowband interference are high-order
harmonics, radio transmissions, and broadcast signals. Pulse interference is produced by
switching the operation of thyristors and other equipment. The high strength and low
frequency of pulse interference make it simple to eliminate. Therefore, eliminating white
noise and narrowband noise is critical for PD signal extraction and analysis [5].

Over the past few years, researchers have proposed several algorithms for PD signal
denoising, such as the wavelet transform (WT) [6,7], the empirical modal decomposition
(EMD) [8] and its improvements, [9,10], the singular value decomposition (SVD) [11,12],
and the variational mode decomposition (VMD) [13,14]. The WT has a great time-frequency
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analysis capability, but its signal decomposition depends on the wavelet type and order, the
decomposition degree, and the threshold type. EMD has excellent stability for adaptively
breaking down the signal into different modal components. However, modal mixing is
more likely to happen when the frequency of each component is close together. To solve
the modal mixing phenomenon in the EMD method, research based on EMD proposed
ensemble empirical mode decomposition (EEMD) [15], complete ensemble empirical mode
decomposition (CEEMD) [16], and complete ensemble empirical mode decomposition with
adaptive noise (CEEMDAN) [17]. Unfortunately, the problem of modal mixing was not
completely solved. SVD can be applied to rebuild and eliminate narrowband noise in the
PD signal noise [18], but the singular values between the PD signal and white noise are
difficult to distinguish. SVD is thus unsuitable for eliminating white noise [11].

VMD, a novel signal analysis method, was proposed by Dragomiretskiy and Zosso
in 2014 [19]. This method overcomes various problems in current signal decomposition
technology, such as modal mixing and the endpoint effect. However, the parameters
of VMD, including the decomposition number, quadratic penalty term, and time step,
need to be artificially set. When the parameter setting is unreasonable, the ideal results
cannot be obtained. Therefore, the parameters of VMD need to be adaptively optimized to
obtain better decomposition results. Some researchers adjusted the decomposition number
using EMD [13] and optimized the time step using the particle swarm optimization (PSO)
algorithm [14]. None of these studies attempted to consider the quadratic penalty term.
Moreover, the PSO algorithm converges quickly, but easily falls into the local optimum.
Now, many nature-inspired optimization algorithms have been proposed. The flower
pollination algorithm (FPA) has been widely used because it has few parameters and is
easily adjusted [20]. The verification shows that the algorithm has high efficiency and an
almost exponential convergence speed [21].

At present, VMD optimization mainly takes the minimum energy loss and highest
kurtosis value as the objective function [14]. Envelope entropy can reflect the magnitude
of signal fluctuation and can also be used as an objective function for optimizing VMD,
which has been verified in the field of rolling bearing [22]. The intrinsic mode functions
(IMFs) generated by VMD decomposition still need to be classified and denoised. The
Savitzky-Golay (SG) filter can remove noise by smoothing data without changing the trend
in the data [23], but it has not been applied in the realm of PD denoising.

Therefore, this paper proposes the FPA-VMD-SG method as a solution to the afore-
mentioned issues. Taking the mean envelope entropy (MEE) as the objective function
adaptively optimizes the decomposition number and quadratic penalty term of VMD.
The IMFs decomposed by VMD were divided into three categories: signal component,
noise dominant component, and noise component. The dominant noise component was
denoised using an SG filter, and the denoised signal was mixed with the signal compo-
nent to reconstruct a new signal. Eliminating residual white noise in the new signal used
threshold denoising to obtain the final denoised PD signal. A comparative analysis with
empirical mode decomposition with wavelet transform (EMD-WT) and adaptive singular
value decomposition (ASVD) was performed using simulated and real PD signals. The
performance metrics of three methods were calculated to verify the performance of the
FPA-VMD-SG method.

2. Basic Theory
2.1. Variational Mode Decomposition

VMD that can disintegrate a complex discrete signal into simple modal components,
and is a completely non-recursive signal decomposition method [19]. The specific steps are
as follows:



Energies 2022, 15, 8167

30f12

Stepl: The variational problem is that the sum of the estimated bandwidth of the IMFs
is the smallest. The limitation condition is that the sum of the IMFs is the original signal.
The formula is as follows:

min }{Zk [| 9t K(S(t) + %) * uk(t)}e*]’wkt ||%}

{ug, wi €))
st f(t) = 2521 uy ()

where {u;} is the set of IMFs, {wy} is the set of central frequencies, 4(t) is the impulse
function, K is the preset decomposition number, and f(#) is the original function.

Step2: The quadratic penalty term « and the Lagrange multiplier A(t) are used to
convert the constrained variational problem into the unconstrained problem. The « affects
the reconstruction accuracy of the signal and the A(t) maintains the strictness of the
constraint condition. The formula is as follows:

L({we} ek, A) =« Zell3e [ (8(8) + 7 ) wua(p) [ et
() = T () 1+ ), £(5) = EE (1)

Step3: The unconstrained problem is solved by the alternating direction multiplier
method, so as to realize the effective separation of the signal frequency. The iterative
updating and center frequency of the IMF are as follows:

()

gl _ flw) — ik fli(w) + @
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where ﬁ,’:“ is the kth IMF with center frequency w at the (n+1)th iteration. The inverse

Fourier transform is performed on 7i;(w), and the actual part uy(t). w,’j“

frequency of the kth IMF at the (n+1)th iteration.

is the center

2.2. Flower Pollination Algorithms

The FPA was developed by Xin-She Yang in 2012, and inspired by the pollination
process of flowering plants [21]. The FPA was iterated by self-pollination and cross-
pollination. This algorithm was a fashionable intelligent optimization algorithm with the
advantages of fast speed and not being easy to fall into local extremum. The specific steps
are as follows:

Stepl: Input the maximum number of iterations, population individual number, flower
individual interval, conversion probability, and other algorithm parameters.

Step2: Set the decomposition number K as an integer from 2 to 11, and set the quadratic
penalty term « as the search variable with a range from 100 to 10,000.

Step3: Create the initial population randomly with uniform distribution, and calculate
the fitness value. Then, retain the global optimal individual and the optimal fitness under
the current population. Fitness is the objective function.

Step4: Create a stochastic number ¢ randomly with uniform distribution. If the
random number is less than the conversion probability, a new individual is created by cross-
pollination, as shown in (5). Conversely, a new individual is produced by self-pollination,
as shown in (6):

Xt = xf+oL(xf - g) ®)

1
it =l 4 s(x; - x,t() (6)
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where x! is the pollen i at iteration ¢, and x]t. and x} are pollens from the different flowers
of the same plant species, g, is the current best solution found among all solutions in the
current iteration, 7 is a scaling factor for controlling step length, and L is the strength of
the pollination.

Step5: Replace all individuals in the population with new individuals to produce
new populations.

Step6: Check the interval of new populations. The individual exceeding the interval
maximum value is set to the maximum value of the interval, and the individual below the
minimum value of the interval is set to the minimum value of the interval.

Step7: Calculate the fitness value of the new population, and update the global optimal
individual and the optimal fitness.

Step8: Determine whether the maximum number of iterations is reached. If not, repeat
Step4 to Step?. Otherwise output the global optimal individual and the optimal fitness.

2.3. Envelope Entropy

The envelope entropy reflects the magnitude of signal envelope fluctuation. The
following is a definition of envelope entropy [22]:

Ec=—-YN cilg(c:)

7
ci = a(i)/ Ly ali) 7

where a(i) is obtained by Hilbert transform of a signal x(¢) with length N, and ¢; is the
regularization result of a(i).
MEE is selected as the objective function in this paper and expressed in the following formula:

1
MEE = — o Eq (8)
where m is the number of IMFs generated by the VMD. The smaller the MME, the lower

the complexity of the corresponding IMFs.

2.4. Kurtosis

Kurtosis is a characteristic parameter used to measure the outlier degree of outlier
data. PD signal is a kind of short-term and abrupt pulse signal, and its kurtosis value is
large. The kurtosis value of the signal without PD is about 3. When PD occurs, the kurtosis
value is much larger than 3 [5]. The kurtosis value is defined as:

o ElEmn] °

(o))

where y is the mean value of the signal, and x represents a set of outlier data.

2.5. Savitzky—Golay Filter

Savitzky and Golay proposed a method for smoothing and differentiating noisy
discrete data based on local least squares polynomial approximation [24]. The SG filter that
can be used to smooth a set of data is a digital filter. It can increase the accuracy of the
data without changing the trend and width of the signal, indicating that this method has
excellent results in dealing with nonlinear and aperiodic signals. The smoothing steps of
the SG filter are as follows [25]:

Stepl: Input a set of data {xy}.
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Step2: Construct a n-order polynomial to fit data {x;}, and the fitted equation is
expressed in the following formula:

p(k) =Y o bik! (10)

where p(k) is the fitted value, 7 is the order of polynomial, and b; is the coefficient of k'.
Step3: Calculate the quadratic sum of the residuals value between fitting data points
and original data points. It is defined as:

5=y (plk) —x)? (11)

where ¢ is the residual value.
Step4: Perform the smoothing process in a sliding window until all values are smoothed.

2.6. Threshold Denoising

Threshold denoising can suppress useless noise in the signal and retain the useful
signal. According to the distribution characteristics of white noise, threshold denoising
based on the 3¢ rule is introduced [5]. The formula is as follows:

th=c 3¢ (12)
. . .

(i) = {P(l)r Ip(z‘)\ >t ilia N a3
0, lp(i)| < th

where c is a coefficient and ¢ is the standard deviation of p. The denoising effect can be
improved by adjusting the threshold of c.

3. Denoising Method
3.1. Simulated PD Signal
The simulated PD signal can be simulated by single exponential decaying oscil-

lation and double exponential decaying oscillation. The calculation formulas of these
two mathematical models are as follows [12]:

x1(t) = Ay -e T sin(27fot) (14)

xp(t) = Ay - (eil'gt/r - e*Z'Zt/T) -sin(27tfct) (15)

where A; and A; are the amplitude of the PD signal, 7 is the decaying coefficient, and
fc is the oscillation frequency. The detailed parameters of the four PD pulses are shown
in Table 1. The PD pulse s; and s; are calculated by (14), and s3 and s4 are calculated by
(15). The simulated sampling frequency is 1GHz. The original PD signal and its frequency
spectrum are shown in Figure 1.

Table 1. The PD simulation model parameters.

PD Pulse T/ns f./MHz Almo
51 10 100 0.5
52 10 100 0.5
s3 10 100 2

sS4 10 100 2
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Figure 1. Simulated the original signal: (a) original PD signal; (b) frequency spectra.
Then, white noise and narrowband noise are mixed with the original signal to obtain
the noisy PD signal. The white noise is generated by Gaussian white noise simulation. The

mathematical formula for narrowband noise is shown in (16). The noisy PD signal and its
frequency spectrum are shown in Figure 2:

S=Ax Z sin(27f;t) (16)

where the amplitude A is set to 0.2 mV, and the narrowband noise frequency f; is set to

f1 =50 MHz, f, = 90 MHz, and f3 = 150 MHz [5]. As observed in Figure 2a, the original
signal is completely covered by the noisy signal.
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Figure 2. Simulated the noisy signal: (a) noisy PD signal; (b) frequency spectra.

3.2. Proposed FPA-VMD-SG Denoising Method

Figure 3 outlines the approach followed in the proposed FPA-VMD-5G denoising
method. The steps of the method are as follows:

Stepl: Optimize the parameters of the VMD using the FPA, with the MME as an
objective function.

Step2: Calculate the kurtosis value for each IMF of the VMD.

Step3: Divide the IMFs into the signal component, the noise dominant component, and
the noise component, according to the kurtosis value and frequency spectra of each IMF.

Step4: Denoise the noise dominant component with the SG filter and discard the
noise component.

Step5: Mix the denoised signal and the signal component to reconstruct the signal.

Step6: Remove residual white noise using threshold denoising to obtain the denoised
PD signal.
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Figure 3. Overall process flow diagram of the proposed FPA-VMD-SG denoising method.

3.3. Simulated PD Signal Denoising

When VMD decomposes the signal, the decomposition number depends on the value
of K. The signal can be better decomposed when K has a reasonable value. The quadratic
penalty term « affects the VMD process to ensure signal reconstruction accuracy.

In this paper, the parameters of FPA are as follows: the number of individuals is 20,
the maximum number of iterations is 500, and the conversion probability is 0.5 [21]. The
final optimization results are K = 7 and « = 7932.3488.

Applying the optimized parameters to the VMD parameter settings, the decompo-
sition results are shown in Figure 4. The IMF transition was smooth in the time domain
diagram, and different central frequencies were obviously separated in the frequency do-
main diagram. The central frequencies of IMF2, IM3, and IMF5 were 49.8 MHz, 90.1 MHz,
and 150 MHz, respectively. Moreover, their amplitudes were close to 0.2 mV. These three
IMFs are similar to narrowband noise. The frequency range of IMF4 was concentrated in
the range of the signal component. As concluded from Figures 4 and 5, IMF2, IMF3, and

IMF5 were noise components. IMF4 was a signal component. IMF1, IMF6, and IMF7 were
noise-dominant components.
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Figure 4. Simulated PD signal decomposition: (a) IMFs; (b) frequency spectra.

Therefore, it is necessary to use an SG filter that specifies the polynomial order as 4
and frame length as 201 to denoise IMF1, IMF6, and IMF7. The denoised signals were
then mixed with IMF4, but a little white noise remained in the newly acquired signal.
Thus, threshold denoising was performed on newly acquired signals. The ¢ in the (12) is
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the standard deviation of the IMF4, and ¢ was set to 0.6. After threshold denoising, the
denoised signal was finally obtained as shown in Figure 6. The number and characteristics
of the PD signal were restored.

7 T T

The order of IMFs

Figure 5. Kurtosis value of each IMF.

0.2

Amplitude(mV)
(=]
==
=
=

nz 1 L 1 L 1 L 1 1 L
0 100 200 300 400 500 600 700 800 900 1000
Samples

Figure 6. Denoised signal.

4. Comparison and Analysis of Denoising
4.1. Denoising Results of Simulated PD Signal

The simulated PD signal adopted the proposed FPA-VMD-SG method, EMD-WT [26],
and ASVD [18] to denoise. EMD-WT can remove most noise, but it also has the disad-
vantage of removing PD signals (Figure 7b). ASVD can retain the PD signal, but there is
still some slight noise (Figure 7c). Compared with EMD-WT and ASVD, the proposed
FPA-VMD-SG method performed exceptionally well in removing noise and preserving
features, which was conducive to further analysis of the PD signal (Figure 7a).

0.2 ‘ . ‘ — (@
] WUW NW# WW
02 ‘ . ‘ . ‘ ‘ . ‘ ‘
0 100 200 300 400 500 600 700 8OO 900 1000
Samples
0.2 ; , : )]
s
E
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T oof 1
=
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0 100 200 300 400 500 60O 700 ROO 900 1000
Samples
0.2 . . () .
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0.2 I I L

, . . . . .
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Samples

Figure 7. The denoising results of PD signals by different methods: (a) FPA-VMD-SG; (b) EMD-WT;
(c) ASVD.
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To evaluate and demonstrate the performance of the proposed FPA-VMD-SG method,
the following indicators, SNR (signal to noise ratio), NCC (normalized correlation coeffi-
cient), and RMSE (root mean squared error) were calculated [5]:

N s(i)2

SNR = 10 *log,y — Liis()” . (17)
Litqld(i) —s(i)]
N . .
NCC = Yitqs(i) +d(i) (18)
\/(Zf\il S(i)z) * (Zilil d(i)2>

1 N . .
RMSE = \/ N Lic (i) — s(i)]? (19)
where s is the original PD signal, d is the denoised PD signal, and N is the length of

the signal.

The SNR was used to evaluate the denoising performance. The NCC was used to
evaluate the waveform similarity between the denoised signal and original signal. The
RMSE was used to evaluate waveform distortion of the denoised signal relative to the
original signal. The SNR value was higher, the NCC value was closer to 1 [27], and the
RMSE value was lower, indicating that the denoising performance was better.

The indicator values of the three denoising methods are shown in Table 2. The FPA-
VMD-5SG method had higher SNR, higher NCC, and lower RMSE, showing that it had
better denoising performance than other methods.

Table 2. Indicator values of three denoising methods.

SNR NCC RMSE

EMD-WT 5.8567 0.2310 0.520
ASVD 5.9344 0.6007 0.0413
FPA-VMD-5G 8.1584 0.7020 0.0399

4.2. Denoising Results of Real PD Signal

The void discharge signal, as the real PD signal, was available in [28] to validate the
quality of the proposed method. Figure 8 shows that the real PD signal was not interfered
with by narrowband noise. Therefore, the real PD signal was considered to have mixed
two narrowband noises with amplitudes of 0.5 mV. The frequencies of the two narrowband
noises were 50 MHz and 90 MHz, respectively. As shown in Figure 9, the real PD signal
could not be observed after mixing narrowband noise.

i |
| |

-1 L 1 1 1 1

1 1 1 Il
200 400 GO0 800 1000 1200 1400 1600 1800 2000

1

Amplitude(mV)
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Samples

Figure 8. Real PD signal.
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Figure 9. Real PD signal after mixing noise.
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Figure 10 shows the denoising results for the real PD signal by FPA-VMD-SG, EMD-
WT, and ASVD. In the FPA-VMD-SG method, the final optimization parameters of VMD
were K = 4 and « = 6309.9435. The polynomial order of the SG filter was 2 and the frame
length was 201. The coefficient c of threshold denoising was 2.2. For WT parameter settings
in the EMD-WT, the decomposition level was 7, the wavelet was ‘db4’, the threshold was
‘rigrsure’, and the denoising method was soft threshold denoising.
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Figure 10. The denoising results of real PD by different methods: (a) FPA-VMD-5G; (b) EMD-WT;
(c) ASVD.

Since the original PD signal without noise could not be obtained and the denoising
performance could not be evaluated by SNR, NCC, or RMSE, the noise reduction ratio
(NRR) was introduced to evaluate the denoising performance [12]. The NRR value was
higher and the denoising performance was better. It was defined as:

NRR = 10 * (1oglO o2 —logy, 022) (20)

where 07 and o, are the standard deviations of the real PD signal and denoised PD
signal, respectively.

Comparing the denoising results of the three methods, it can be seen that the FPA-
VMD-5G could effectively retain the PD signal and remove white noise and narrowband
noise. The EMD-WT had a few white noise residues and wrongly removed the PD signal.
The ASVD could effectively remove narrowband noise, but the removal of white noise was
slightly insufficient. The NRR values of the three denoising methods are shown in Table 3.
Among the three methods, the NRR value of the FPA-VMD-SG was the highest at 14.5893,
indicating that the proposed denoising method had the best performance in suppressing
noise and retaining the PD signal.

Table 3. NRR values of three denoising methods.

EMD-WT ASVD FPA-VMD-SG

NRR 9.4793 10.0246 14.5893




Energies 2022, 15, 8167 11 of 12

5. Conclusions

In this paper, a novel denoising method by integrating the VMD, FPA, and SG filter
was proposed to realize the suppression of white noise and narrowband noise inhe PD
signal. According to the denoising results of simulated and real PD signals, the following
conclusions can be drawn:

(1) Based on the MME, the appropriate parameters K. and « of VMD could be found
by FPA.

(2) The VMD had excellent anti-modal mixing characteristics, which could decompose
the PD noise signal properly.

(8) The SG filter could effectively remove the noise in the noise component and retain the
PD signal.

(4) The FPA-VMD-SG method could effectively suppress white noise and narrowband
noise in the PD signal.
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