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Abstract: This paper presents a characteristic analysis and experimental verification for predicting
the electromagnetic losses in high-speed permanent magnet synchronous motors. To predict the
operating characteristics (such as speed and input current), dynamic modeling is conducted that
combines models for the space vector pulse width modulation (SVPWM) inverter and high-speed
permanent magnet synchronous motor (HPMSM). By applying the predicted harmonic currents
to the electromagnetic analysis, DC and AC copper losses of the stator winding, and eddy current
loss of the rotor sleeve and rotor permanent magnet, are comprehensively analyzed using the finite
element (FE) method. In particular, by analyzing the magnetic field behavior of magnetic flux density
according to harmonics, a core loss analysis technique was presented. The validity of the hybrid
analysis, which combines the stator copper loss and rotor eddy current loss derived from the FE
analysis and the proposed core loss analysis, was verified through comparison with the experimental
results under various operating conditions. Compared with the experimental results, the error of
total losses using the hybrid analysis with a sinusoidal current was about 47.39%, and total losses
using the hybrid analysis with a harmonic current was significantly improved to within 3.7%.

Keywords: dynamic modeling; electromagnetic losses; experimental verification; high-speed
permanent magnet synchronous motor

1. Introduction

High-speed permanent magnet synchronous motors (HPMSMs) are widely employed
in direct drive applications (such as compressors, gas turbines, distributed power genera-
tion, and flywheels) due to their advantages of system compactness, high specific power,
high efficiency, light weight, and easy maintenance [1]. However, when developing the
HPMSM, design, optimization, and multidisciplinary analysis processes considering oper-
ating temperature, reliability, efficiency, and maintainability are required [2]. Moreover, an
accurate prediction of electromagnetic losses is essential to analyze the efficiency, accurate
operating temperature, insulation stability, and demagnetization of the permanent magnet
(PM) [1–3]. Electromagnetic losses consist of core losses in the stator core, copper losses in
the stator winding, and eddy current losses in the rotor sleeve and PM, which are conduc-
tive materials. These electromagnetic losses increase significantly in HPMSMs due to their
high operating frequency, magnetomotive force (MMF) harmonics of the stator winding
current, slotting effect, and time harmonics of the stator current caused by the pulse width
modulation (PWM) inverter [4–7]. Although the magnitude of the harmonic components is
lower than that of the fundamental components, since the harmonic frequencies are high,
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the electromagnetic losses caused by the harmonics have a significant effect on overall
electromagnetic losses.

This paper presents a comprehensive analysis of the stator core losses, stator copper
losses, and rotor eddy current losses of HPMSMs considering the harmonic current sup-
plied from the space vector PWM (SVPWM) inverter. First, to predict the harmonic current
generated from the SVPWM inverter, a mathematical model combining the HPMSM mod-
eling (based on the electromagnetic circuit parameters) and the SVPWM inverter results
is established using MATLAB-Simulink. To accurately predict the harmonic current, the
flux linkage and inductance considering the rotor shaft and stator end winding leakage
are analyzed. Second, an electromagnetic analysis is performed by applying the harmonic
current calculated according to the load conditions for each operating speed from the two-
dimensional finite element (FE) analysis. The electromagnetic losses generated when the
harmonic current is applied are then compared with the electromagnetic losses generated
when a sinusoidal current is applied, and the loss components are comprehensively ana-
lyzed. The stator copper losses were divided into DC and AC copper losses and the sleeve
and PM (which are conductive materials) were expressed as rotor eddy current losses.
In particular, the stator core loss was derived using the modified Steinmetz equation by
analyzing the flux density inside the stator for each harmonic. Finally, to verify the validity
of the proposed hybrid analysis, which combines the stator copper loss and rotor eddy
current loss derived from the FE analysis and the proposed core loss analysis, prototypes
and an experimental setup were constructed.

To measure the mechanical losses, two prototypes were manufactured that depended
on the presence or absence of PM magnetization, and no-load core losses and mechanical
losses were separated through a no-load test. By applying the measured mechanical
loss, the analysis results and experimental results were compared and the validity of the
proposed analysis method was determined from the presented results.

2. High-Speed Permanent Magnet Synchronous Motor with SVPWM Inverter
2.1. Design Specifications of the HPMSM

Figure 1 displays the HPMSM with its concentrated winding in two parts: the rotor
and stator assemblies. The rotor assembly contains PMs and a shrink-fit sleeve, while the
stator assembly contains a stator core, winding, and housing. Table 1 presents the design
specification of a manufactured HPMSM with a concentrated winding.
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Slot opening 3 mm Airgap length 1 mm 

Figure 1. Structure of the HPMSM: (a) analysis model and (b) prototype.

As shown in Table 2, the flux linkage, inductance, and resistance of the HPMSM were
calculated using commercial FE analysis software (ANSYS Electronics Desktop 2022R2)
and then applied to the dynamic modeling. To improve the accuracy of harmonic current
prediction, flux linkage and inductance were analyzed considering the effects of the stator
end winding and rotor shaft.
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Table 1. Specifications of the HPMSM.

Parameters Values Parameters Values

Pole number 2 Shaft outer diameter 16 mm
Slot number 6 Stack length 84 mm
Slot opening 3 mm Airgap length 1 mm

Rotor outer diameter 37 mm Stator outer diameter 90 mm
PM thickness 8.5 mm Turns per phase 72

Sleeve thickness 2 mm Parallel branches 2
Material of stator core 20PN1500 Material of PM Sm2Co17
Material of shaft core STS420J2 Material of sleeve Inconel

Table 2. Electrical circuit parameters of the HPMSM.

Parameters Analytical and FE Analysis Measurement

Phase resistance [mΩ] 52.7 53.2

Inductance [mH]
Self 0.334 0.34

Mutual 0.23 0.26
Fluxlinkage [Wb] 0.0389 0.0387

2.2. Dynamic Simulation Model with HPMSM and SVPWM Inverter

In HPMSM drive systems, the motor is driven by a PWM voltage source inverter
to achieve vector control. The PWM method chops the DC voltage to obtain the desired
average current over a PWM period. In addition to the desired average voltage, the PWM
method generates a high-frequency current harmonic by the carrier frequency. This high-
frequency current harmonic is very important in HPMSMs because it induces AC losses in
the windings, core losses in the electrical steel, and eddy current losses in both the PM and
the sleeve.

To consider the previously mentioned effects, a block diagram of the dynamic simula-
tion can be constructed, as shown in Figure 2. The overall system includes two closed loops:
an inner current control loop and an outer speed control loop. When a reference speed
(Ns*) is given, the system automatically compares it with the actual speed (Ns). When Ns or
the load torque (TL) changes, the reference d-q currents Id

e* and Iq
e* immediately adjust the

speed and torque. Simultaneously, Ns should equal Ns* and the motor operation achieves a
steady-state characteristic. Moreover, the current loop forces the actual currents to track the
commanded current [8–10]. The purpose of the PWM inverter is to implement a sinusoidal
three-phase AC voltage using the DC link voltage. To obtain a sinusoidal three-phase
voltage from a three-phase PWM inverter, a carrier wave is implemented from the time
counter of the digital signal processor (DSP) and is compared with the reference voltage
signal. The frequency of the carrier wave is known as the carrier frequency. Due to the
limitations of power electronics and material technology, the carrier frequency is limited to
10–15 kHz. Therefore, the current contains harmonic components, and the main harmonic
orders of the phase currents are described in [5]. For example, in the case of 25,000 rpm
and fc = 12 kHz, fc/f 0 = 24. The orders of the main harmonics are presented in Table 3.

Based on Figure 2, dynamic simulation of the HPMSM was implemented using MAT-
LAB Simulink. The operating current applied to the stator winding by the PWM inverter
according to various speed and load conditions can be obtained through a dynamic simula-
tion. The experimental setup to verify the validity of the presented dynamic modeling and
proposed analysis of the HPMSM is presented in Figure 3, comprising the driving and load
HPMSM, inverter with controller, equipment for measurements (such as torque sensor and
power analyzer), and resistive load.
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Figure 2. Block diagram for dynamic simulation of the HPMSM.

Table 3. Major harmonics order of phase current by PWM.

i (2i − 1)fc/f 0 − 2 (2i − 1) fc/f 0 + 2 (2i − 1) fc/f 0 − 4 (2i − 1) fc/f 0 + 4

1 26.8 30.8 24.8 32.8
2 84.4 88.4 82.4 90.4
3 142 146 140 148

i 2i fc/f 0 − 1 2i fc/f 0 + 1 2i fc/f 0 − 5 2i fc/f 0 + 5

1 56.6 58.6 52.6 62.6
2 114.2 116.2 110.2 120.2
3 171.8 173.8 167.8 177.8

where i = 1, 2, 3, ..., fc is the carrier frequency and f 0 is the fundamental frequency [5].
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Figure 3. Performance evaluation system.

Figure 4 shows the current waveform (measured experimentally) and the predicted
current waveform through the dynamic simulation under the rated load condition.

Compared with reference [10], the current harmonics were accurately predicted by
accurately analyzing the flux linkage and inductance considering the stator end winding
and rotor shaft. The estimated current was similar to the measured current in terms of
the magnitude and harmonic components. From a comparison of the analysis results and
experimental results, the phase current obtained through the dynamic simulation presented
in this paper was considered valid. When the rotor speed reached the steady-state speed,
the steady-state current was measured and the current profiles for all operating conditions
were obtained. The operating current (including harmonics) is very useful when analyzing
the electromagnetic losses of HPMSMs.
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Figure 4. Comparison of current waveforms and fast Fourier transform (FFT) analysis results:
(a) estimated and (b) measured currents.

3. Electromagnetic Loss Components with Harmonic Current

In this paper, an electromagnetic loss analysis was performed according to the appli-
cation of the sinusoidal and harmonic currents to the HPMSM. By applying the current
predicted from the dynamic model to the time-stepping FE model, the copper losses of the
stator, core losses of the stator, and eddy current losses of the rotor were calculated.

3.1. Copper Losses in the Stator Winding

Copper losses in the stator winding can be divided into DC and AC losses. Copper
losses due to DC resistance can be expressed as follows according to the magnitude of the
current (Iph), DC resistance (Rdc), and number of phases (m):

Pcu,DC = mI2
phRdc, (1)

where the DC resistance is determined by the winding specifications, stator dimensions,
and operating temperature [11,12].

The AC copper losses are affected by the frequency of the current applied to the stator.
The skin effect can be explained as follows: when the frequency of the current flowing in
the conductor increases, the current concentrates on the surface of the conductor, which
reduces the effective area of the conductor, increasing the copper loss. The skin depth
representing the effective radius of the conductor can be expressed by the frequency of the
current, the conductivity of the conductor, and the permeability of the vacuum [12].

δ =

√
1

π f µ0σ
, (2)

where f is the frequency of the current, m0 is the permeability of the vacuum, and s is the
electrical conductivity of the conductor.

The proximity effect occurs when there are two or more conductors. The analytical
formula for the AC loss analysis considering the proximity effects of the conductors in
HPMSMs is as follows [12]:

Pcu,AC = Pcu,DC(kd − 1), (3)

kd = ϕ(ξ) +

[
m2 − 1

3
−
(m

2
sin
(γ

2

))2
]
+ ψ(ξ), (4)
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ϕ(ξ) = ξ
sinh(2ξ) + sin(2ξ)

cosh(2ξ)− cos(2ξ)
, (5)

ψ(ξ) = 2ξ
sinh(ξ)− sin(ξ)
cosh(ξ) + cos(ξ)

. (6)

Here, x represents the effective conductor height considering the skin depth; g rep-
resents the phase angle difference between the upper and lower layers in a double-layer
winding arrangement; m is the total number of identical conductors in the layers; and
kd is a coefficient indicating the magnitude of the total copper loss compared to the DC
copper loss.

Although the analytical method of studying AC losses according to a single frequency
increase has been employed [13–17], AC losses due to the magnetic field caused by the PM and
harmonic current of the stator winding should be analyzed through an electromagnetic analysis.

Figure 5 displays the flux line and current density of a stator winding according to
the applied current waveform. The distribution of the current density is different for each
conductor according to the magnetic flux line, and the distribution of the current density
differs significantly when a harmonic current is applied. Since the current is not uniformly
distributed in the conductor, copper losses increase significantly when a harmonic current
is applied to the HPMSM, as shown in Figure 6.
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3.2. Eddy Current Losses in the Rotor Sleeve and PM

As mentioned previously, the PM material is Sm2Co17, the retaining sleeve material
is Inconel 718, and their conductivities are 1.212 × 106 and 8.345 × 105 S/m, respectively.
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Eddy current losses in the rotor are caused by the time-varying magnetic vector potential
in the conductive material, while there are three causes of the time-varying magnetic vector
potential [12,18,19]. First, the spatial harmonics of the magnetic flux density generated from
the PM are distorted by the tooth-slot structure, which generates eddy currents. Second, the
distortion component of the spatial harmonics of the magnetomotive force generated from
the stator windings by the stator winding arrangement also causes eddy currents. Finally,
the current applied to the stator with high-order time harmonics by the PWM inverter
causes eddy currents in the rotor region.

The eddy current losses generated in the rotor of an HPMSM can be calculated as
follows [12,18,19]:

Protor = ∑
k

∫
Vrot

J2
k

σrot
dVrot, (7)

where σrot is the conductivity of different parts of the rotor, Jn is the eddy current density of
the kth time harmonic, and Vrot is the volume of the material.

Since eddy current losses caused by the slot opening under no-load conditions are
almost negligible, we analyzed the eddy current loss of the HPMSM to which the sinusoidal
and harmonic currents have been applied. The phenomena described previously can be
demonstrated by the eddy current distribution in the rotors with the current harmonics, as
displayed in Figure 7.
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and harmonic currents have been applied. The phenomena described previously can be 

demonstrated by the eddy current distribution in the rotors with the current harmonics, as 

displayed in Figure 7. 
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Figure 7. Distribution of eddy current density according to the current waveform: (a) sinusoidal and
(b) PWM current.

As shown in Figure 1, the length (lact) of the rotor sleeve is designed to be longer in the
axial direction than the length (lstk) of the stator core of the HPMSM to couple with the shaft.
Since the length of the sleeve does not affect the analysis of the electromagnetic performance
(such as back electromotive force, inductance, and torque), the results for the 2D and 3D
electromagnetic analyses are similar. However, since the current path changes in the rotor
loss analysis, a 3D analysis is required to analyze the eddy current losses. The analysis of
the eddy current loss density according to the sinusoidal current and PWM current applied
to the stator winding‘ is displayed in Figure 8. As described previously, when the PWM
current is applied to the stator winding, the eddy current loss is significantly enhanced due
to the higher-order time harmonics.

It is important to note that it is not feasible to analyze the eddy current losses using
direct 3D FE analysis for the many operating points. Therefore, we performed the eddy
current loss analysis according to the operating point of the HPMSM by applying a semi-3D
analysis method that combines the results of the simplified static FE analysis and the 2D
eddy current analysis results to predict the eddy current losses of the rotor [20].
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3.3. Core Losses in the Stator Core

Stator core losses consist of hysteresis losses, eddy current losses, and excess eddy cur-
rent losses [21–25], which we analyzed by using the modified Steinmetz method. Figure 9
shows the calculation process of the stator core loss considering the magnetic field behavior
and harmonics. Here, P2 and P4 of the shoe region, P2 of the tooth region, and P1 and P8
of the yoke region represent the analysis points of the magnetic flux density, which were
arbitrarily selected in each region of the stator.
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Figure 9. Calculation process of core losses considering magnetic field behavior and harmonics.

First, curve fitting was performed on core loss data according to the magnetic flux
density and the frequency provided by electric steel manufacturers [21]. Second, the
hysteresis loss coefficient (kh), eddy current loss coefficient (ke), and excess eddy current
loss coefficient (ka) were derived as a function of the frequency [22,23]. Third, the magnetic
flux density in the stator shoe, tooth, and yoke regions was analyzed according to the
sinusoidal and harmonic currents applied to the stator winding. As shown in Figure 10,
the elliptic loci of the flux density in the normal and tangential directions were derived.
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The alternating and rotating magnetic fields can be determined from the major and
minor axes of the elliptic magnetic flux density, and the axis ratio (Bmin/Bmax) can be
calculated according to the loci of the flux density through the FFT analysis for each
harmonic [22,23]. When the axis ratio is >0.1, it is considered a rotating magnetic field, and
when the axis ratio is ≤0.1, it is considered an alternating magnetic field.

Finally, the modified Steinmetz equation, which considers the flux density behavior
and the harmonic components, is expressed as follows [22–25]:

Pcore = ∑
n=1

Vcoreρsteel

[
Aconst,n

(
kh,n(n f )B2

m,n + ke,n(n f )2B2
m,n + ka,n(n f )1.5B1.5

m,n

)]
. (8)

Here, Vcore is the volume of the stator core, ρsteel is the mass density of the electrical
steel sheet, n represents the harmonic order, and Aconst compensates for any inaccuracies in
the core loss coefficients derived based on the Epstein data. The values of Aconst are 1 and 2
in the alternating and rotating magnetic field regions, respectively.

Figures 11 and 12 display the core loss results according to the analysis region (stator
shoe, tooth, and yoke) and main frequency components when the sinusoidal and harmonic
currents are applied to the HPSMM. The core loss of an HPMSM to which a sinusoidal
current is applied has a significantly higher fundamental component value compared to
other harmonics.
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current applied to the stator winding: (a) stator shoe, (b) stator tooth, and (c) stator yoke.

When the harmonic current is applied to an HPMSM, the fundamental current com-
ponent and the 27th, 57th, 58th, and 59th orders included in the current harmonic cause
significant core losses in each region. Moreover, from the analysis results, the electromag-
netic losses (including stator copper losses, core losses, and rotor eddy current losses)
increase significantly when the harmonic current is applied to HPMSMs.

4. Experimental Setup and Performance Evaluation

To verify the proposed analysis method, a back-to-back experimental setup was con-
structed using manufactured HPMSMs and an inverter, load generator and load resistors,
speed and torque sensors, an oscilloscope, and a power analyzer. In particular, to measure
the mechanical losses, a rotor with a magnetized PM and a rotor with a non-magnetized
PM were manufactured and assembled with a stator.

4.1. No-Load Test

A no-load test was performed to verify the mechanical and no-load core losses accord-
ing to the speed of the manufactured HPMSM. The experimental system for conducting
the no-load test is presented in Figure 13 [26,27]. The HPMSMs with magnetized and non-
magnetized PMs were rotated according to the speed of the driving motor, and the generated
torque and speed were measured using a torque-speed sensor with a power analyzer.
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Figure 13. Schematic of performance evaluation system for the no-load test.

Figure 14 displays the loss characteristics according to the speed under the no-load
condition. First, experiments were conducted in the no-load condition on a rotor with a
non-magnetized PM. Here, only mechanical losses (Pmech) occurred in the HPMSM because
there was no magnetic field in the rotor. Then, experiments were performed under no-load
conditions on a rotor with a magnetized PM, and the no-load loss (Pnoload) was measured.
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Figure 14. Mechanical and core losses under no-load conditions.

When rotating an HPMSM with a magnetized PM, the core loss (Pcore) under no-load
conditions (predicted from the measured torque and speed) can be expressed as the no-load
loss (Pnoload) and the mechanical loss (Pmech).

Pcore = Pnoload − Pmech. (9)

Since the HPMSM with non-magnetized PM has no magnetic field in the rotor, the
measured no-load loss represents the mechanical loss (Pmech). To verify the validity of the
proposed core loss analysis, the commercial FE analysis results, proposed loss analysis
results, and experimental results were compared according to the speed, as shown in
Figure 14. Since the mechanical loss measured according to the speed from the experimental
method proposed from the experimental results was valid, it was applied equally to the
load analysis and experiment to measure the overall loss and efficiency.

4.2. Load Test

The mechanical loss according to speed was measured from the no-load experiment.
Due to the range and capacity limitations of the load resistors connected to the generator,
the output was only measured at one point for each speed. The maximum current of an
inverter was 20 Arms, and the resistive load for each phase was fixed at 6.67 Ohm. The load
test was performed using the performance evaluation system depicted in Figure 3.

As shown in Figure 15 and Table 4, the input current waveform, input power, and
output power from the load test were measured for each speed.

Table 4. Measurement results of input power, output, mechanical loss, and electromagnetic loss.

Speed [rpm] Input Power [W] Output Power [W] Mech. Loss [W] Elec. Loss [W]

10,000 547.44 477.00 11.23 59.21
15,000 1138.90 1015.48 20.70 102.72
20,000 1951.81 1757.48 33.60 160.73
25,000 2865.47 2563.00 45.47 257.00
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5. Results and Discussion

Figure 16 presents a comparison of the results of the loss components according to
the current input condition and speed with the experimental results. The electromagnetic
loss analysis was performed through the proposed method by combining the FE analysis
and the dynamic model. However, the mechanical loss could not be predicted through
this analysis. Therefore, the mechanical losses according to the speed obtained through
the no-load test were applied to the analysis and experimental results to compare the total
losses. The loss analysis is represented by the stator copper losses, core losses, and rotor
losses. The stator copper losses were divided into DC and AC copper losses, and the AC
loss component due to the harmonics was analyzed by directly modeling the stranded
conductor of the winding. The AC copper loss was calculated directly from the FE analysis,
and the DC copper loss was analytically calculated considering the temperature and the
length of the end winding. The eddy current losses in the rotor were calculated in the sleeve
and PM, and a loss analysis was performed considering the 3D effect using a semi-3D
analysis technique. The eddy current loss considering the 3D effect was calculated by
combining the 2D transient FE analysis and the 3D static FE analysis. Finally, the core loss
of the stator was classified into rotating and alternating magnetic fields according to the
harmonic order and analysis area by analyzing the magnetic flux density of the analysis
area over time and applying FFT. The core losses of the stator were calculated using the
modified Steinmetz equation. All the FE analyses were performed based on 2D analyses.
For the 3D effect, the length of the end winding was considered for the stator DC copper
losses, and the PM and sleeve of the rotor were compensated for by applying the semi-3D
technique considering the axial length [12]. When the sinusoidal and harmonic currents
were applied to the HPMSM, the DC copper losses were the same for both. However,
the AC copper losses drastically increased due to the PWM current having high-order
time harmonics. Moreover, when the sinusoidal and harmonic currents were applied to
the HPMSM, the difference in core losses at low speeds was relatively small (11%). In
contrast, the core losses of the HPMSM caused by the PWM current increased significantly
as the speed increased (30%). Compared to the eddy current losses of the rotor when a
sinusoidal current was applied to the HPMSM, when PWM current was applied, the ratio
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of the eddy current losses of the rotor increased by approximately 70% at every operating
point. As shown in Table 5, we confirmed that the loss results derived by the proposed
analysis agreed well with the experimental results. It was also possible to accurately predict
and measure the efficiency of the HPMSM using the proposed analysis and experimental
evaluation, as shown in Table 5. Additionally, Table 5 shows the error by comparing the
loss and efficiency of the analysis results with the experimental results.
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Table 5. Comparison of power loss and efficiency results according to operating conditions.

Speed (rpm)
Torque
(N·m)

Hybrid Analysis with
Sinusoidal Current

Hybrid Analysis with
Harmonic Current Experiment

Loss [W] Eff. [%] Loss [W] Eff. [%] Loss (W) Eff. (%)

10,000 0.45 38.94
(44.72)

92.24
(5.86)

69.30
(1.62)

87.04
(0.1) 70.44 87.13

15,000 0.65 73.90
(40.12)

93.24
(4.58)

127.91
(3.64)

88.85
(0.35) 123.42 89.16

20,000 0.84 110.70
(43.06)

94.11
(4.52)

188.80
(2.85)

90.34
(0.33) 194.33 90.04

25,000 0.98 159.14
(47.39)

94.15
(5.27)

304.58
(0.69)

89.37
(0.08) 302.47 89.44

6. Conclusions

This paper presented a comprehensive analysis of the electromagnetic losses of
HPMSMs considering the current harmonics generated from the SVPWM inverter. In
addition, a dynamic model and a block diagram combining the SVPWM and HPMSM were
presented to predict the operating characteristics and harmonic currents. The harmonics
current was accurately predicted by accurately deriving and inputting the electric circuit
parameters of the HPMSM considering the increase in end inductance by the shaft and the
decrease in the linkage by the PM. The predicted current waveform was applied to the FE
analysis model of the HPMSM to calculate the stator DC and AC copper losses. The AC
copper losses increased significantly due to the current harmonics. To calculate the eddy
current losses in the rotor, a rotor eddy current loss analysis was performed considering
the actual length of the sleeve using a semi-3D analysis technique based on the 2D eddy
current loss analysis and static 3D magnetic field analysis. When analyzing the core losses
in the stator, the magnetic field behavior was analyzed in all areas of the stator, and the core
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loss was derived by separating the rotating and alternating magnetic fields and the mag-
netic field caused by the harmonics. The core loss considering the magnetic field behavior
characteristics according to the harmonic order of the magnetic field was larger than that
of the existing FE analysis, and the validity of the proposed analysis method was verified
through the experimental results under no-load conditions. To verify the proposed hybrid
analysis, an experimental setup was constructed and prototypes were manufactured. The
validity of the proposed analysis was affirmed through the experimental results. Finally,
the loss analysis and experimental method for HPMSMs proposed in this study can be
employed for various electric motors.
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