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Abstract: Aiming at the problem of unbalanced data categories of UHV converter valve fault data,
a method for UHV converter valve fault detection based on optimization cost-sensitive extreme
random forest is proposed. The misclassification cost gain is integrated into the extreme random
forest decision tree as a splitting index, and the inertia weight and learning factor are improved to
construct an improved particle swarm optimization algorithm. First, feature extraction and data
cleaning are carried out to solve the problems of local data loss, large computational load, and
low real-time performance of the model. Then, the classifier training based on the optimization
cost-sensitive extreme random forest is used to construct a fault detection model, and the improved
particle swarm optimization algorithm is used to output the optimal model parameters, achieving
fast response of the model and high classification accuracy, good robustness, and generalization
under unbalanced data. Finally, in order to verify its effectiveness, this model is compared with the
existing optimization algorithms. The running speed is faster and the fault detection performance is
higher, which can meet the actual needs.

Keywords: converter valve; cost-sensitive; extreme random forest; fault detection; particle swarm
optimization algorithm

1. Introduction

The DC transmission system can run continuously for a long time [1], and the converter
valve, as a powerful and stable core piece of equipment in the DC transmission system,
plays a very crucial role. Only correct state assessment and fault detection of the core
equipment in the system can reduce the failure rate to a minimum and make the power
grid operate at a stable and safe level [2]. In the DC transmission systems currently under
construction in the world, the increasing scale has placed higher demands on the reliability
of power system fault detection [3,4].

In the early fault detection of the converter valve, the operation and maintenance
personnel observe the equipment with the naked eye and then roughly judge the fault type,
to determine which maintenance method to adopt. Using the naked eye to observe is prone
to omissions and inaccurate judgments and is easily affected by weather. After that, the
39 state parameters of the three components are mainly provided by the “Guidelines for
State Evaluation of HVDC Converter Valves” [5] (hereinafter referred to as “Guidelines”),
and the state of each state parameter is first judged. Then, the form of scoring is taken
and the total score is calculated to finally judge the operating status of the converter valve
to take countermeasures. As this method uses a scoring method that requires manual
scoring, it will result in lower evaluation efficiency and may not be able to complete the
evaluation task in time. In addition, although the 39 state parameters provided by the

Energies 2022, 15, 8059. https://doi.org/10.3390/en15218059 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15218059
https://doi.org/10.3390/en15218059
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-9371-3207
https://doi.org/10.3390/en15218059
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15218059?type=check_update&version=2


Energies 2022, 15, 8059 2 of 17

“Guidelines” provide a comprehensive evaluation of the overall operating state of the
converter valve, there are parameters that have little effect on the overall evaluation, and
some of the parameters have too strong a commonality. When the flow valve is used for
data collection, collecting these data will only increase the ineffective workload [6]. Under
the influence of the precise structure and complex fault types of the converter valve, the
complete fault detection system based on the converter valve is not mature enough.

With the continuous advancement of science and technology, various detection meth-
ods have emerged one after another, and the evaluation and detection methods have
gradually transformed into intelligent, precise, stable, and high-efficiency methods, bring-
ing new research ideas and technical strategies to the research on converter valve fault
detection in order to obtain higher work efficiency, safer electricity consumption, and
accelerated optimization of industrial upgrading, providing a strong guarantee. Fault
detection methods can be divided into model-based methods [7], data-based methods [8],
and signal-processing-based methods [9]. Reference [10] adopted an efficient machine
learning method combining random forest (RF) and extreme gradient boosting (XGBoost).
The proposed model has good robustness and has certain advantages over support vector
machines in processing multi-dimensional data. In Reference [11], random forest (RF) and
AdaBoost models were investigated for islanding detection techniques for synchronous
power generation, the performance was quantified using parameters such as total harmonic
distortion (THD), and the experiments showed that the proposed model has high accuracy
and good robustness. In Reference [12], a typical correlation analysis (CCA) based on
real-time-learning (JITL)-assisted monitoring and fault detection of multimode processes
was proposed. To reduce the time to search for relevant data, K-means was integrated
into JITL to construct a local CCA model, and the superiority of the proposed scheme
was verified using an industrial benchmarking approach. Reference [13] combined the
correlation statistical analysis with sliding windows and validated the effectiveness of the
proposed method in thermal power plant processes using a recursive algorithm with low
computational complexity based on the increased computational cost, and controlled the
width of the sliding window by a stochastic algorithm. The above methods have limitations
in terms of fault detection range, detection accuracy, and learning speed, and extreme
random forest based on cost sensitivity has better performance in dealing with numerous
complex data samples or unbalanced data, which is more suitable for the current needs of
transducer valve fault detection.

In the context of increasingly common intelligent algorithms, the imbalance of data
samples for converter valves is still a major challenge. Due to the high reliability of
the commutation valves currently put into operation in China, there are much more
normal operation data samples of the commutation valves than those of the nonnormal
operation, resulting in an imbalance in data samples. Cost sensitivity is a relatively novel
method in the field of machine learning, which assigns different costs to different types
of errors, so the sum of the costs of misclassification is minimized when classifying, and a
high accuracy of classification is achieved. Numerous scholars have conducted extensive
research for this method. Reference [14] proposed a cost-sensitive deep neural network,
and the proposed model does not change the original distribution of the data during the
training process, reduces the computational cost, and has a more robust and superior
performance compared with the existing mainstream sampling techniques. Reference [15]
proposed a cost-sensitive multiset feature learning to construct multiple balanced subsets
by random partitioning to construct a depth-metric-based UCML (DM-UCML) method
with greater robustness when using highly unbalanced datasets. Reference [16] proposed
a date-driven incremental interpolation model (DIM) that can efficiently fill in missing
values for all available information in the dataset, and proposed a new scoring criterion
by considering economic criteria and valid interpolation information to rank the missing
features. The proposed method was validated on the UCI dataset with some improvement
in accuracy. When the cost-sensitive strategy is used to optimize the classifier performance,
there is still the problem that it is difficult to use the model hyperparameters to tune the
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parameters, which still has some impact on the overall performance of the model. Based on
this, an optimization algorithm was used for optimal parameter selection to further improve
the model performance [17]. The improved particle swarm optimization algorithm [18]
was constructed by designing adaptive learning factors and inertia factors to find the
optimal parameters of the cost-sensitive extreme random forest model and improve the
model accuracy.

Through the above analysis, the UHV converter valve fault detection based on the
optimization cost-sensitive extreme random forest (CS-ERF) is proposed for the complex
fault types of the converter valve. First, the converter valve is introduced by 39 converter
valve state quantities, and the initial state assessment of the converter valve is performed.
Then, data cleaning and feature selection are performed on the source data to reduce
the feature dimension of the data and remove the redundant features. Then, the sample
dataset is divided into two categories, the training set and test set, and the training set is
used to train the model and the test set is used to test and evaluate the model prediction
accuracy. Finally, based on the optimization cost-sensitive extreme random forest algorithm,
the parameter values of the optimal model are found using an improved particle swarm
optimization algorithm, and the splitting indicator of the cost-sensitive decision tree is
chosen as the misclassification cost gain. The results improve the classification accuracy
and overall performance of the model while reducing the impact of unbalanced samples
on branch nodes, and also avoid the problems of model bias toward the majority class
caused by large normal sample data and very few fault data samples, and low accuracy in
identifying data samples for fault states, with higher real-time performance, lower false
alarm rate, and higher gMean value.

2. Particle Swarm Optimization Algorithm

Particle Swarm Optimization (PSO) originated in 1995 [19], inspired by the regularity
of bird flock foraging, based on the research on flock foraging behavior; that is, through
collective information sharing, the group can find the most optimal solution. The algorithm
has the advantages of simplicity, easy implementation, fast convergence, and few parame-
ters. For high-dimensional data processing problems, it converges to the optimal solution
faster than the genetic algorithm does.

2.1. Basic Theory of PSO Algorithm

The process of a flock of birds going out to find food is very similar to the process of
humans planning things together. When a flock of birds goes out to look for food, initially,
all the birds do not know exactly which location or direction has the most food and each
bird searches for food randomly, and as the number of times and the time increases, they
gradually learn to share information and continue the next search based on the search
experience of the other birds. Gradually, they form a flock, searching for the same goal.

Each particle in the PSO algorithm has an adaptation value, which is determined by
the function being optimized. The two basic properties of the particles are velocity and
position, which are also the two core elements of the PSO algorithm, and the direction
and distance of the particles are determined by the velocity [19]. First, the PSO algorithm
randomly initializes a group of particles and then finds the optimal solution by updating
iterations. The optimal solution is divided into the local optimal solution and global optimal
solution, and each particle can determine the location of the current best region based on
the existing experience and information, which is the local optimal solution. Meanwhile
the location of the best region obtained from the experience information of all particles is
the global optimal solution. In each update iteration, each particle updates the velocity and
position of the particle by comparing these two optimal solutions [20].
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2.2. PSO Algorithm Formula Implementation

Suppose the target search space is a D-dimensional space, and the particle population
has M particles, in which the position of the t-th particle can be represented by a D-
dimensional vector as:

Xt = (xt1, xt2, xt3 . . . , xtD), t = 1, 2, 3 . . . , M (1)

The velocity of the t-th particle is:

Vtd = (vt1, vt2, vt3 . . . , vtD), t = 1, 2, 3 . . . , M (2)

The local optimal solution searched by the t-th particle:

Ptd,pbest =
(
pt1, pt2, pt3 . . . , ptD

)
, t = 1, 2, 3 . . . , M (3)

The global optimal solution searched by the entire particle swarm:

Pd,gbest =
(

P1,gbest, P2,gbest, P3,gbest . . . , PD,gbest

)
(4)

The fitness value of the optimal area searched by the t-th particle (also the value of the
optimization objective function) is fp (the optimal fitness value in the search history of a
single particle), and the fitness value of the optimal area searched by the particle swarm is
fg (the particle swarm searches for the best fitness value in the history).

On the basis of obtaining the local optimal solution and the global optimal solution, in
order to obtain the final result at the fastest speed [21], each particle can update its speed
and position according to the following formulas:

1. Speed update formula:

Vn+1
t = ωnVn

t + c1r1

(
Pn

td,pbest − Xn
t

)
+ c2r2

(
Pn

d,gbest − Xn
t

)
(5)

2. Position update formula:

Xn+1
t = Xn

t + Vn+1
t (6)

where n and n+1 are the number of iterations,ω is the inertia weight, c1 and c2 are learning
factors, and r1 and r2 are random numbers within [0, 1], which can increase the randomness
of the search.

The velocity direction of each particle iteration is a vector sum of the inertial direction,
the local optimum direction, and the global optimum direction, as shown in Figure 1.
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2.3. Improved PSO Algorithm

Because the particle swarm algorithm has a fast convergence speed, the selection of
parameters is very important. The setting of the number of particles, inertia factor, and
constant largely determines the optimization performance of the PSO algorithm.
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When the size of the particle swarm is larger, it means that the number of particles
is larger, the search area for each iteration is larger, and the iterative calculation will be
more complicated. The particles are initialized with an ideal local optimal solution. If the
number of particles is large, the optimal solution may be found with very few iterations.
Based on the above principles, the number of particles is generally selected to 25–40.

The learning factor acts on the proportion of individual experience and global ex-
perience in the allocation update iteration. When c1 = 0, it is considered that there is no
individual experience in the search process, and it is updated and iterated solely by the
sharing of global social experience. The convergence speed is relatively fast, but it is easy to
fall into the local optimum. When c2 = 0, it is considered that when the particle is updating
the velocity position, it only relies on individual experience and does not obtain global
experience, and it is difficult to find the optimal solution at this time. In the usual case,
there is c1 = c2. If the former is larger, the individual tends to roam too much in its own
optimal position; if the latter is larger, the particles are easily attracted to the current global
optimal solution. This paper uses Equations (7) and (8) to improve the learning factor and
adjust the size of c1 and c2 reasonably:

c1(t) = (c1e − c1f)(t/tmax)
2 + c1f (7)

c2(t) = (c2e − c2f)(t/tmax)
2 + c2f (8)

where c1f and c1e are the initial value and final value of c1, respectively; c2f and c2e are the
initial value and final value of c2, respectively; t is the corresponding iteration number; tmax
is the maximum iteration number.

The inertia factor has a great influence on the overall performance of the PSO algorithm
and plays a significant role in updating the particle velocity and position. When the inertia
factor is large, the particle velocity and position update will be more dependent on the
particle’s own experience and history of the search, and the local search ability decreases,
but the overall search ability is improved. When the inertia factor is small, the local search
ability increases and the overall search ability decreases. Based on the interplay with other
parameters, the inertia factor is adjusted appropriately to make the whole iterative process
more inclined to the overall search, so it can complete convergence faster and improve the
overall performance. In this paper, the inertia weights are adjusted and improved using a
nonlinear function, as shown in Equation (9).

ω= ωmax − (ωmax −ωmin)

(
t

tmax

)2
(9)

whereωmax andωmin are the maximum and minimum values ofω, respectively.
In the implementation of the improved PSO (IPSO) algorithm, it mainly relies on the

following procedures:

1. Set the inertia factor, acceleration parameters, number of particles, and other parameters;
2. Randomly initialize the velocity and position of each particle to obtain the optimal

position and optimal adaptation value of the individual and the population;
3. Perform n update iterations to update the velocity and position of each particle;
4. Calculate and update the optimal position and optimal adaptation value of each

particle, obtain the optimal position and optimal adaptation value of the population,
and update the current parameters as necessary;

5. Output the global optimal solution and the corresponding position variables.

3. Extreme Random Forests Based on Cost Sensitivity
3.1. Extreme Random Forest

Extremely random forest (ERF) is a derivative algorithm [10] obtained by further
optimization on the basis of random forest, which is characterized by a high degree of
randomness. The main difference between ERF and random forest (RF) models is that
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ERF does not use bagging to train each randomly selected base classifier; each of its trees
is trained using the original complete training samples [22]. This approach minimizes
bias. When the nodes of the decision tree are split, the general integration method obtains
the optimal splitting feature and splitting threshold of the split data by calculating the
evaluation criteria such as the Gini coefficient and entropy. However, when ERF calculates
the score metric of each feature, it randomly selects eigenvalues. In the extreme decision
tree splitting process, a feature k is selected in the sample dataset, and a value is randomly
selected between the maximum and minimum value of feature k as the splitting threshold
of this feature k. m split thresholds can be obtained by iterating over each feature on
the dataset. The score metric of each feature is calculated, and the feature k and the
threshold with the highest independent score are selected as the splitting feature and
splitting threshold of the leaf node [23].

The final result of each decision tree is generated in parallel. Because the process of
node splitting is relatively simple, the extreme random forest algorithm is superior to other
algorithms in terms of space complexity, and the final result is determined by the voting of
all decision trees. An extreme random forest is defined as follows:

P(c|fi)
=

1
D

D

∑
t=1

Pt(c|fi) (10)

ĉ= argmax P(c|fi) (11)

where Pt is the conditional probability, which represents the probability that the sample
belongs to c in the case of vector fi; D represents the tree of the decision tree. Equation (10)
is the classification probability of the decision tree and Equation (11) is the principle of the
final decision tree voting mechanism, using the above method for extreme random forest
decision tree generation.

For the process of selected features selected as splitting features, using Equation (12)
by means of a score metric, when the leaf node is split, the splitting feature is selected as
the feature with the highest score, the samples smaller than the splitting threshold are put
into the left leaf node after splitting, and the samples greater than or equal to the threshold
are put into the right leaf node. The above steps are repeatedly recursed until the sample
confusion level in the leaf node is 0 and the stop splitting condition is satisfied.

Scorek =
2Ik

Hk + Hc
(12)

where Scorek denotes the score metric obtained by the features after calculation, and Ik
denotes the mutual information of two subsets of the node after splitting about the sample
category based on the corresponding features and splitting threshold. Hk denotes the
splitting entropy of feature k. Hc denotes the information entropy of the corresponding
sample category.

3.2. Principle of Extreme Random Forest Algorithm Structure Based on Cost Sensitivity

The cost-sensitive extreme-random-forest-based algorithm is proposed for the problem
of very small transducer valve fault data samples and large normal data samples, i.e.,
unbalanced data sample classes. First, the method introduces the misclassification cost
in the evaluation criteria and changes the purpose of the fault detection decision tree
from minimizing the node sample confusion and maximizing the detection accuracy to
minimizing the misclassification cost. Secondly, the splitting metric is changed from
the splitting feature with the highest score metric obtained by traversing all features to
the misclassification cost, while the objective function of CS-ERF is set to minimize the
misclassification cost. Finally, CS-ERF-based model detection results are established by a
voting mechanism.

CS-ERF is a combination of cost-sensitive and extreme random forest, a derivative
algorithm of ERF, and the introduction of cost sensitivity solves the problem of low detection
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accuracy caused by very few fault samples. The misclassification cost introduced above
can be expressed here in the form of a matrix. Suppose the sample dataset contains n
categories, and there are n misclassification cost parameters in each category; at this time,
the misclassification cost matrix can be expressed as follows.

C =

C11 · · · C1n
...

. . .
...

Cn1 · · · Cnn

 (13)

Cmn =

{
= 0 m = n
> 0 m 6= n

(14)

In this case, Cmn is a real number and represents the cost parameter of misclassifying
the m class samples into n class samples. Based on the fact that there are many types of
faults in the transducer fault detection, and the problem of low detection accuracy occurs
when multiple faults occur at the same time, which leads to poor model performance,
this paper views the transducer fault detection problem as a dichotomous problem, and
therefore, the confusion matrix for the dichotomous problem of transducer fault detection
is introduced here [24].

In Table 1, the four covariates CTN, CFP, CFN, and CTP are the misclassification cost
parameters corresponding to correctly predicted as normal category, correctly predicted as
fault category, incorrectly predicted as normal category, and incorrectly predicted as fault
category, respectively, and the larger the parameter value, the higher the importance of
that sample category. According to the fault detection of the commutator valve, the cost
parameter corresponding to the two cases of correct prediction is zero, while the negative
impact on the result caused by incorrect prediction as correct category (CFN) is greater than
that caused by incorrect prediction as fault category (CFP) in the two cases of incorrect
prediction, which is obtained according to the above: 0 = CTN = CTP < CFP < CFN.

Table 1. Confusion matrix for binary classification problems.

Actual Category
Prediction Category

Normal Fault

Normal CTN CFP

Fault CFN CTP

Figure 2 above shows a schematic diagram of the cost-sensitive extreme random forest
structure brought to this paper. The basic structure is to first generate a subset of samples,
then establish the number of CS-ERF faults, and finally make voting decisions on multiple
fault trees. The specific implementation is to first divide the sample data in dataset D into
training data and test data, generate n sample subsets that are the same as the training set
based on the characteristics of extreme random forests, and then use the complete training
set to train CS-ERF. Each fault number of, based on the classification results of all base
classifiers, the final result is generated by voting, that is, the minority obeys the majority.

In step2 in Figure 2, the fault tree node splitting process is shown. As CS-ERF is
derived from ERF, it has the same randomness in the node splitting process and still
consists of root, leaf, and branch nodes. If a node belongs to a branch node, a value is
randomly selected in its sample as the splitting threshold for that node splitting, and the
splitting of the node as above is performed. If it is a leaf node, then this node split ends
and all values in it are categorized into the same sample class.
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CS-ERF differs from ERF by changing the idea of entropy gradient descent to cost
gradient descent, while the cost function of CS-ERF is designed as misclassification cost
gain. When the node is split, analogous to extreme random forest, the misclassification cost
of the node is defined in this paper, and the feature with the largest misclassification cost
gain is specified as the splitting feature. For node misclassification, cost is defined as:

C = CP + CN (15)

where C denotes the misclassification cost of a node, and CP and CN represent the cost of
a node being in the fault and normal classes, respectively. CP and CN are calculated as in
Equations (16) and (17), respectively.

CP = CFP · NFP + CTP · NTP (16)

CN = CFN · NFN + CTN · NTN (17)

where NFP, NTP, NFN, and NTN represent the number of samples incorrectly predicted as
fault category, correctly predicted as fault category, incorrectly predicted as normal category,
and correctly predicted as normal category, respectively, and according to the conclusion of
Table 1, the values of CTN and CTP are 0, so Equations (18) and (19) can be obtained.

CP =
NP

NP + NN
· CFP · NFP (18)

CN =
NN

NP + NN
· CFN · NFN (19)

where NP and NN represent the total number of faulty and normal samples, respectively. A
weighting factor is added to Equations (16) and (17), and the cost of correct categorization
is 0, making the formula more concise.

For the cost function of CS-ERF, Equation (20) is the definition of the misclassification
cost gain GK for feature m.

GK = CP −
Al

Al + Ar
Cl −

Ar

Al + Ar
Cr (20)

where CP is the misclassification cost of the parent node before splitting, Cl is the misclas-
sification cost of the left child node after splitting, Cr is the misclassification cost of the
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right child node after splitting, and Al and Ar are the number of samples in the left and
right child nodes after splitting, respectively. It is easy to see that the coefficient before
the misclassification cost of the child node is the weighting factor of the cost of the child
node, and the misclassification cost of the parent node and its difference can obtain the
misclassification cost gain of this node.

Due to the imbalance of samples in the transducer valve fault detection, the integrated
algorithm used in the past tends to bias the results toward the sample class with a large
number of samples when training the model, while the CS-ERF algorithm introduces a
class distribution in the misclassification cost gain, thus allowing the model to care more
about the fault class data with a very small number of samples, improving the accuracy of
the algorithm and improving the detection performance of the model.

Combining the above studies, based on Bayes’ theorem, this paper determines that
the class with the smallest misclassification cost function is the class of the corresponding
leaf node, which is defined as follows:

ĉ = argmax
m=0,1

∑
n

p(cn |x )cmn (21)

where p(cn |x ) represents the posterior probability that sample x belongs to category cn.
The CS-ERF in this paper solves the problems such as inaccurate results due to sample
imbalance by adding the misclassification cost to the criterion at node splitting, thus
achieving cost sensitivity.

Equation (22) is the construction of the objective function of the extreme random forest
algorithm based on cost sensitivity.

Cα(N) = min
N

N

∑
n=1

Cn + α|N| (22)

where Cn represents the misclassification cost, α|N| represents the canonical term, and N
represents the total number of nodes.

When all base classifiers are finished running, the final sample class is decided using a
minority–majority approach, as in Equation (23):

H(x) = argmax
k

G

∑
g=1

I
[
h
(
x, θg

)
= k

]
(23)

where h
(
x, θg

)
represents the base classifier model, k represents the classification result of

the base classifier, and I(·) represents the exponential function. The final fault detection
result of CS-ERF is obtained from the above equation.

4. Optimized CS-ERF Converter Valve Fault Detection

There are two common types of faults in the detection of converter valve faults:
missing alarm rate (MAR) and false alarm rate (FAR). In the field of practical application,
the impact of missed fault detection on production and life is far greater than that of
the false detection of faults. When the CS-ERF algorithm in this paper is applied to the
fault detection of the converter valve, the MAR can be well controlled at a lower level.
Considering the complexity of the state parameters of the converter valve, operations such
as data cleaning and feature selection should be performed on the data in the SCADA
system before training the model.

4.1. Data Preprocessing

Due to the complex operation of the converter valve, the state quantities generated are
also complex and there are more redundant variables, which will increase the complexity of
model training and affect the prediction performance of the model. As shown in Figure 3,
the data collected from the SCADA dataset are first cleaned, subjected to Pearson correlation
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analysis to remove redundant feature values, and then ranked by the importance of the
feature values and feature selection. The Pearson correlation coefficient is calculated as
the quotient of the covariance and standard deviation between two variables, as shown in
Equation (24); through Pearson correlation analysis, some of the redundant features with
low correlation are removed, making the model training more efficient and the prediction
results more accurate.

ρX,Y =
cov(X, Y)
σXσY

=
E[(X− µX)(Y− µY)]

σXσY
(24)

where ρ represents the correlation coefficient between features in the sample, σ represents
the standard deviation of the corresponding features, and cov represents the covariance
between features.

Energies 2022, 15, 8059 10 of 18 
 

 

4.1. Data Preprocessing 

Due to the complex operation of the converter valve, the state quantities generated 

are also complex and there are more redundant variables, which will increase the com-

plexity of model training and affect the prediction performance of the model. As shown 

in Figure 3, the data collected from the SCADA dataset are first cleaned, subjected to Pear-

son correlation analysis to remove redundant feature values, and then ranked by the im-

portance of the feature values and feature selection. The Pearson correlation coefficient is 

calculated as the quotient of the covariance and standard deviation between two varia-

bles, as shown in Equation (24); through Pearson correlation analysis, some of the redun-

dant features with low correlation are removed, making the model training more efficient 

and the prediction results more accurate. 

ρX,Y =
cov(X, Y)

σXσY
=

E[(X − μX)(Y − μY)]

σXσY
 (24) 

where ρ represents the correlation coefficient between features in the sample, σ repre-

sents the standard deviation of the corresponding features, and cov represents the covar-

iance between features. 

Random Forest 
Eigenvalue 

Importance Ranking

Training Data Test Data

Pearson Correlation 
Analysis

Pre-processed 
data sets

Pre-processing 
data set splitting

Feature Selection

Removal of redundant 
eigenvalues

Data Cleaning

SCADA 
Datasets  

SCADA Datasets  

Training 
Data

Test Data

Data pre-
processing

 

Figure 3. Data preprocessing process. 

Further, as the dataset often contains a large number of features, using random forest 

ranking, the features that contribute more to the results can be filtered out and the com-

plexity of model training can be reduced. In this paper, the Gini index and variable im-

portance (VI) are used as evaluation indicators to measure the contribution of each feature 

Figure 3. Data preprocessing process.

Further, as the dataset often contains a large number of features, using random forest
ranking, the features that contribute more to the results can be filtered out and the complex-
ity of model training can be reduced. In this paper, the Gini index and variable importance
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(VI) are used as evaluation indicators to measure the contribution of each feature to the
results, and the larger the contribution, the higher the importance. The Gini is calculated as:

Gm =
T

∑
t=1

∑
t 6= t ′

pmtp
′
mt = 1−

T

∑
t=1

p2
mt (25)

The VI score of feature j is calculated as Equation (26):

VIj =
n

∑
i=1

(
∑

m∈M
(Gm −Gl −Gr)

)
(26)

where Gm is the Gini coefficient, T represents the number of categories, pmt represents the
proportion of category t in node m, Gl and Gr represent the Gini index of two new nodes
after node branching, n represents the tree, and M represents the set of features j appearing
in decision tree i. In simple terms, it is the probability that two samples are arbitrarily
drawn from node m and their categories do not agree.

After Pearson analysis and feature importance ranking, the dataset is divided into
a training set and a test set. The training set is the data sample used for model fitting
and training the classification model; the test set is used for model prediction, measuring
the performance and classification ability of the model, and performing model prediction
performance evaluation.

After data preprocessing, the CS-ERF fault detection model generation process is
shown in Figure 4. The CS-ERF model parameters are obtained through the PSO optimiza-
tion algorithm, and the fault detection model is jointly generated with the training data.
Finally, the average misclassification cost (AMC) is selected; gMean, computing time, and
missing alarm rate (MAR) are used as evaluation indicators. The performance of the test
model is tested by using the real class labels of the test dataset and the predicted class labels
generated by the model.

MAR =
FN

FN + TP
(27)

AMC =
FN · CFN + FP · CFP + TP · CTP + TN · CTN

FN + FP + TP + TN
(28)

gMean =

√
TP

TP + FN
· TN

TN + FP
(29)

where TP, TN, FP, and FN represent the number of corresponding detected samples, and
CTP, CTN, CFP, and CFN represent the corresponding misclassification cost parameters.

4.2. Model Building Process

The fault detection flow chart of the CS-ERF converter valve based on the IPSO
optimization algorithm is shown in Figure 5. After initializing the position and velocity
of each particle to obtain the historical optimal position and historical optimal fitness
value of individuals and groups, if the iterative conditions are satisfied, the parameters
of the minimum misclassification cost of the CS-ERF model are output to obtain the best
parameters needed for the fault diagnosis model to make the model work best [25,26].
If they are not satisfied, the speed and position of each particle, the historical optimal
value, and the historical optimal fitness value of the group are updated until the iterative
conditions are satisfied.

The CS-ERF model has five hyperparameters, which are the two misclassification cost
parameters CFN, CFP, the maximum number of features, the minimum number of leaf
nodes, and the number of decision trees M. Due to the large number of hyperparameters in
the model, it is difficult to manually set the model. The best results are obtained, so the
PSO algorithm is used to calculate the optimal hyperparameters.
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In order to verify the superiority of the CS-ERF model under the PSO algorithm, after
the data preprocessing of the dataset, this paper compares it with Moth-flame Optimization
(MFO) [27], Multi-Verse Optimization (MVO) [28], Bat Optimization Algorithm, (BA) [29],
Sparrow Search Algorithm (SSA) [30], and Particle Swarm Optimization (PSO). The model
performance is evaluated and compared. The missed detection rate refers to the proportion
of missed detection samples to the total samples during fault detection, and the gMean
value refers to the square root of the product of the probability of correctly detecting faulty
samples and the probability of correctly detecting normal samples. The lower the rate,
the better the model performance and the shorter the running time. In order to prevent
over-fitting and improve the accuracy of the model, each model is trained using ten-level
cross-validation during comparative experiments.
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5. Experimental Analysis
5.1. Data Description

This experiment selects the actual operation data of the converter valve in a converter
station in China from June to December 2020. The converter valve is one of the most
important devices in the DC transmission system, which determines the stability of the
regional power grid to a certain extent. Its relatively complex fabrication process and
critical role make its operation process very complex. The dataset collected in this paper
includes a series of operational data in the thyristor assembly, valve cooling assembly, valve
arrester, and external environment. The most important converter valve faults are IGBT
device drive faults, IGBT device breakdown, communication faults, sub-module energy
extraction power faults, and sub-module central control board faults.

As shown in Table 2, the dataset includes 1431 groups of data, among which 809 cases
are in the normal state, 398 cases are in the attention state, 165 cases are in the abnormal state,
and 59 cases are in the serious state. The above states are divided according to the number
or severity of faults, and then the training set and test set are divided proportionally.
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Table 2. Data distribution.

Data Type Number of Samples Number of Training Test Samples Unbalance Degree

Normal 809 539 270 1.58

Attention 398 265 133 2.08

Abnormal 165 110 55 4.89

Severe 59 39 20 13.29

Total number of samples 1431 953 478 5.46

5.2. Sample Feature Selection

Data pre-processing is performed on the above collected data, data cleaning is con-
ducted to remove duplicate and redundant data screening, and the features whose state
amount is always 0 are deleted. Pearson data analysis is used to delete the features with
low correlation by calculating the correlation coefficient, and to keep the features with high
correlation with the state of the converter valve. Based on the data samples at this time, the
random forest importance ranking is used to calculate the comprehensive importance of
the features, and the features with low importance ranking are deleted. Based on this data
sample, the features with low importance ranking are deleted, and the remaining features
are used as the main influencing factors of the state of the converter valve. The optimal
feature set obtained after data pre-processing is shown in Table 3.

Table 3. Data Optimum Solicitation.

Fault Category Features

Thyristor assembly

ω1-Family defects and rectification ω6-Electrical component support cross-arms
ω2-The degree of corrosion of thyristor body ω7-Cracking of long rod insulator
ω3-Temperature of thyristor body/°C ω8-Functional tripping
ω4-Number of faults indicating pulses/pc ω9-Control unit (TE, TCU, or GU) situation
ω5-Valve tripping

Valve cooling
components

ω10-Family defects and rectification ω12-Leakage monitoring device situation
ω11-Leakage of main water circuit of valve tower ω13-Rusting and discoloration of radiator

Valve lightning
arrester

ω14-Family defects and rectification ω17-Valve arrester body temperature/°C
ω15-Valve arrester body rusting ω18-Loose grounding lead wire
ω16-Valve arrester discharge corona ω19-Counting alarm

5.3. Experimental Results

The MFO, MVO, BA, SSA, PSO, and IPSO optimization-seeking algorithms are brought
into the flow chart of the converter valve failure model for the purpose of comparative
analysis. By repeatedly testing different particle numbers, the number of particles that
perform optimally at the moment of the results is recorded. The number of particles
in the improved particle swarm optimization algorithm is set to 35, and ten trials are
performed for all six optimization algorithms. After data pre-processing, the comprehensive
performance of the six algorithms is evaluated using the missed detection rate (MAR),
average misclassification cost (AMC), gMean, and running time as indicators, as shown in
Figure 6.

In Figure 6a, it is obvious that the model using the IPSO algorithm has the lowest miss
detection rate, and the average miss detection rate of the IPSO is 0.68%, while the average
miss detection rate of the other four algorithms is higher than 0.05, and the average MAR
of PSO is 0.46 higher than that of IPSO. In Figure 6b, IPSO shows good parameter search
performance, which makes CS-ERT have the lowest AMC of 0.04%, which is 0.0086 lower
than that of the SSA algorithm that follows closely, and PSO is still worse than IPSO in this
evaluation criterion. In Figure 6c, the IPSO algorithm achieves the highest gMean value,
which represents the highest correct detection rate of the IPSO algorithm and the best
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performance, better than the first five algorithms. The average gMean value is 0.009 higher
than that of the SSA algorithm, which is second to IPSO. In Figure 6d, it is clear that the IPSO
algorithm outperforms the other four algorithms with an average runtime control of 0.49 s,
while the slowest-running SSA algorithm has an average runtime of up to 1.2 s, indicating
that the combination of IPSO and CS-ERF greatly improves the running speed of the model.
Although IPSO does not take the fastest time, it stays within an acceptable range, and
PSO, which takes the shortest time, takes an average of 0.12 s. Overall, IPSO has the best
overall performance. Compared with the other five algorithms, the IPSO algorithm is less
susceptible to noise, has the strongest integration performance and generalization ability,
and can minimize model bias and improve fault detection performance by considering the
misclassification cost of detection samples.
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5.4. Limitations Discussion

For the model proposed in this paper, there are several limitations. First, although
it outperforms the other five algorithms in MAR, AMC, and gMean, it is worse than the
particle swarm optimization algorithm before improvement in terms of running time. When
dealing with a large amount of high-dimensional complex data, the long running time will
lead to excessive memory consumption, and the real-time performance of the model is not
guaranteed and the computational cost is high. Second, the model proposed in this paper
is more dependent on the data type, and data pre-processing must be performed in the
early stage; otherwise, the detection accuracy of the model will be greatly reduced. Again,
for unsupervised samples in the training dataset, cost-sensitive learning will encounter
difficulties when the label information is unknown. Finally, in the gMean metric, the
performance is optimal, but the performance of the results is not stable enough compared
to the MVO algorithm, and the model stability needs to be improved.
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6. Conclusions

To address the problems of unbalanced converter valve state data, difficult parameter
selection, and poor performance of fault detection models, an UHV converter valve fault
detection method based on optimization cost-sensitive extreme random forest is proposed.

The contributions of this paper are mainly fourfold. First, the adaptive inertia factor as
well as the learning factor, which can be dynamically adjusted during the iterative process,
are proposed to be incorporated into the position and velocity update formulas to construct
an IPSO to find the optimal hyperparameters of the model. The IPSO is less likely to fall into
the local optimum, the search efficiency is improved, the convergence speed is fast, and the
overall optimization-seeking capability is improved. Second, Pearson correlation analysis
and random forest feature importance ranking are used in data preprocessing for data
cleaning to remove redundant features and retain the most helpful features for detection
results. Again, the misclassification cost gain is introduced into the extreme random forest
as the classification index of the fault tree to solve the influence of unbalanced data on the
detection results, and the cost-sensitive extreme random forest is constructed to improve
the comprehensive performance of the model fault detection. Finally, an IPSO is used to
find the optimal hyperparameters of the model to achieve fast response of the model and
high classification accuracy, good robustness, and generalization under unbalanced data.

In this paper, four metrics are introduced to optimize the CS-ERF using six optimiza-
tion algorithms, MFO, MVO, BA, SSA, PSO, and IPSO, and the results show that the model
has a more excellent detection performance when optimized using IPSO. Based on the pro-
posed UHV converter valve fault diagnosis based on improved optimization cost-sensitive
extreme random forest, the following shows suggestions for future research:

• With the technical upgrade of the transmission system, the dimensionality and com-
plexity of the features contained in the original dataset grow rapidly, different data
pre-processing methods of model evaluation will have a large impact, and the data
pre-processing methods that are more suitable for this paper can be further studied.

• The particle swarm optimization algorithm can be combined with other optimization
algorithms to build a new location iteration method, which makes the model optimal
hyperparameters more accurate and improves the accuracy of model detection.

• The proposed method can be applied to other fault detection fields.
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27. Khan, M.; Sharif, M.; Akram, T.; Damaševičius, R.; Maskeliūnas, R. Skin Lesion Segmentation and Multiclass Classification Using

Deep Learning Features and Improved Moth Flame Optimization. Diagnostics 2021, 11, 811. [CrossRef]
28. Abualigah, L. Multi-verse optimizer algorithm: A comprehensive survey of its results, variants, and applications. Neural Comput.

Appl. 2020, 32, 12381–12401. [CrossRef]
29. Yu, H.; Zhao, N.; Wang, P.; Chen, H.; Li, C. Chaos-enhanced synchronized bat optimizer. Appl. Math. Model. 2019, 77, 1201–1215.

[CrossRef]
30. Zhang, C.; Ding, S. A stochastic configuration network based on chaotic sparrow search algorithm. Knowl.-Based Syst. 2021, 220,

106924. [CrossRef]

http://doi.org/10.1049/gtd2.12385
http://doi.org/10.1109/TFUZZ.2016.2641022
http://doi.org/10.1016/j.conengprac.2020.104546
http://doi.org/10.1109/JPROC.2022.3171691
http://doi.org/10.1109/ACCESS.2018.2818678
http://doi.org/10.1049/gtd2.12256
http://doi.org/10.1109/TIE.2020.2989708
http://doi.org/10.1109/TIE.2021.3070521
http://doi.org/10.1109/tnnls.2017.2732482
http://doi.org/10.1109/TPAMI.2019.2929166
http://doi.org/10.1109/TKDE.2019.2956530
http://doi.org/10.1007/s11831-021-09562-1
http://doi.org/10.1007/s00500-016-2474-6
http://doi.org/10.1109/TCYB.2020.2977956
http://doi.org/10.1109/TCYB.2019.2925015
http://doi.org/10.3390/s21186215
http://www.ncbi.nlm.nih.gov/pubmed/34577420
http://doi.org/10.3390/s22186826
http://www.ncbi.nlm.nih.gov/pubmed/36146174
http://doi.org/10.1186/s12864-019-6413-7
http://www.ncbi.nlm.nih.gov/pubmed/31898477
http://doi.org/10.1016/j.asoc.2021.107146
http://doi.org/10.1016/j.energy.2022.123760
http://doi.org/10.3390/diagnostics11050811
http://doi.org/10.1007/s00521-020-04839-1
http://doi.org/10.1016/j.apm.2019.09.029
http://doi.org/10.1016/j.knosys.2021.106924

	Introduction 
	Particle Swarm Optimization Algorithm 
	Basic Theory of PSO Algorithm 
	PSO Algorithm Formula Implementation 
	Improved PSO Algorithm 

	Extreme Random Forests Based on Cost Sensitivity 
	Extreme Random Forest 
	Principle of Extreme Random Forest Algorithm Structure Based on Cost Sensitivity 

	Optimized CS-ERF Converter Valve Fault Detection 
	Data Preprocessing 
	Model Building Process 

	Experimental Analysis 
	Data Description 
	Sample Feature Selection 
	Experimental Results 
	Limitations Discussion 

	Conclusions 
	References

