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Abstract: Irradiation-induced swelling plays a key role in determining fuel performance. Due to
their high cost and time demands, experimental research methods are ineffective. Knowledge-based
multiscale simulations are also constrained by the loss of trustworthy theoretical underpinnings. This
work presents a new trial of integrating knowledge-based finite element analysis (FEA) with a data-
driven deep learning framework, to predict the hydrostatic-pressure–temperature dependent fission
swelling behavior within a CERCER composite fuel. We employed the long short-term memory
(LSTM) deep learning network to mimic the history-dependent behaviors. Training of the LSTM is
achieved by processing the sequential order of the inputs to do the forecasting; the input features
are fission rate, fission density, temperature, and hydrostatic pressure. We performed the model
training based on a leveraged dataset of 8000 combinations of a wide range of input states and state
evaluations that were generated by high-fidelity simulations. When replicating the swelling plots, the
trained LSTM deep learning model exhibits outstanding prediction effectiveness. For various input
variables, the model successfully pinpoints when recrystallization first occurs. The preliminary study
for model interpretation suggests providing quantified insights into how those features affect solid
and gaseous portions of swelling. The study demonstrates the efficacy of combining data-driven and
knowledge-based modeling techniques to assess irradiation-induced fuel performance and enhance
future design.

Keywords: fission swelling; data-driven; LSTM deep learning; finite element analysis; multiscale
modeling

1. Introduction

Nuclear fuel elements are the key components of nuclear reactors, which undergo
extreme environments of extreme heat, high pressure, and strong irradiation dose in
reactors [1,2]. Damage effects caused by irradiation, such as hardening, creep, and swelling,
result in complicated thermo-mechanical coupled behaviors in fuel elements. Irradiation-
induced swelling is one of the most critical factors affecting the in-pile structural integrity
and dimensional stability of UO2 nuclear fuels [3,4].

Swelling [5,6] originates from the generation and accumulation from fission products
of solid and gas species as the irradiation proceeds. Fission solid products grow propor-
tional to burnup (a measure of the number of fission events that have occurred, also used
as a measurement of the history of the material) [7]. The accumulation of gas swelling is
an inherent, complex, and multiscale process that involves recrystallization with diffusion
and precipitation of xenon (Xe) and kerypton (Kr), and intergranular gas atom re-solution
effects in fission gas bubbles [7–9]. At the microscale, recrystallization favors the creation of
grain borders greatly, improving their capacity to accommodate additional gas atoms and
resulting in the formation of huge intergranular bubbles [7]. At the mesoscale, the bubbles
make the fuels more porous [10], which causes substantial fission gas swelling deformation
and a decrease in heat conductivity [11,12].
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It is critical to predict the swelling behavior with reliable precision, to provide sufficient
operating margin for the range of reactor operating conditions [4,13]. Experiments excel
at identifying the best approximation model for irradiation damage assessment, but the
resource-intensive method can be extremely costly, time-consuming, and difficult for online
tracking [14]. For tackling gas swelling behaviors, multiscale modeling and simulation
methods have been explored extensively with mechanistic models [7,10], with the first
formulation dating back to 1957 by Booth [15]. Those models are typically rooted in
several spatially-independent partial differential equations (PDEs) [16,17], focusing on
comprehensively probing the fundamentals and physical mechanisms of the recrystallized
swelling process. With the rapid advancement of high-performance computers, there are a
few publications devoted to computational examination of swelling behavior using finite
element analysis (FEA) [18–21], molecular dynamics [22], and phase-field simulations [23].
By using a high fidelity mechanistic model [9], Zhao et al. [11,24,25] investigated the
swelling evolution of CERCER (UO2 inclusions in MgO matrix) composite fuel inside an
ADS (Accelerator Driven System) subreactor. The parametric study [11] evaluated four
leading influencing parameters: fission rate, irradiation dose, temperature, and hydrostatic
pressure. However, knowledge-based multiscale modeling alone is incapable of efficiently
combining large datasets from various sources and levels of service conditions, severely
limiting its ability to accurately predict fuel behavior under a variety of conditions.

In recent years, the data-driven approach of machine learning (ML), especially deep
neural networks, has increasingly attracted attention in the fields of computational mechan-
ics [26]. The data-driven technique makes use of neural networks to discover connections
between intertwined phenomena and showcases strong power for quickly predicting ma-
terial behavior that requires intensive calculations [26,27]. The representativeness of the
labeled data and the choice of neural networks have a significant impact on the predictive
power. Multiscale modeling naturally complements the ML approach by supplying big,
reasonable data, which benefits constructing reliable and robust predictive models [28,29].
The integration mode has been applied in research on nuclear materials [30], such as de-
tecting fuel pin diversion [31], exploring high-temperature properties [32], and predicting
the spend fuel parameters [33]. However, in contrast to modeling attempts, the usage
of ML method for swelling behavior investigation is still very limited. Miao et al. [14]
applied the gradient boosting ensemble method to predict experimental onset doses for
swelling in test datasets. Cai et al. [34] utilized an image data-driven machine learning
approach for advanced post-irradiation examination and used the decision tree algorithm
to derive the features of gas swelling. The adopted feed-forward neural networks (FFNN)
have great trouble dealing with the complicated time history response and thus cannot
comprehensively track the history-dependent nature of swelling evolution.

Recurrent neural networks (RNN), using recurrent links among hidden layers, have
been shown to be a promising approach to dealing with history-related problems [35].
Long short-term memory (LSTM) is an enhanced RNN with gates that can learn both the
long-term and short-term affects of the prior data, according to [36,37]. This technique has
been used to quickly anticipate the time history response of dynamical systems [38,39],
model the material constitutive behavior [40], and forecast plastic deformation [35,41,42].
The LSTM is an obvious choice for this application since it can successfully learn from data
with long-range temporal relationships.

This work we aimed to explore the capability of data-driven machine learning to
forecast the hydrostatic-pressure-temperature dependent fission swelling behavior in UO2
nuclear fuels. The structure of the work is as follows: The multiscale modeling framework
and the LSTM deep learning configuration are described in the Method section. The
sequential training data used in this research were gathered through knowledge-based
multiscale simulations of CERCER composite fuel pellets in ADS in order to attain accuracy
under a variety of situations. The prediction model’s findings are shown in Section 3, where
we evaluated the prediction accuracy and efficiency to assess the model performance of the
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trained LSTM deep learning model. We covered the constraints and the prospects of this
work in Section 4.

2. Method
2.1. Integration Mode of Multiscale Modeling and Machine Learning

Multiscale modeling employs knowledge-based theories and can intuitively probe
the underlying mechanisms, whereas ML discovers mapping correlation and quantifies
uncertainties. Figure 1 depicts the common procedures in the application of integrating
multiscale modeling with a machine learning approach. “Ground truth values” refers to
the data that were retrieved from simulations and later divided into two separate subsets,
training data and validation data. The weights for each epoch must be changed, and the
loss function must be minimized, while the deep learning model is being trained using
training data to fit a high-quality model. The fitted model is used to predict the responses
for the observations in the validation set and to examine its reliability.

Figure 1. Application of machine learning to nuclear fuels for predicting irradiation-induced swelling
via integrating knowledge-based multiscale simulations and LSTM deep learning schemes.

2.2. Knowledge-Based Multiscale Modeling

The diffusion equation, the thermal conductivity equation, and the constitutive rela-
tionship for multiscale thermo-mechanical problems [18,43] are the governing equations for
the concerned problem. Our previous works [11,18,24] well addressed the development of
theories and how we translated those theories into methods and algorithms to implement
the multiscale modeling. Modeling and FE analysis revealed that the service conditions
of fission rate ḟ [fission/m3s], irradiation dosage Fd [fission/m3] temperature T [K], and
hydrostatic pressure Ph [MPa] are strongly related to swelling with recrystallization, as
shown in Figure 1. The loading parameters of fission rate and irradiation dosage record the
service process, which can be measured as burnup or fission density. The former specifies
the reactor settings.

We used the fission density Fd, which can be calculated explicitly as

Fd = ḟ × t (1)

where t [s] denotes irradiation time.
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The solid swelling portion (noted as θssw in Figure 1) is also determined by fission
density, and the empirical model is written as follows [7]:

θssw = 2.5 × 10−29 × Fd (2)

When the fission density reaches a particular level, recrystallization starts, and gas
swelling (denoted by θgsw in Figure 1) speeds up. The critical fission density, Fcr

d , is
proportional to the fission rate, and the expression is written as follows:

Fcr
d = 4 × 1024( ḟ )2/15 (3)

On the other hand, temperature T and hydrostatic pressure Ph are physical parameters
that affect the gas swelling process and can only be extracted implicitly through simulations.
The mechanistic model that describes gas swelling behavior has been well elaborated in our
previous studies [11,29,43]. Here, we only briefly summarized the methodology to design,
implement, and execute the simulations of in-pile behavior in CERCER composite fuel.

Figure 2 depicts an idealized composite fuel pellet in a fast neutron reactor, in which
the spherical UO2 particles are assumed to be periodically arranged in the MgO matrix.
With a pellet radius of 4.15 mm and a particle radius of 200 µm, this configuration expresses
a particle volumetric of 6.23%. The mesoscale RVE model in Figure 2b represents the
eighth portion of Figure 2a, and the imposed mechanical and thermal boundary condi-
tions and constraints can be found in [24]. With applying the 10-node thermally coupled
modified quadratic tetrahedron elements of C3D10MT, the RVE model is discretized into
151,598 nodes, as in Figure 2c. Figure 2d illustrates the numerical calculation for each
integration point within the RVE model. The mesocale volumetric swelling incorporates
grain-scale swelling information governed by recrystallization progress.

To handle the large-strain kinematics, i.e., geometric nonlinearities, we proposed
the stress–update algorithm with constitutive relations in an incremental form under a
rotational coordinate system, which can be obtained as [43,44]

∆σij =σt+∆t
ij − σt

ij

=2G(T + ∆T, t + ∆t)∆εe
ij + λ(T + ∆T, t + ∆t)∆εe

kkδij

+ 2Gε
e(t)
ij + ∆λε

e(t)
kk δij

(4)

where ∆σij are the stress increments and ∆εe
ij are the elastic logarithmic strain increments,

while ∆G and ∆λ are the increments of the Lame coefficients.
The total strain increments εtotal

ij consist of the elastic ones εe
ij, the thermal expansion

ones εth
ij , the irradiation swelling ones εsw

ij , the plastic ones ε
p
ij, and the logarithmic elastic

strain increments εe
ij read as

∆εe
ij = ∆εtotal

ij − ∆εth
ij − ∆εsw

ij − ∆ε
p
ij (5)

The above equations represent the constitutive relations. In Ref. [44], the crucial
mesoscale and grainscale swelling model with recrystallization effects is described. The
algorithms are programmed as fuel performance codes of the UMAT and UMATHT sub-
routines and implemented all the simulations in ABAQUS. In 23 analytical stages across
the simulations, we took into account a total irradiation period of 230 days. The burnup
stage is covered by the raw data produced by simulations from the beginning (0.001) to
230 days. The swelling plot (the volumetric swelling strain vs. irradiation time) for each
chosen integration point has about 400 data points because each step has roughly 20 time
increments. Thus, the concerned swelling values of θtsw and θgsw of each integration point
can be extracted, along with the associated key influencing variables of fission rate ( ḟ ),
fission density (Fd), temperature (T), and hydrostatic pressure (Ph).
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The composite configuration of RVE in Figure 2 results in unevenly distributed fields
of temperature and hydrostatic pressure. Thus, the ground truth results from different
integration points are the keys to constructing a large, accurate, and reasonable dataset.
Furthermore, the parametric study [24] took into account three different fission rates
as f1 = 1.25 × 1020 [fission/m3s], f2 = 2.5 × 1020 [fission/m3s], and f3 = 3.0 × 1020

[fission/m3s], which benefits the dataset construction with a high level of diversification
and completeness.

It takes 60 h to complete all the simulations on 60 CPU cores.

Figure 2. Dataset generation by knowledge-based multiscale simulations include: (a) Schematic of
CERCER composite fuel pellet with periodically arranged spherical microstructures; (b) Mesoscale
RVE model for thermo-mechanical modeling; (c) Geometry mesh in ABAQUS using C3D10MT
tetrahedron elements and (d) Illustration of grainscale swelling during diffusion activities.

2.3. Data-Driven LSTM Deep Learning Scheme

LSTM networks are recurrent neural networks that can learn order dependence in
sequence prediction problems. It employs a series of gates to control how information in a
data sequence enters, is stored in, and exits the network. The typical LSTM unit usually
contains an input gate, an output gate, a forget gate, a unit input, and a cell state [36]. These
gates collaborate to control the units’ ability to learn or forget specific information from
temporal data.

Figure 3 depicts the general deep learning framework with feedback neural network
architectures with LSTM cells. In Figure 3a, the deep learning scheme includes one input
layer, several hidden layers, and one output layer, which maps four input features of [ ḟ ,
Fd, T, Ph] to two output features [θtsw(t + ∆t) θgsw(t + ∆t)]. It is worth noting that the
predicted values are returned to the input layer and used to predict the next time step.

In Figure 3b, N is the batch size, Hin is the input size that corresponds to the four
input features ([ ḟ , Fd, T, Ph]); L is the sequence length; C0 is the initial cell state, h0 is an
initial hidden state (which is initialized as zeros at first), and numlayers is the number of
LSTM layer. Therefore, the input data should be shaped as a three-dimensional matrix that
reflects the state variables (features) and their evolution (sequential length). FC is the fully
connected layer that exports predicted total volumetric swelling and gas swelling variables
[θtsw, θgsw].

The predicted values of θtsw(t) and θgsw(t) at time t can be used in the loop to predict
[θtsw(t + ∆t), θgsw(t + ∆t)] at t + ∆t, as shown in Figure 3b.
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Figure 3. LSTM deep learning method: (a) data preparation of input and output features; (b) archi-
tecture of the feedback neural network.

2.4. Model Training and Evaluation

We collected 8000 sequential data points, 70% of which were used for training and 30%
for validation. The length of the sequence ranges from 70 to 100. We first standardized the
inputs and outputs before feeding them to the neural network. For each feature denoted by
X, we used the following linear operation [45], which is expressed as

X =
(X − Xm)

Xs
, (6)

with

Xm =
(Xmin + Xmax)

2
and Xs =

(Xmax − Xmin)

2
(7)
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where Xmax and Xmin are the maximum and minimum values of the features among all the
processed data used for training. The min-max normalization scales all features in a fixed
range between 0 and 1 but does not change the distribution of the features.

We used accuracy as the evaluation metric to comprehensively quantify the LSTM
predictor, with the coefficient of determination R2 and Mean Squared Error (MSE) computed
as [46]

R2 =
∑N

i
(
Yi − Ŷi

)2

∑N
i (Yi − Ȳ)2 (8)

MSE =
1
N

N

∑
i=1

(
Yi − Ŷi

)2 (9)

where i denotes the i-th set of input vectors, and N is the number of training or validation
samples. Yi is the vector of actual values of the inputs being predicted, with Ŷi being the
predicted outputs, and Ȳ is the averaged value for the trained samples.

We built and trained the neural networks based on the Keras TensorFlow package
in Python [47]. Since the LSTM model directly outputs the predicted total swelling θtsw

and gas swelling θgsw (as shown in Figure 3b), the solid swelling can be predicted by
θssw = θtsw − θgsw.

3. Results and Discussion
3.1. Evaluation of the Data-Driven Model

We trained the deep learning network based on the strategy of hyperparameter opti-
mization (weights and bias) by implementing back-propagation errors. The trained model
is finalized with three LSTM layers, each one with 60 nodes, and one fully connected layer.
The LSTM deep learning scheme computes in about 130 s.

Figure 4 first draws the learning curves of training loss and validation loss that are
computed from the loss function. The plots decrease drastically and remain stable after 10
epochs, indicating that the model has a good performance on both training and validation
datasets.

On the basis of a three-layered LSTM structure, Figure 5 investigates the MSE and
R2 plots with respect to a varying number of neutrons. The increased neuron number
favors achieving a lower MSE value and a higher R2 value for both training and validation
datasets, implying that the model is capable of further learning and possible improvements.

For both training and validation datasets, it is observed that the increased neuron
number favors achieving a lower MSE value and a higher R2 value, implying that the model
is capable of further learning and possible further improvements. However, when neuron
equals to 60, the MSE value (in Figure 5a) for the validation dataset starts to converge,
indicating that the model has stopped learning, and no improvement will be achieved
beyond this neuron level. Figure 5b discovers a similar phenomenon for R2 value, as no
significant improvement in the R2 values could be expected with neurons higher than 60.
As a result, we optimized the LSTM layers with 60 neurons, with MSE achieving 1.7 × 10−3

and R2 reaching as high as 0.97.
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Figure 4. Model evaluation including convergence analysis of training and validation losses.

Figure 5. Swelling prediction via the LSTM deep learning approach: Model evaluation for sensitive
analysis of the number of neurons in LSTM layers with (a) MSE and (b) R2 values.

3.2. Predictions from the Data-Driven Model

We generated an LSTM deep learning model that can take [ ḟ , Fd, Ph, T] as input
and produced [θtsw, θgsw] as output. Figure 6 compares the LSTM predicted plots of total
swelling θtsw, gas swelling θgsw, and solid swelling θssw with the ground truth values from
FE simulations for the validation dataset to assess model efficiency.

In general, the trained LSTM model has excellent validation performance, as predicted
results are in close agreement with the simulated swelling portions. The model accurately
depicts the evolution trends in which total swelling θtsw accelerates after recrystallization,
with the critical fission density corresponding to 98.7 days of irradiation time. It is worth
noting that the average R2 for general total swelling is around 0.94, whereas the plot
comparison reveals a high R2 value in excess of 0.98 for swelling fraction θssw and a
significantly lower R2 of 0.91 for gas swelling θgsw.

Figure 7 further reports the predictions of solid swelling and gas swelling with consid-
eration of three varied fission rates. In Figure 7a, the model also produces the evolution of
solid swelling with very high precision. It implies that the model has a good fit in mapping
the linear relationship between solid swelling and irradiation dose. Furthermore, the LSTM
model successfully identifies the input loading parameters of fission rate ḟ and fission
density Fd as two key features for solid swelling θgsw, as the gradients are calculated the
same in Equation (2).
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With regard to the gas swelling in Figure 7b, we observed comparably lower precision
with increased irradiation dose, with the calculated R2 falling from 0.98 at 46 days to 0.91
at 207 days. We learned from Equation (3) that, at higher fission rates of ḟ2 and ḟ3, the
recrystallization initials were higher earlier; thus, at the same irradiation, level gas swelling
accounts for a larger volumetric portion.

As shown in [18,24], “ground-truth” values from simulations have been confirmed for
correctness by comparison with experimental reports for CERCER composites in ADS [48].
Limited investigations with a focus on the history-dependent evolution have been con-
ducted on data-driven models for irradiation-included swelling behavior. The simulated
outcomes and our anticipated results from the LSTM model concur well, which suggests a
satisfactory data-driven model.

Figure 6. Comparison between the predicted volumetric swelling plot of θtsw, θgsw, and θssw from
the LSTM model (hollow symbols) and the values obtained from the FE simulations (doted lines) for
the validation dataset.

Figure 7. Swelling prediction via the LSTM deep learning approach: (a) solid swelling prediction;
(b) gas swelling prediction.

3.3. Interpretation of the Data-Driven Model Using Feature Selection Analysis

As aforementioned, we picked the four input features based on our previously de-
veloped mechanistic swelling model and FE analysis. In addition, the data-driven LSTM
model achieves satisfying performance with good accuracy. Nevertheless, we still consid-
ered it a “black box” model that lacks a comprehensive mechanism, due to its complexity
and highly nonlinear architecture [49]. To this end, we intended to interpret the time series
LSTM model using a sensitivity analysis of feature selection [50], which has successfully
been evaluated for LSTM model interpretation in [39].
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Feature selection is a method of reducing the input variable to the model by using
only relevant data and removing noise in the data. It might be achieved by reshaping the
inputs of the pre-trained LSTM model for this problem. Figure 8 examines the predicted
swelling plots using a modified LSTM model that excludes the input feature of temperature
T and hydrostatic pressure Ph, respectively. We further investigated the influence of the
selected features on the predicted responses of solid swelling and gas swelling, as shown
in Figure 9. Table 1 contains a summary of the R2 evaluations for different LSTM models
with varied inputs.

It is worth noting that reshaping the LSTM model’s input layer has a significant impact
on its predictive performance. By removing feature T in Figure 8a, the R2 value for θgsw

falls to 0.91, and by removing feature Ph in Figure 8b, it falls to 0.93. The precision also
differs at different levels of irradiation time. We discovered that the removed features have
no effect on the output solid swelling portion, with R2 values all very close to 0.99. In terms
of gas swelling, the predicted values agree well with the simulated ones at low irradiation
time (corresponding to irradiation dose). Prediction error, defined as the difference between
the LSTM expectation and the ground truth reality, becomes more pronounced at high
irradiation times (deep burnup) because the gas swelling portion contributes the majority
of the total swelling. Before recrystallization, when the temperature T is removed, the
R2 decreases to 0.90, and when the hydrostatic pressure Ph is removed, it decreases to
0.92. After recrystallization, the R2 significantly decreases to 0.85 when the temperature
T is removed, and to 0.88 when the hydrostatic pressure Ph is removed. The maximum
prediction error in Figure 9a and Figure 9b is 45% and 17%, respectively.

Thus, we can conclude that variables of temperature T and hydrostatic pressure Ph
are dominant features in predicting gas swelling portions. It is also important to note
that gas swelling Ph is less responsive to the gas swelling than T, while solid swelling
is influenced most by fission rate and density. The feature importance results of the
four input features are also supported by the numerical analysis of the parametric study
in [18,24,29]. Nonetheless, the data-driven approach takes much less time. Therefore, the
proposed LSTM model was implemented and validated from knowledge-based simulation
results, producing accurate, reliable, and gratifying predictions for irradiation-induced
fission swelling in the CERCER composite fuels.

Figure 8. Predictions of the total volumetric swelling using the LSTM deep-learning approach: (a)
with input features are ḟ ,Fd, Ph; (b) with input features are ḟ ,Fd, T.
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Figure 9. Predictions of the solid and gas fission swelling using the LSTM deep-learning approach:
(a) with input features are ḟ ,Fd, Ph; (b) with input features are ḟ ,Fd, T.

Table 1. Prediction evaluation of R2 for LSTM models with different inputs.

R2 [ ḟ , Fd,Ph, T] [ ḟ , Fd, Ph] [ ḟ , Fd, T]

Before recrystallization

θtsw 0.95 0.91 0.93

θgsw 0.94 0.90 0.92

θssw 0.98 0.99 0.99

After recrystallization

θtsw 0.93 0.88 0.92

θgsw 0.91 0.85 0. 88

θssw 0.98 0.98 0.98

4. Conclusions

We demonstrated the feasibility of a new approach that combines data-driven analysis
with a knowledge-driven method to predict the irradiation-induced effects in nuclear fuel
in this work. The implementation of knowledge-driven multiscale simulation of CERCER
composite fuel provides a sufficient dataset of swelling curves (sequential formed data) with
wide-ranging input features of fission rate, irradiation dose, temperature, and hydrostatic
pressure. We tested the trained LSTM model’s predictive power for several fission rate
predictors, and conducted a preliminary study to interpret the data-driven model using the
feature selection method. The conclusions can be drawn as follows.

(1) Results predicted by the data-driven method exhibit a high R2 = 0.98 and in the
training dataset and 0.95 in the validation dataset. The trained LSTM model per-
forms excellently and accurately in predicting the hydrostatic-pressure-temperature
dependent swelling behavior of CERCER composite fuels.

(2) The LSTM model has comparatively greater performance at solid swelling prediction;
it also distinguishes between solid shared swelling and labeled total swelling and
catches the moment at which recrystallization first appears for gas swelling.

(3) The interpretation analysis gives quantitative information about how the data-driven
model interprets the loading and physical characteristics and how they relate to
various swelling contributions. The variables such as temperature T and hydrostatic
pressure Ph are dominant features in predicting gas swelling portions.

The LSTM model can be further developed into a fuel design code to improve fuel
performance prediction and thoroughly investigate the physical mechanisms underlying
inflation-induced swelling behavior.
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