
Citation: Shahid, M.; Butt, R.A.;

Khawaja, A. Fiscal- and

Space-Constrained Energy

Optimization Model for Hybrid

Grid-Tied Solar Nanogrids. Energies

2022, 15, 8080. https://doi.org/

10.3390/en15218080

Received: 31 August 2022

Accepted: 30 September 2022

Published: 31 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Fiscal- and Space-Constrained Energy Optimization Model for
Hybrid Grid-Tied Solar Nanogrids
Muhammed Shahid 1,2,*, Rizwan Aslam Butt 3,* and Attaullah Khawaja 4

1 Department of Electronics Engineering, NED University of Engineering and Technology,
Karachi 75270, Pakistan

2 Department of Electronic Engineering, Dawood University of Engineering and Technology,
Karachi 75270, Pakistan

3 Department of Telecommunication Engineering, NED University of Engineering and Technology,
Karachi 75270, Pakistan

4 Department of Electrical Engineering, NED University of Engineering and Technology,
Karachi 75270, Pakistan

* Correspondence: muhammad.shahid@duet.edu.pk (M.S.); rizwan.aslam@neduet.edu.pk (R.A.B.)

Abstract: Due to rising fossil fuel costs, electricity tariffs are also increasing. This is motivating users
to install nanogrid systems to reduce their electricity bills using solar power. However, the two main
constraints for a solar system installation are the initial financial investment cost and the availability
of space for the installation of solar panels. Achieving greater electricity savings requires more panels
and a larger energy storage system (ESS). However, a larger ESS also increases the electricity bill
and reduces the available solar power due to higher charging power requirements. The increase
in solar power leads to the need for more space for solar panel installation. Therefore, achieving
the maximum electricity savings for a consumer unit requires an optimized number of solar panels
and ESS size within the available financial budget and the available physical space. Thus, this study
presents a fiscal- and space-constrained mixed-integer linear programming-based nanogrid system
model (FS-MILP) designed to compute the optimal number of solar panels and ESS requirements, and
the daily electricity unit consumption and savings. The proposed model is also validated through an
OMNET++-based simulation using real-time solar irradiance and residential load values of one year
for the city of Karachi, Pakistan. The investigation results show that a maximum of 1050 electricity
units can be saved and exported to the main power grid within the maximum financial budget of
PKR 1,000,000/-.

Keywords: nanogrid; integer linear programming; solar panels; electrification

1. Introduction

Due to rising fossil fuel costs, the use of renewable energy sources, such as solar
and wind turbines, as alternatives, is increasing rapidly. In particular, solar panel costs
have decreased gradually during the past 10 years, which has made solar energy a more
attractive option as a renewable source [1]. The cost of the electricity is steadily increasing
due to the sharp rise in fossil fuel prices in the past 6 months [2]. In contrast, the prices of
solar panels are decreasing continuously. Moreover, the solar systems do not create noise
and have a long life. Thus, the popularity of solar-based hybrid power systems is steadily
increasing [3]. These benefits of solar systems have led to worldwide growth in solar
system deployments. According to the recent International Energy Agency (IEA) report of
2021 [4], the European Union installed close to 19.6 GW of solar systems while the rest of
Europe added around 2.6 GW, with China being the world leader with 253.4 GW installed.
However, developing countries such as Pakistan are facing power shortages, and it has been
reported that Pakistan currently has a shortfall of 7000 Megawatts of power. According to
the annual report of the National Electric Power Regulatory Authority (NEPRA), 65% of
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Pakistan’s total electricity generation comes from fossil fuel and 29% from hydroelectric,
whereas only 5% comes from renewable energy sources and 1% from other sources [5].
Therefore, solar energy is a very attractive option for electrification in Pakistan, as most of
the Pakistan area, especially the southwest, is ideal for solar power generation [6].

The term microgrid is typically used for a solar system powering an industry, a village,
or multiple residential units [7]. A microgrid covers a larger area such as an industrial
unit or a complete building, with multiple residential units requiring heavy cabling and
higher power interfaces. The nanogrid typically covers a single office or residential unit [8].
It manages the power at a smaller level, such as for an office or a single residential unit,
and requires a smaller BSS system, a single charge controller, and lighter cabling. Both
nanogrids and microgrids can be installed in islanded mode [9] or may be used in ON-Grid
mode to supply excess energy to the external power grid. A typical nanogrid is shown
in Figure 1. A nanogrid is generally preferable for office or home usage due to its better
affordability and simpler maintenance. Generally, a nanogrid is installed for either restoring
power in the case of a mains failure or for reducing the electricity bill. In both cases, it
requires a suitable sizing and optimization model to accurately compute the required
number of solar panels and batteries for the target load.
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Figure 1. Structure of a typical nanogrid system.

The required number of solar panels and batteries for a nanogrid system can be
calculated using basic equations, as shown in ref. [10] and other similar studies, for the
target load and battery backup requirements. However, closed-loop nanogrid sizing models
are convenient to use and adapt when the design is subject to various constraints, such as
peak load power, backup power availability in hours, and available financial budget. An
oversized nanogrid solution can meet the target load demands but will not be an economical
solution and will also waste the excess unused power [11]. Earlier studies only considered
the fiscal constraints and availability, and did not consider the space constraint. However,
since the solar panels have a large size, they require a significant horizontal area, and cannot
be piled vertically due to the shadowing problem. Thus, the space availability is a big
issue. Therefore, this study proposes a fiscal- and space-constrained linear programming
(FSLP) model for electrification using a residential hybrid solar nanogrid that minimizes
the monthly electricity bill. The mixed-integer linear programming approach is used to
develop an optimized closed-loop model.

The rest of the paper is arranged as follows. Section 2 reviews the related work, with a
focus on the nanogrid sizing techniques. Section 3 presents the proposed FS-MILP model
using the mixed-integer linear programming approach. Section 4 presents the performance
evaluation of the proposed model. Section 5 presents the simulation design in OMNET++
for validating the proposed FS-MILP model. Section 6 presents the achievable electricity
savings results on a daily and monthly basis under different fiscal constraints. Finally, the
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study is concluded in Section 7. Important Notations and descriptions used in rest of the
manuscript are summarized in Table 1.

Table 1. Important notations and descriptions.

β Minimized daily bill of a home
TSHour Solar panel time of a day in hours
TDisc Battery discharge time of a day
PBatt Power of a single battery unit
Lw AC load of a home
PSolar Power of a complete solar source
PPanel Power of a single solar panel
Isc Short circuit current of solar panel
IPannel Actual solar panel current
NP No. of solar panels
TSolar_Day_Light Sunshine time of a day
IL Load current demand
BattAH Battery ampere hour
VB Battery voltage
PESS Power of the complete energy storage system
NB Total number of batteries in ESS

TK−Electric
Time in hours of the end user load being run on the external power

provided by K-Electric
VCHRG Battery charging voltage
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2. Review of Related Work

Many studies have been presented on the design and performance evaluation of
nanogrid systems in different conditions and regions. The first choice for a nanogrid system
is to use either a DC, AC [12], or mixed nanogrid design [8]. The DC nanogrid is sensitive to
the DC voltage level and it has been reported that a 48 V system is the best choice [13]. For
example, the study in ref. [14] presented a DC nanogrid-based smart power distribution
infrastructure for a single residential building in Singapore. However, this study was
only limited to simulation and no closed-loop model was presented. However, generally,
residential systems have mostly AC or mixed loads, so a pure DC system is not feasible.
The solar nanogrid system can be deployed on a commercial/industrial scale [5] for power
generation, and in residential buildings for electrification [10].

The nanogrid systems can be deployed in a standalone configuration, as presented in
ref. [15] and in ref. [16], or in a grid-tied configuration, as shown in ref. [17]. Another recent
evolution is the idea of deploying multiple nanogrids instead of a large microgrid, and
enabling power sharing among them in a networked manner, which is termed a nanogrid
cluster [18]. A detailed study on this idea was presented in ref. [19], which proposes the
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resource sharing of battery power and load in a peer-to-peer fashion among the multiple
nanogrid units. A distributed generation system in the form of a nanogrid was designed in
ref. [20] to fulfil the high energy requirement of self-sufficient buildings. The study moni-
tored the power consumption of individual nanogrid loads in a cloud environment [21].
No control and optimization strategy for the nanogrid was given by the authors. However,
clustering is a newer idea and has not gained wide popularity. Generally, the nanogrid
systems are installed in a decentralized manner. Many decentralized standalone nanogrid
systems have been reported, such as the one implemented for an un-electrified remote
village in northeastern India [22]. This is an islanded nanogrid system.

A detailed review of the optimization techniques for solar nanogrid systems was
presented in ref. [23]. Some optimization techniques use homogenous algorithms, whereas
others use hybrid algorithms, depending on the system design objectives. In the study
of [24], the concept of a nanogrid sizing scheme was addressed using an optimization tool
termed HOMER. The study assessed the feasibility of a 3.2 KW wind and 4.2 KW solar
hybrid nanogrid system in India to drive a maximum load of 2.96 KW. The study concluded
that a 2.4 KW solar system was optimal for this scenario. However, no closed-loop sizing
model was presented. A similar study was presented for a rural community in northern
Nigeria [25]. This study noted that, in nanogrid planning, operational objectives using
optimization techniques were also considered, in addition to system sizing and placement.

Most optimization methods implemented in the planning and operations of RE-based
power grids use calculus-based, numerical, or static methods, as discussed in ref. [23]. Some
of the works that consider either linear programming (LP), integer linear programming
(ILP), or mixed-integer linear programming (MILP) are presented in refs. [26–28]. The
LP-based algorithms are simple and fast, and offer the provision of optimizing the system
subject to various constraints. For example, the study in ref. [29] used the MILP approach
for optimizing a solar nanogrid system considering the capital investment and the running
maintenance costs. The study in ref. [30] used the MILP approach for optimizing a grid-tied
solar microgrid system with minimum line losses. Another optimization algorithm is
nested-integer linear programming (NILP). It is used to decompose a large formulation.
Simple linear programming (LP) and mixed-integer linear programming (MILP) fail to
handle a large number of constraints and variables [28]. A very interesting solar nanogrid
optimization technique to minimize initial investment cost was presented in ref. [31]. This
study presented the idea of a tenant buying a solar panel and battery from the system
administrator to distribute the system investment cost. A detailed review of the solar
nanogrid sizing and optimizing techniques is given in ref. [32].

None of the schemes described above consider the space constraint in optimizing the
solar nanogrid system. Therefore, in this study, inspired by the optimization approach
presented in the grid-tied solar-based system in ref. [33], an MILP approach was chosen
for developing a space-, fiscal-, and battery backup-constrained hybrid grid-tied nanogrid
model. Similar to [33], the first priority is given to solar power and the deficient energy
is imported from the main power grid. The time-of-use concept is used to compute the
daily electricity units imported or exported to the main power grid. The study in ref. [34]
examined the solar nanogrid system for optimizing the cost of energy and the grid power
reliability for the fixed and time-of-use tariffs. A multi-objective optimization technique
was also presented in ref. [35] that optimized the solar nanogrid for optimizing the leveled
operational cost and the power cut-offs. This study also compared the performance of the
MPPT and the PWM charge controllers in terms of nanogrid sizing. However, none of the
studies addressed the very important constraint of the space required to install the solar
panels, which was addressed in this study.

3. FS-MILP Model for Hybrid Nanogrid System

The nanogrid system was modeled for a typical residential unit comprising AC loads,
as shown in Figure 2, with a total instantaneous power consumption of Lw in Kilowatt
Hours (KWh). It is assumed that a hybrid inverter is used, with solar having the first power



Energies 2022, 15, 8080 5 of 15

source priority. Thus, the residential load will be derived from solar power and then from
battery power until the battery SOC drops below the 20% value. If the instantaneous power
available from the solar panels and the battery bank are PSolar and PBatt, respectively, then
the solar panel can drive the residential load for a duration of TSHour hours and can be
represented by Equation (1), where TSolar_Day_Light is the sunshine hours of a particular day.

TSHour = [
PSolar − PBatt

Lw
] ∗ TSolar_Day_Light (1)

where PSolar and PBatt can be expressed by Equations (2) to (4), respectively.

PSolar = NP ∗ PPanel (2)

PBatt = NB ∗ BattAH ∗ VB (3)

PPanel = (
G[x]
1000

∗ (180 + (Ki ∗ (T[x]− 298.15))) (4)
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The solar panel provides electricity while charging the battery at the same time during
peak sunshine hours during the day, for 8 h. In the evening and at night, the charged
battery will supply electricity until its cut-off point.

Karachi Electric Supply Company (K-Electric) will supply electricity when solar panels
and battery are not working. There are two cycles of battery charging in a day. One cycle
of battery charging is done by the solar panel and second cycle is done by K-Electric. The
discharge time of the battery, TDisc, is the time taken to discharge the battery to a level of
20% of the state of charge (SOC) when it drives the residential load, and can be expressed
by Equation (5), where IL is the current drawn by the load from the battery, which can
be expressed by Equation (6). The factor of 0.8 is used to account for the factor of 80% of
battery usage to avoid the battery from going into a deep discharge state.

TDisc = 0.8 ∗ NB ∗ BattAH

IL
(5)

IL =
Lw

VB
(6)

The daily electricity units of the consumer are measured in KWh, and for a residential
load can be computed by Equation (7), which also serves as the basis of the objective
function for our nanogrid model. The first part of Equation (7) computes the electricity
units used of K-Electric power, whereas the second part computes the units consumed in
charging the battery, where VCHRG is the battery charging voltage. Here, we assume only
a single charging cycle for the battery in a day. TK−Electric represents the time for which
the load is run on K-Electric power. This time is computed in Equation (8) by assuming
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that, during the daylight duration of TSHour , the solar power is large enough to run the load
directly and is computed by Equation (9).

β =
LW ∗ TK−Electirc + NB ∗ BattAH ∗ VCHRG

1000
(7)

TK−Electirc =
[
24 − TSHour − TDisc

]
(8)

TSHour =
[

PSolar−PBatt
LW

]
∗ TSolar_Day_Light

=
[

NP ∗ PPanel − NB ∗ BattAH ∗ VB
LW

]
∗ TSolar_Day_Light

(9)

By substituting Equations (8) and (9) into Equation (7) and simplifying, we can write
β as Equation (10).

β =
Lw ∗ 24 −

[
Lw ∗ TSHour + NB ∗ BattAH(0.8VB − VCHRG)

]
1000

(10)

The objective of this modeling is to minimize the daily electric bill; thus, the objective
function θmax can be simply defined by Equation (11) subject to the fiscal and space
constraints expressed in Equations (12) to (14).

θmax = Lw ∗ TSHour + NB ∗ BattAH(0.8VBatt − VCHRG) (11)

Np ∗ APanel < ASpace (12)

Np ∗ CP + NB ∗ CB < LBudget (13)

NB > BattMin (14)

The first constraint in Equation (12) limits the solar panel APanel of Np to be within
the available space at the residential unit, denoted here as ASpace. The second constraint
Equation (13) ensures that the total cost of the solar panels and the battery bank should
not exceed the user budget, denoted here as LBudget, while Cp and CB denote the cost of a
single solar panel and a single battery unit, respectively. The third constraint Equation (14)
ensures the computed optimal solution avoids the possibility of making BattAH too low
to minimize the charging cost of the battery bank. Thus, the BattMin value is chosen to
provide a minimum battery backup to the load.

4. Performance Evaluation of the Proposed FS-MILP Model
4.1. Residential Load Profile

For this study, a residential load dataset of one year was considered, available from
an earlier study for the residential house units of Lahore, Pakistan [36]. Figure 3 shows
the load profile of the house under consideration with an average power consumption of
0.41 KW. The load values were recorded at one-minute resolution daily for the whole year,
from 1 January to 31 December.
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4.2. Optimization of the FS-MILP Model

The optimized solution of the FS-MILP model depends upon various factors such as
irradiance G[x], temperature T[x], and length of the xth solar day, TSolar_Day_Light, which
vary over the year. It also depends upon the fiscal, space, and minimum battery backup
constraints. The initial study was conducted for a lower-middle-class family living in a
120 Sq. Yards residential unit, which is the most common residential unit for the middle
class, with the assumption that half of the roof space is available for solar panel installation.
It was also assumed that a single solar panel has 180 watts rated power and a single battery
unit is 200 Ah. We evaluated the model based on average values of each day and the
constraint values shown in Table 2.

Table 2. Model parameters and settings.

BattMin. 4 h

LBudget PKR 200,000/-

CP PKR 15,000/-

CB PKR 35,000/-

Lw Shown in Figure 3

PPanel Shown in Figure 4a

TSolar_Day_Light Sunshine time of a day

BattAH 200 Ah

VB 12 V

APanel 1.2117771 Sq. Yards

ASpace 60 Sq. Yards

VCHRG 15 V

Ki 0.0032

The irradiance and the TSolar_Day_Light data for the Karachi region is computed from the
data of the solar powered project of World Bank installed in NED University of Engineering
and Technology Karachi, Pakistan [20]. For the length of the solar day, the period of the day
having a value of irradiance greater than 9 Watt/m2 is recorded for each day. The average
values of the solar power from a single 180-Watts solar panel are derived using Equation (4)
and are shown in Figure 4a. The results of the optimized number of 200 Ah batteries and
required 180-watt solar panels computed by the model are shown in Figure 4b,c. It is
interesting to see that the model provides almost a consistent solution for each day for the
constrained budget of PKR 200,000/- and the space constraint of 240 Sq. Yards.



Energies 2022, 15, 8080 8 of 15Energies 2022, 15, x FOR PEER REVIEW 8 of 15 
 

 

 
 

(a) (b) 

  

(c) (d) 

Figure 4. (a) Average solar panel power per month; (b) optimum no. of required batteries; (c) 

optimum no. of required solar panels; (d) avg. expected electricity. 

Since the average solar power availability was highest in October, as evident from 

Figure 4a, with the house load being on the lower side, as evident from Figure 3, 

maximum energy savings were achieved, as evident from Figure 4c. The negative billed 

values show excess energy availability that can be exported to the power grid if the grid-

tied inverter is used. Thus, with an even higher budget, more energy savings can be 

achieved and the electricity units can be supplied to the grid. Figure 5 shows the impact 

of increasing the budget and space on the electricity units that can be saved and the 

required number of solar panels. It is evident from Figure 5a that increasing the budget 

beyond PKR 800,000/- has no impact on the saved units, as the required number of panels 

becomes constant at 50, as evident from Figure 5c, for the R1 type = 120 Sq.Yards 

residential unit. However, for the R2 type = 240 Sq. Yards residential unit, the electricity 

unit savings continue to increase until the budget of PKR 1,000,000/-, up to a maximum of 

2060 units due to the increase in the number of solar panels to 58, as evident from Figure 

5b,d. Thus, space and financial budget both impact the maximum achievable electricity 

savings. However, the required number of batteries remains the same for a particular 

backup requirement, which was set to 4 h in this study. 

Figure 4. (a) Average solar panel power per month; (b) optimum no. of required batteries;
(c) optimum no. of required solar panels; (d) avg. expected electricity.

Since the average solar power availability was highest in October, as evident from
Figure 4a, with the house load being on the lower side, as evident from Figure 3, maximum
energy savings were achieved, as evident from Figure 4c. The negative billed values show
excess energy availability that can be exported to the power grid if the grid-tied inverter
is used. Thus, with an even higher budget, more energy savings can be achieved and the
electricity units can be supplied to the grid. Figure 5 shows the impact of increasing the
budget and space on the electricity units that can be saved and the required number of
solar panels. It is evident from Figure 5a that increasing the budget beyond PKR 800,000/-
has no impact on the saved units, as the required number of panels becomes constant at 50,
as evident from Figure 5c, for the R1 type = 120 Sq. Yards residential unit. However, for the
R2 type = 240 Sq. Yards residential unit, the electricity unit savings continue to increase
until the budget of PKR 1,000,000/-, up to a maximum of 2060 units due to the increase in
the number of solar panels to 58, as evident from Figure 5b,d. Thus, space and financial
budget both impact the maximum achievable electricity savings. However, the required
number of batteries remains the same for a particular backup requirement, which was set
to 4 h in this study.
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5. Simulation Design

The nanogrid simulation was implemented using the discrete event simulation envi-
ronment of OMNET++, comprising a battery, load, solar panel, hybrid inverter, and main
power nodes, as shown in Figure 6. The solar panel node was implemented using the real
irradiance data from the World Bank project installed in NED University of Engineering
and Technology [20]. Equation (15) was used to compute the solar panel output current rep-
resented by IPannel from the solar irradiance and temperature values. In this equation, the
panel short circuit is represented by Isc, the coefficient of short circuit current is represented
by Ki, the temperature is represented by T, and the solar irradiance is represented by G.
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For the battery node, the state of charge (SoC) of the battery was modeled using
Equation (16) based on the Coulomb counting method [37]. In this equation, the battery’s
initial state of charge is represented by SoC(t − 1), battery capacity is represented by µn,
and battery charging time is represented by ∆t.

IPannel = Isc + Ki ∗ (T − 298.5) ∗ G(x)
1000

(15)

SoC(t) = SoC(t − 1)−
[

iL
µn

∗ ∆t
]

(16)

The main role in the nanogrid system is played by the hybrid grid-tied solar inverter
(HGSI). The HGSI is configured such that it gives first priority to the solar power, then
to the battery power, and finally to the external power source. The working of the HGSI
implemented in our simulation is shown with the help of the flowchart shown in Figure 7.
It works on four arrival events from the battery, load, solar panel, and update messages.
The arrival event from the battery updates the battery SOC level (BATTSOC). The arrival
event from the load updates the load current and voltage demand variables (LOADI and
LOADV, respectively). Similarly, the arrival event from the solar node updates the available
current from the solar panel node (IPV). Finally, the update event executes the HGSI process.
The HGSI process comprises two main steps. In the first step in every update cycle, the
battery is charged, with priority given to solar power. The charging is done at a constant
current of 10% using Equation (17). In case the solar power is not enough to meet the
required charging current, then the battery is charged from the charger powered by the
main power source. However, the charging through main power is only activated if the
battery SOC has dropped to the 20% level. In the second step, the load is driven with first
priority being the solar power. If the solar power is more than the load power requirement,
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Equation (18), then the excess power is exported to the main grid and the electricity units
exported to the main grid are computed by Equation (19).

BATTI = µn ∗ 0.10 ∗ (1 − BATTSOC) (17)

LoadBE =
220 ∗ LOADI

BattV
(18)

UnitsETG =
IPV ∗ BattV

1000 ∗ 60
(19)
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The main simulation parameters and settings for the nanogrid setup are shown in
Table 3.

Table 3. Simulation parameters and settings.

Simulation Parameter Values/Source of Data

µn 800 Ah

PPanel 180 Watt

Number of Panels 49

Event Timers Expiry time 1 s

SOCLim 0.2

G(x) Real-time one-year irradiance data from [20]

Simulation Time 1 Year

AC Load Real-time house AC load data from [36]

6. Results and Discussions

The daily and monthly electrical units saved or payable to the power operator were
computed using the FS-MILP model presented in Section 3. The negative values show
that the units were payable by the consumer and the positive values show that the units
were exported to the main power grid. For the computation of units from the model,
Equation (8) was used and the average daily and monthly values of Lw, TSolar_Day_Light, T,
and G(x) were used. The simulation was run in real time for all of one year and, finally,
the daily and monthly values were recorded as vector files. Figures 8 and 9 show the
comparison of the status of the daily and monthly units of the consumer.
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The results obtained are very rational, i.e., the highest savings offered by the solar
system are in the months of May and June, as these are the hottest days with full sunshine in
the city of Karachi in the summer season. However, by the middle of July to August, it is the
rainy season in Karachi, due to which the weather is often cloudy, so the savings achievable
by the solar nanogrid are at a minimum. By the end of December and in January, it is the
cold season with shorter days, which reduces the solar power. Overall, the simulation and
the model results follow the same trend. However, the savings shown by the simulation
are lower because it is run on real-time data, whereas the model results are based on the
average daily and monthly values.
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Figure 9. Monthly electricity unit savings.

To evaluate the practical performance of the proposed model, as a case study, we
consider the case study of K-Electric and apply its tariff structure [38] to two common types
of domestic residential units of R1 = 120 Sq. Yards and R2 = 240 Sq. Yards. K-Electric has a
variable and increasing tariff for every 100 units, starting from PKR 13.41/- for 0–100 units
and PKR 29.34/- for units above 700, after which it becomes constant. Keeping in view
the affordability of the middle class, two budget constraints of PKR 300,000/- and PKR
600,000/- are set for R1, and double these values are set for the R2 type unit. The results
of the evaluation from the proposed model are shown in Figure 10. These results show
that, for the R1 type, the budget of PKR 300,000/- is not sufficient as it cannot provide any
significant savings; rather, it costs extra in the months of May to October due to exceeding
the battery charging load and the low solar power availability in these months in Karachi.
The budget of PKR 600,000/- provides good financial savings, except in the month of
August due to the rainy season. For the R2 type residential unit, the savings increase
further due to the higher budget and greater space availability.

Energies 2022, 15, x FOR PEER REVIEW 13 of 15 
 

 

 

Figure 9. Monthly electricity unit savings. 

To evaluate the practical performance of the proposed model, as a case study, we 

consider the case study of K-Electric and apply its tariff structure [38] to two common 

types of domestic residential units of R1 = 120 Sq. Yards and R2 = 240 Sq. Yards. K-Electric 

has a variable and increasing tariff for every 100 units, starting from PKR 13.41/- for 0–100 

units and PKR 29.34/- for units above 700, after which it becomes constant. Keeping in 

view the affordability of the middle class, two budget constraints of PKR 300,000/- and 

PKR 600,000/- are set for R1, and double these values are set for the R2 type unit. The 

results of the evaluation from the proposed model are shown in Figure 10. These results 

show that, for the R1 type, the budget of PKR 300,000/- is not sufficient as it cannot provide 

any significant savings; rather, it costs extra in the months of May to October due to 

exceeding the battery charging load and the low solar power availability in these months 

in Karachi. The budget of PKR 600,000/- provides good financial savings, except in the 

month of August due to the rainy season. For the R2 type residential unit, the savings 

increase further due to the higher budget and greater space availability.  

 

Figure 10. Monthly financial savings due to solar power. 

7. Conclusions 

A grid-tied nanogrid system model was proposed in this study to minimize the 

monthly K-Electric bill, and to possibly export the extra electricity units to the main grid. 

The proposed model can compute the optimized number of required batteries and solar 

panels subject to the fiscal, space, and time constraints. The model was studied using real 

one-year solar irradiance data and residential load data of the city of Karachi in Pakistan. 

The mixed-integer linear programing (MILP) approach was used. The proposed model 

was also validated through an OMNET++ simulation environment. The simulation and 

model results show a close correlation. The results show that, even for a 120 Sq. Yards 

Figure 10. Monthly financial savings due to solar power.

7. Conclusions

A grid-tied nanogrid system model was proposed in this study to minimize the
monthly K-Electric bill, and to possibly export the extra electricity units to the main grid.
The proposed model can compute the optimized number of required batteries and solar
panels subject to the fiscal, space, and time constraints. The model was studied using real
one-year solar irradiance data and residential load data of the city of Karachi in Pakistan.
The mixed-integer linear programing (MILP) approach was used. The proposed model
was also validated through an OMNET++ simulation environment. The simulation and
model results show a close correlation. The results show that, even for a 120 Sq. Yards
house, a budget of above PKR 300,000/- is required to achieve financial savings from the
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solar system. For a budget of PKR 1,000,000/-, up to 1020 units can be exported to the main
power grid in the month of May, and a minimum of 500 units can be exported in the month
of August. Thus, the electricity savings from the solar system are a function of the financial
budget and space. However, a middle-class person living in a 120 Sq. Yards house can also
easily reduce their monthly electricity bill with a budget of PKR 600,000/-.
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