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Abstract: Recently, the concept of the microgrid (MG) has been developed to assist the penetration
of large numbers of distributed energy resources (DERs) into distribution networks. However, the
integration of DERs in the form of MGs disturbs the operating codes of traditional distribution
networks. Consequently, traditional protection strategies cannot be applied to MG against short-
circuit faults. This paper presents a novel intelligent protection strategy (NIPS) for MGs based on
empirical wavelet transform (EWT) and long short-term memory (LSTM) networks. In the proposed
NIPS, firstly, the three-phase current signals measured by protective relays are decomposed into
empirical modes (EMs). Then, various statistical features are extracted from the obtained EMs.
Afterwards, the extracted features along with the three-phase current measurement are input to three
different LSTM network to obtain exact fault type, phase, and location information. Finally, a trip
signal based on the obtained fault information is generated to disconnect the faulty portion from the
rest of the MG. The significant feature of the proposed NIPS is that it does not need adaptive relaying
and communication networks. Moreover, it is independent of the operating scenario and hence
fault current magnitude. To evaluate the efficacy of the proposed NIPS, exhaustive simulations are
performed on an international electro-technical commission (IEC) MG. The simulation results confirm
the efficiency of the proposed NIPs in terms of accuracy, dependability, and security. Moreover,
comparisons with existing intelligent protection schemes validate that the proposed NIPS is highly
accurate, secure, and dependable.

Keywords: empirical wavelet transform; fault detection; fault classification; long short-term memory
network; microgrid protection

1. Introduction

Nowadays, increasing load demand, increasing concerns about global warming, and
the latest advancements in renewable energy technology have led to a new trend in elec-
tricity generation [1,2]. These new power generation systems are usually integrated into
the power system at distribution networks and represent distributed energy resources
(DERs) [3,4]. To fully utilize the evolving potential of DERs, recently the concept of micro-
grid has been presented to integrate them into electrical distribution networks (EDNs).

A microgrid (MG) is generally regarded as a small part of a power network which
incorporates a significant number of distributed generations, besides local loads and
energy storage devices [5]. It is controlled and managed by intelligence and can operate in
conjunction with the utility grid (grid-tied mode) in addition to being independent from
the host grid (islanded mode). A MG is expected to guarantee a cost-effective service to the
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customer loads with superior quality and reliability in addition to the economical operation
for its owner and auxiliary supply to the utility grid [6,7].

MGs have a high level of converter-interfaced DERs (CIDERs) penetration. The
CIDERs have low inertia as compared to the rotating machines. The maximum current
carrying capacity of CIDERs is limited, approximately two to three times that of rated
current. This level of current is small as compared to the synchronous generators, which
can provide current up to five to eight times their rated current [8]. Consequently, a MG
has three major operating scenarios: (1) a grid-tied mode; (2) islanded mode with CIDERs,
and (3); islanded mode with both synchronous-based DERs (SBDERs) and CIDERs [9].

MGs face significantly different levels of fault currents in each of the scenarios for
a similar fault [10]. Thus, the conventional protection schemes, which assume the radial
structure, high fault current level, and single mode operation, are inadequate for the pro-
tection of MGs. They may face problems such as nuisance tripping, blinding of protection,
miss-coordination, and sensitivity loss if used for MGs [11]. Therefore, modifications in the
traditional protection philosophies or new protection schemes are required to protect MGs.

Various MG protection schemes have been developed and reported in the literature.
A schematic classification of the existing MG protection schemes is shown in Figure 1. In
ref. [12], the authors presented an intelligent agent-based protection strategy for radial and
closed-loop distribution networks involving DERs. Communication links were developed
between IEDs. The scheme was advantageous over traditional protection schemes as it
offered higher speed backup protection. However, the scheme was prone to communication
failure and was overall uneconomical. The authors in [13] developed a three-stage adaptive
protection scheme for MGs. In the first and second stages, offline and online calculations
of relay settings with DERs were performed, respectively. However, in the third stage,
the adaptive relay settings were used for real-time protection of MGs. In ref. [14], a hy-
brid scheme based on adaptive and differential protection was presented. The seamless
switching between the two schemes was obtained by a communication-assisted proactive
process. In ref. [15], a communication-aided adaptive protection scheme has been presented
to protect the islanded medium voltage CIDERs-based MG. The IEDs were employed to
measure the current and voltage waveform. The current signal was used to detect the faults,
while the voltage signal, along with the current signal, was used to identify the direction
of faults in the islanded MG. In ref. [16], Oureilidi and Konstantinos protected the MGs
by interchanging the control system of the converter. The faulty part was recognized by
evaluating the fault current supplied by each converter. The authors in [17] developed
a CPU-based centralized scheme to protect the radial and looped MGs in grid-tied and
islanded modes of operations. All protection functions such as detection, location, clas-
sification, and trip signal generation were performed in the CPU. The trip signals were
sent to relevant circuit breakers by the communication links. The fault components of
positive sequence current and impedance were used for fault detection and fault location,
respectively. A similar configuration was used for MG protection in [18]. However, the
faults were detected using a combination of over-current and under-voltage relays. The
fault location was achieved in two steps. In the first step, three buses closest to the fault
point were selected by comparing the positive sequence voltage of all buses. Finally, the
fault location index was calculated for all of the lines connected to the three buses; the line
with a negative fault index was considered to be a faulty line.
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Figure 1. A schematic classification of the MG protection scheme.

The above-mentioned protection strategies cannot protect the MGs in all operating
scenarios. The schemes that can protect MGs in all operating scenarios need a communica-
tion medium and synchronized measurement. Therefore, recently, many intelligent and
signal processing-based MG protection strategies have been developed against various
types of faults. In ref. [19], a statistical classifier-based differential protection strategy has
been presented for islanded MGs. Several features from current and voltage signals were
extracted at both terminals of a line in MGs. A data mining method was employed to
pick the most suitable features. Finally, a differential operator was utilized to the selected
features to identify and locate the faulty events in MGs. A time-frequency-based differential
protection strategy has been presented in [20] for medium voltage MG with loop and radial
network and CIDERs. In the suggested strategy, initially, the currents at both ends of the
line were retrieved. Then, the spectral energy content of S-transform-based contours was
computed. After that, the differential energy was obtained by calculating the difference
of spectral energy computed at both ends of a line. The scheme was upgraded in [21] by
suggesting the Hilbert-Huang transform for the calculation of the spectral energy instead
of the s-transform due to the benefits of the Hilbert-Huang transform. In ref. [22], the initial
travelling wave of current was extracted by mathematical morphology to identify the faults
and their location. The scheme was used for islanded MG only. The authors in [23] used the
wavelet transform to obtain the high-frequency components of current and voltage signals
for radial MG protection. F. Costa et al. [24] developed a boundary wavelet transform-based
protection for MGs. The time delay and instantaneous elements of the relay were calculated
in the wavelet domain. A modified over-current relay was then employed to detect the
faults in the grid-tied MG. In ref. [25], features were extracted by discrete wavelet transform.
The extracted features were input into a data mining algorithm to detect and classify the
faults in MGs. In ref. [6], the authors extracted various hidden features by using a matching
pursuit algorithm. The extracted features were then provided to four different classifiers
for fault detection and classification. Naive Bayes classifiers, along with the decision tree,
were utilized to distinguish the faults in an islanded MG [26]. The authors in [9] used
an interval type-2 fuzzy inference system to develop a new protection scheme for MG.
Various fuzzy rules were defined for fault detection and fault direction identification. In
ref. [1], a convolutional neural network-based protection scheme was presented for MGs.
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The scheme did not necessitate any external feature extractor for the intelligent classifier.
Three different convolutional neural network structures were developed for fault detection,
location, and classification. In ref. [27], discrete wavelet transform was employed to extract
several fault features from the current signal; the deep neural network was then used to
detect and classify the faults in MGs.

The above-presented protection schemes provided protection against various types
of faults in MGs. However, each scheme has some limitations; some of the schemes only
provided protection in one operating scenario. The scheme which provided protection in
all scenarios required a communication medium, and hence was prone to communication
failure. Additionally, some methods are only applicable to inverter-based DERs. Therefore,
it is vital to design a new protection scheme for MGs that upholds its performance for all
types of faults and operating conditions and DERs.

This paper presents a novel fast and intelligent strategy (NIPS) for the protection
of MGs with multiple DERs against fault. The proposed NIPS uses EWT and LSTM to
develop fault type, phase, and location information. First, the three-phase current signals
are measured and sampled at the relay point. Next, the EWT, which is an adaptive time-
frequency transform, is employed to decompose the current signals into EMs. Afterwards,
several statistical features are extracted from the EMs. Later, the extracted features, along
with the three-phase current measurements, are input into three different LSTMs for
developing fault type, phase, and location information. Finally, based on the developed
fault information, a trip signal is sent to the appropriate circuit breaker to isolate the faulty
section from the rest of the MG. The main contributions of the paper are as follows:

• Intelligent Protection Strategy: A NIPS based on empirical wavelet EWT and LSTM is
proposed that can protect MGs in all operating scenarios against short-circuit and high
impedance faults.

• Adaptive Feature Extraction: Unlike existing protection schemes, the proposed scheme
extracts the features from the fault signals using signal-adaptive filter banks. The
wavelet filter banks in the EWT are built based on the information contained in the
input signals.

• Communication-independent Strategy: The scheme does not require any communication
networks for fault detection, classification or location, and it can be applied to any MG
without significant modifications.

The rest of the paper is organized as follows: Sections 2 and 3 provide the details of
EWT and LSTM. The proposed NIPS is presented in Section 4. Section 5 provides the test
system and fault data generation. Simulation results are presented in Section 6. Finally, the
paper is synopsized in Section 7.

2. Empirical Wavelet Transform for Fault Signal Decomposition

The fault signals in the power system are non-stationary. Therefore, it is worthwhile
to use time-frequency analyzing techniques to obtain the most appropriate features. In
this study, the EWT transform is used to extract useful features from the three-phase
current signals. The EWT is an adaptive non-stationary time-frequency analysis tool which
decomposes a signal into EMs/frequency sub-bands [28,29]. Unlike a conventional wavelet
transform, the EWT uses the information of the analyzed signal to design signal adaptive
wavelet filters.

The three-phase current signals sampled by the protective relay are used as input to
the EWT. The EWT is applied to each phase current independently. In EWT, firstly, the
Fourier spectrum of the input signal is obtained. Then, the obtained Fourier spectrum is
divided into N adjacent segments using the EWT boundary detection method. Afterwards,
the empirical wavelets are defined as a band-pass filter on each segment by using the
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concept of Littlewoods-Paley and Meyer’s wavelet. Next, the empirical wavelets and
scaling functions are obtained by using the following equations [28]:

Ψi(ω) =


1 if |ω|≤ (1− ξ)ωm
cos(π

2 β(ξ, ωm)), if (1− ξ)ωm ≤
∣∣ω∣∣≤ (1 + ξ)ωm

0 Otherwise
(1)

ϕi(ω) =


1, if (1 + ξ)ωm ≤|ω|≤ (1− ξ)ωm+1
cos(π

2 β(ξ, ωm+1)), if (1− ξ)ωm+1 ≤
∣∣ω∣∣≤ (1 + ξ)ωm+1

sin(π
2 β(ξ, ωm)), if (1− ξ)ωm ≤

∣∣ω∣∣≤ (1 + ξ)ωm
0 Otherwise

(2)

where ω is the frequency; β and ξ are the parameters which ensure that the empirical
wavelet and scaling functions form a compact frame. These parameters are obtained by
using the equations given in ref. [28]. Afterwards, the approximation and detail coefficients
are determined from the inner product of the phase current with its corresponding wavelet
and scaling functions.

y0(t) = Wε
f (0, t) ∗ φ1(t) (3)

yk(t) = Wε
f (k, t) ∗ ψk(t) (4)

Finally, these coefficients are utilized to obtain the EMs from the phase current.
In this study, the first three EMs were used since most of the signal information is

available in these modes. The result of the EWT decomposition of the three-phase current
signal during a three-phase fault is shown in Figure 2a. It can be observed from the figure
that the variation in the EMs is significant during the fault. The EWT sub-bands of the
three-phase current signal for unbalanced faults (AG) are shown in Figure 2b. The figure
shows a significant variation in the EMs of the faulty phase (A-phase) as compared to the
healthy phases (B and C phase). Figure 2c shows the EMs of three-phase current when a
capacitor bank is switched at 0.25 s. It can be observed from the results show that there
are some variations in the EMs. However, these variations are minimal compared to the
fault cases.
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Figure 2. First three EMs obtained during (a) three-phase current; (b) AG fault; (c) capacitor switch-

ing event. 
Figure 2. First three EMs obtained during (a) three-phase current; (b) AG fault; (c) capacitor switch-
ing event.

From the above results, it can be concluded that the EWT decomposition can be
applied to the fault signals for effective feature extraction. The adaptive nature of EWT can
be useful to process the power system signals not only for transient analysis but also for
estimation purposes.
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Feature Extraction

Once the EMs of each phase are obtained, the next task is to extract discriminative
features from the EMs for better performance of the proposed NIPS. In the proposed NIPS,
several statistical features from the first three modes are extracted to develop the input
feature vector for the LSTM networks. The reason for selecting three modes is that most of
the signal information is available in the first three modes. Precisely, the following features
are calculated from the first three EMs of each phase.

1. The minimum value.
2. The maximum value.
3. The root-mean-square value.
4. The energy of the EM.
5. The standard deviation.
6. The kurtosis.
7. The skewness.
8. The entropy of the EMs.

These features are extracted from the first three Ems. Therefore, for each cycle of the
current 3 (EMs) × 8 (features) × 3 (phases) = 72 features are calculated. The generated
features are later input into the LSTM network to develop the fault information.

3. Long Short-Term Memory Networks

An LSTM is a useful deep learning network, which is applied for sequential data
processing. LSTM has the ability to extract long-term temporal features since it does not
have a gradient vanishing problem. LSTM networks are widely utilized in the classification
of time-series data due to their effectiveness [30,31].

The building block of LSTM networks is the memory units. The memory units are
composed of memory cells which have self-joints. This helps the LSTMs to extract wide-
range temporal features. The configuration of a simple LSTM memory unit is given in
Figure 3. The basic memory unit has one cell for memory and three gates: (1) a forget
gate, (2) an input gate, and (3) an output gate. The gates process the input data, update
the memory cell and control the output information. An LSTM network relates the input
and output sequences by computing the activation function for all nodes. In this study, the
formulations of all nodes are taken from [30].
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LSTM learn the relation between input and output datasets by supervised training.
Generally fully connected (FC) layers are used at the end of LSTM layers to develop high-
level decision logic for the extracted features. The FC layer contains a large number of
neurons that maps the input to the output by using activation functions [30].
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4. Proposed Protection Strategy

This paper proposes a NIPS for MGs using three-phase current data. The NIPS
employs EWT and LSTM networks to develop fault information. The proposed NIPS
has the ability to protect the looped and radial MGs against all types of short-circuit and
high impedance faults in all operating scenarios. Firstly, the proposed NIPS takes three-
phase currents at a relay as input. Then, the input signal at the relay point is processed
through a second-order low-pass Butterworth filter with a cut-off frequency of 1500 Hz
for antialiasing. The reason of selecting the value of 1500 Hz is that the 25th harmonic is
the highest component of interest in the power system. Afterwards, the signal is sampled
at a sampling rate of 3840 Hz. Next, the sampled signal is decomposed into EMs by EWT
for feature extraction. Later, the extracted features, along with the three-phase current
measurements, are input into three different units for developing fault type, phase, and
location information. Finally, based on the developed fault information, a trip signal is sent
to the appropriate circuit breaker to isolate the faulty section from the rest of the MG.

The flow chart of the proposed NIPS is given in Figure 4. The proposed FIPS has four
key stages: signal measurement; fault type detection (FTD); fault classification; and fault
location estimation. The subsequent subsections explain each stage of the proposed NIPS
in detail.
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4.1. Fault Type Detection Unit

The FTD unit is responsible for detecting the fault type in the MGs. The schematic
diagram of the FTD unit is shown in Figure 5. This input of this unit is the three-phase
current which is classified among no-fault, three-phase fault, and unbalanced fault at the
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output. Each output has a 0/1 value, which denotes the status of outputs according to the
following equation:

FDTm =

{
1, if the netwrok detects output type m
0, otherwise

(5)

where FDTm denotes the output status of the mth fault type. The FTD unit employs three
LSTM layers for temporal feature extraction and EWT for statistical feature extraction from
the three-phase current signal. Among the three LSTM layers, the first layer maps the
time-domain current signal into higher dimension space, whereas the next two layers are
used to extract the long and short-term temporal dependencies. These LSTM layers are
constructed using LSTM memory units. The dimensions of the layers are selected based on
the number of input samples and the number of hidden neurons. After extracting features,
a depth concatenation layer is used to combine LSTM-based features with EWT-based
features. Afterwards, the features are abstracted by three FC layers. The number of hidden
neurons in the first two FC layers is selected by performing extensive simulations, whereas
the three hidden neurons are used in the last FC layer (which corresponds to three outputs).
To avoid the risk of over-fitting, a dropout layer is employed after the first two FC layers,
which exclude some features (30% in this study). The excluded features do not contribute
to the output estimation. Lastly, a Softmax layer is used, which provides the most probable
fault type at the output.
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4.2. Fault Classification Unit

The fault type detection unit classifies the input signal among no-fault, three-phase
fault, and unbalanced fault conditions. If the fault is detected as an unbalanced fault, then
the fault classification unit is triggered. The fault classification unit employs LSTM and
FC layers for fault classification. The structure of the fault classification unit is similar to
that shown in Figure 5, except for the last FC layer. The block diagram of the modified
structure is shown in Figure 6a. The last FC layer of the fault classification unit has six
neurons, which corresponds to six unbalance faults. Each output has 0–1 indicators, which
represent the status of each unbalance fault.

Fu =

{
1, if unbalanced fault u is detected
0, otherwise

(6)
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Figure 6. Schematic diagram of (a) the fault classification unit and (b) the fault location estima-
tion unit.

The fault classification unit works only for asymmetrical faults and classifies the input
three-phase current into one of the six unbalanced faults.

4.3. Fault Location Estimation Unit

To reduce the blackout time and to increase the system repair, the precise location of
the fault is important. The fault location estimation unit is developed to obtain the exact
fault location in the proposed NIPS. This unit is triggered only if the fault type detection
unit detects a three-phase or unbalanced fault in a MG. The fault location estimation unit
also has a similar structure to that of the fault type detection unit except for the last FC
layer and Softmax layer. The modified structure is shown in Figure 6b. The last FC layer
in this unit has only one neuron as the regression layer relates the input data sample to
continuous value. The objective function to be optimized during the training process of a
network with a regression layer is the mean square error (MSE). The MSE can be calculated
by using the following equation:

MSE =
∑n

i=1 (Lactual − Lest.)2

n
(7)

Here, MSE denotes the mean square error, n is the number of training samples, Lactual
is the actual fault location and Lest. is the estimated location.

The fault location estimation unit uses a three-phase current at its input and maps it to
one output. The output specifies the estimated percentage location of a fault in the MGs
from the relay point.

5. Microgrid Test System and Fault Data Generation

To authenticate the efficacy of the proposed NIPS, several fault and non-fault con-
ditions are investigated on IEC MG. The single-line diagram of the IEC MG is shown in
Figure 7. The network and load-related data have been taken [32]. The nominal voltage
of the system is 25 kV. The system integrates two CIDERs at buses B-4 and B-6 and two
SBDERs at buses B-2 and B-3 by using step-up transformers. Three circuit breakers are
used to create different working scenarios in the MG.
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Figure 7. IEC Microgrid.

To train the LSTM layers network with supervised learning, suitable prior data that
represents fault/no-fault instances is important. In this study, the IEC MG was simulated
in MATLAB/SIMULINK to produce the fault data for the training process of the LSTM
networks. Simulations were executed for all ten types of faults under diverse fault locations,
operating scenarios, network configuration, fault resistances, and loads. The details of the
simulated fault conditions and no-fault conditions have been given in Tables 1 and 2.

Table 1. Simulated fault scenarios on the IEC MG test system.

Details of Simulated Condition Count

Fault on All distribution lines 5
Fault at 20%, 35%, 50%, 65%, and 80% of line. 5
Fault with 0.1, 20, 45, and 75 ohms fault resistances 4
Fault with an inception angle of 0◦, 45◦, 90◦, and 180◦. 4
Configration (looped/radial) 2
Operating modes(islanded/grid-tied) 2
Fault types 10
Total Fault Cases 16,000

Table 2. Simulated non-fault scenarios on the IEC MG test system.

Details of Simulated Condition Count

Sudden load change. 6
Modes of operation (grid-tied/islanded) 2
Configration (radial/looped). 2
Capacitor switching at PCC and load buses. 6
DER integration percentage 2
Total no-fault cases 288

A total of 288 non-fault and 16,000 fault cases were generated in simulations. In each
case, the three-phase currents signals were obtained at the relay point and then given to the
proposed NIPS to obtain fault information. The obtained simulated data were randomly
separated into training and testing datasets in the ratio of 3:1. The training dataset was
used to train the learnable biases and weights of LSTM and FC layers.
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6. Simulation Results and Discussion
6.1. Performance of Fault Type Detection

The two datasets obtained by simulation various fault and non-fault conditions were
employed to train and test the LSTM network of the FTD unit. In the training phase,
10,080 samples of unbalanced faults, 1120 samples of three-phase faults, and 230 samples
of no-fault (NF) were used. To remove the bias in the input samples, the non-fault samples
and three-phase fault samples were replicated. The bias and weights of the structure were
trained using the Adam optimization approach with a mini-batch size of 64. The percentage
loss and accuracy during the training process of the fault type detection unit are shown in
Figure 8. The figure shows that the training process converged fast within 23 epochs.
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A confusion matrix is an effective method to demonstrate the performance of a mul-
ticlass intelligent classifier. The confusion matrices of the FTD unit during the grid-tied
and islanding modes of operation are shown in Figure 9. The confusion matrix of grid-tied
mode shows that all samples of the no faults and three-phase cases were correctly classified.
In the case of unbalanced faults, 4 data samples, which constitute 0.2% of total data, were
misclassified as a three-phase fault. Similarly, only one data sample of unbalanced faults
was misclassified to no fault. Similarly, the confusion matrix of islanded mode depicts
that 4 of the unbalanced fault data samples were incorrectly classified as a three-phase
fault, whereas two three-phase fault data samples were miss-detected as unbalanced faults.
In the case of the no-fault, the prediction accuracy is 100% (i.e., no other case was miss
detected as NF and vice versa). The overall prediction accuracy of the FTD unit in grid-tied
and islanded mode was 99.8% and 99.76%, respectively.
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Energies 2022, 15, 7995 12 of 17

The results of the FTD unit of the proposed NIPS on each line of the IEC MG have been
shown in Table 3. In the islanded mode, the FTD unit of NIPS attained 100% fault/no-fault
accuracy. Furthermore, the results show that the proposed NIPS has the ability to give
correct fault type information in most of the fault events.

Table 3. FTD unit accuracy of the proposed FIPS on the IEC MG system.

MG Line

Islanded Mode Grid-Tied Mode

Fault Type
Accuracy

Fault vs No-Fault
Accuracy

Fault Type
Accuracy

Fault vs No-Fault
Accuracy

DL-1 99.63% 100.0% 99.83% 100.0%
DL-2 99.54% 100.0% 99.94% 100.0%
DL-3 99.78% 100.0% 99.78% 99.92%
DL-4 99.65% 100.0% 99.70% 100.0%
DL-5 99.87% 100.0% 99.57% 100.0%

Average
Accuracy 99.70% 100.0% 99.76% 99.97%

6.2. Performance of Fault Classification Unit

The fault classification unit is activated when the FTD unit identifies an asymmetrical
fault in the MG. The LSTM network of this unit was trained by using 2240 samples of
each unbalanced fault. The loss and accuracy of the fault classification network during
the training process are shown in Figure 10. The figure demonstrates that the training
converged within 35 epochs.
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The performance of the fault classification unit during islanded and grid-tied modes is
presented in Figure 11. In most of the unbalanced fault events, the fault classification unit
of the proposed NIPS predicted an accurate class for the input data samples. Overall classi-
fication accuracy of 99.3% in grid-tied mode was observed, and only 15 out of 2160 fault
events had incorrect classification information. In the islanded mode, the fault classification
accuracy was more than 99.2%, and only 18 test samples had wrong fault classification.
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Figure 11. Confusion matrices of the testing dataset for fault classification unit during: (a) grid-tied
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The results of the fault classification unit for each distribution line of the IEC MG are
provided in Table 4. The results depict that the proposed NIPS accurately classified the
asymmetrical faults in both islanded and grid-tied modes.

Table 4. Fault classification accuracy of the proposed FIPS on the IEC MG system.

Distribution Line Accuracy in Islanded Mode Accuracy in Grid-Tied Mode

DL-1 98.62% 98.75%
DL-2 99.18% 99.55%
DL-3 99.70% 99.85%
DL-4 99.28% 99.02%
DL-5 99.05% 99.38%

Average Accuracy 99.2% 99.3%

6.3. Performance of Fault Location Estimation Unit

This unit is triggered when the FTD unit identifies a fault in the MG. In the fault
location estimation unit, the LSTM structure was trained to minimize the root-MSE between
actual and estimated locations. To confirm the effectiveness of the proposed fault locator
of NIPS, exhaustive simulations were executed at different locations in each distribution
line and the results are shown in Table 5. The results demonstrate that the proposed NIPS
provided a significantly accurate location of faults with a small error of 3.29% in islanded
mode and 3.01% in grid-tied mode. This small error is acceptable as the length of the
distribution lines in MGs is generally less than 20 km.

Table 5. Perfomance of the fault location unit of the proposed NIPS on each line of the IEC MG.

Distribution Line Location Estimation Error in
Islanded Mode

Location Estimation Error in
Grid-Tied Mode

DL-1 3.28% 3.08%
DL-2 3.78% 3.68%
DL-3 3.01% 2.81%
DL-4 3.15% 2.95%
DL-5 3.25% 3.15%

Average Error 3.29% 3.01%
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6.4. Comparison with Existing Intelligent Schemes

Unlike the existing intelligent protection methods, the proposed NIPS uses signal
adaptive filter banks to extract statistical features from the three-phase current signals. To
confirm the effectiveness of the proposed NIPS, the obtained results are compared with
the existing intelligent schemes using the same IEC MG. For this purpose, Convolutional
neural network (CNN) [1], decision tree (DT) and support vector machine (SVM)-based
schemes were selected [32]. Besides accuracy, two additional parameters, dependability
and security, were used in the performance comparison. The parameters were obtained by
the formula given in ref [1,32].

Table 6 provides the comparison of the proposed NIPS with CNN, SVM, and DT-
based protection schemes. It is evident from the comparison results that the SVM has
99.03% detection accuracy (with 100% dependability and 98.06% security) in islanded mode
whereas it has 98.33% accuracy (with 99.6% dependability and 97.06% security) in the
grid-tied mode. For the same cases, CNN-based schemes provide 99.58% fault accuracy
(with 98.89% dependability and 98.23% security) in islanded mode and 99.65% accuracy
(with 100% dependability and 100% security) in grid-tied mode. Similarly, the DT was
99.02% accurate (with 99.8% dependability and 98.24% security) in the grid-tied mode and
99.47% accurate (with 99.60% dependability and 99.35% security) in islanded mode. The
SVM and DT-based protection schemes did not offer fault location information. Moreover,
they are prone to communication failure. On the other hand, the proposed NIPS offered an
accuracy of 99.97% and security of 100% in both modes of operation.

Table 6. Performance comparison of the proposed NIPS with existing intelligent schemes.

Dependability Security Accuracy

Islanded Mode Grid-Tied
Mode Islanded Mode Grid-Tied

Mode Islanded Mode Grid-Tied
Mode

SVM-based MG
Protection 100% 99.60% 98.06% 97.06% 99.03% 98.33%

DT based MG
Protection 99.60% 99.80% 99.35% 98.24% 99.47% 99.02%

CNN-based
MG Protection 98.89% 100% 98.23% 100% 99.58% 99.65%

Proposed NIPS 99.97% 99.66% 100.0% 100.0% 99.97% 99.97%

To validate the effectiveness in terms of operating time, the speed of operation of
the proposed NIPS was also compared with already existing schemes. For this purpose,
superimposed reactive energy (SRE) [11], interval type-2 fuzzy logic system (IT2FLS) [9] and
CNN [1]-based MG protection schemes were selected. The comparison is given in Table 7.
It can be observed from the table that the proposed NIPS provided better performance in
terms of operating time as compared to SRE and IT2FLS-based schemes. Although the
operating time of the proposed NIPS is the same as compared to CNN based protection
scheme, the accuracy, dependability, and security are higher.

Table 7. Comparison of operating time of the proposed NIPS with existing schemes.

Scheme Name
Operating Time

Islanded Mode Grid-Tied Mode

SRE based MG Protection 3 to 4 cycles 3 to 5 cycles

IT2FLS based MG Protection 2 cycles 1 to 2 cycles

CNN-based MG Protection 1 cycles Less than 1 cycle

Proposed NIPS 1 cycles Less than 1 cycle
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In summary, the proposed NIPS has the ability to present fast and accurate fault
type, phase and location information for MGs in different operating scenarios without any
communication.

7. Conclusions

This paper presents a NIPS for MGs based on EWT and LSTM networks. The three-
phase currents measurement were the input into the proposed NIPS, which processed
them to provide complete information about the fault type, class, and location for the MGs.
Precisely, the three-phase current signal was preprocessed using EWT, and various kinds
of statistical features were obtained. Then, the phase currents, along with the extracted
features, were used as input to the developed LSTM networks to detect, classify, and locate
the faults within the MGs. To evaluate the effectiveness of the proposed scheme, exhaustive
simulations were carried out on a standard IEC MG test system. The results demonstrated
that the proposed NIPS successfully developed correct fault information for all of the lines
in the MG. The fault type detection unit of the proposed NIPS achieved an overall accuracy
of 99.76% in the grid-tied mode and 99.70% in the islanded mode. The fault classification
accuracy of the proposed scheme was 99.30% in both modes of operation. The proposed
scheme estimated quite precise fault location for all distribution lines of the MG, resulting
in 3.01% and 3.29% mean square error for grid-tied and islanded modes, respectively. The
scheme provided exact fault type, phase, and location information as compared to the
advanced fault detection schemes in the literature for a similar test system. In summary,
the proposed NIPS can be used to detect, classify, and locate different types of faults within
radial and looped MGs in both modes of operation, which will ensure the safe operation of
MGs.
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Abbreviations
The following abbreviations were used in this paper.
CIDERs Converter interfaced distributed energy resources
CNN Convolution neural network
CPU Central processing unit
DERs Distributed energy resources
DL Distribution line
DT Decision tree
EDNs Electrical distribution networks
EWT Empirical wavelet transform
EMs Empirical modes
FC Fully connected
FTD Fault type detection
IEC International Electrotechnical Commission
IEDs Intelligent electronic devices
LSTM Long-short term memory network
MG Microgrid
MSE Mean square error
NIPS Novel intelligent protection scheme
NF No fault
SBDERs Synchronous-based distributed energy resources
SVM Support vector machine
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TP Three phase faults
UF Unbalanced faults
ω frequency in rad/sec
Ψi(ω) Empirical wavelet function
φiω Empirical scaling function
β, ξ Parameters which ensure the compact frame for empirical wavelet and scaling function
y0(t) Approximation coefficient at time t
yk(t) Kth detailed coefficient at time t
FDTm Output status of the mth fault type
Lactual Actual fault location
Lest. Estimated fault location
n Number of training samples
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