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Abstract: Currently, solar energy is one of the leading renewable energy sources that help support
energy transition into decarbonized energy systems for a safer future. This work provides a com-
prehensive review of mathematical modeling used to simulate the performance of photovoltaic (PV)
modules. The meteorological parameters that influence the performance of PV modules are also pre-
sented. Various deterministic and probabilistic mathematical modeling methodologies have been
investigated. Moreover, the metaheuristic methods used in the parameter extraction of diode mod-
els of the PV equivalent circuits are addressed in this article to encourage the adoption of algorithms
that can predict the parameters with the highest precision possible. With the significant increase in
the computational power of workstations and personal computers, soft computing algorithms are
expected to attract more attention and dominate other algorithms. The different error expressions
used in formulating objective functions that are employed in extracting the parameters of PV models
are comprehensively expressed. Finally, this work aims to develop a comprehensive layout for the
previous, current, and possible future areas of PV module modeling.

Keywords: photovoltaic; single diode model; double diode model; triple diode model; objective
functions; statistical evaluation; soft computing algorithms; optimization; renewable energy

1. Introduction

The world suffered in the past years from two significant crises. The first is COVID-
19 [1], which interrupted the energy supply chain and its management. The second is the
Ukraine-Russia war [2], which affected energy policy in all its aspects globally and pushed
many countries to adopt a greener energy policy. In light of the ongoing energy crises,
the global tendency is to find an alternative. The alternative should be environmentally
friendly, have green resources, and help to decarbonize electrical generation. Hence, the
importance of all renewable energy resources arises. Renewable resources are wind, solar,
tides, waves, etc. Some of these resources are mature with ongoing research and develop-
ment, such as wind and solar power (concentrated solar power and photovoltaics). At the
same time, other renewable energy resources are still under development and feasibility
evaluation, such as ocean power (tides and waves). There is a global transition and con-
cern about photovoltaic (PV) systems. Photovoltaics offer an appealing alternative: zero
emissions, noise-free, modular, and low maintenance [3-5].

Efficient models are crucially needed to harness the advantages mentioned above. The
models contribute to various general fields related to PV systems, such as design, simula-
tion, control, planning, performance evaluation [6], and siting and sizing [7,8]. Therefore,
developing and updating various models are of vital importance.
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This review article presents the different models of PV module models: the single
“one” diode model (SDM), the double “two” diode model (DDM), and the triple/three
diode model (TDM). The models relate PV module I-V mathematical modeling to datasheet
values. They also consider the effect of meteorological parameters on PV module param-
eters. This paper aims to provide the mathematical equations that describe various PV
models, regardless of the technology used.

For PV parameter extraction, the paper presents 14 analytical models for SDM, 6 ana-
lytical models for DDM, and 2 analytical models for TDM. Concerning the soft computing
algorithms, more than 35 different algorithms were presented. Some equations were re-
peated intentionally to make a specific PV model complete. This decreases the reader’s
distraction with equation references from other models.

The review article is organized as follows: Section 2 presents the configurations of SDM,
DDM, and TDM,; Section 3 presents an overview of PV technologies; Section 4 presents a list
of various error measurement models; Section 5 presents a comprehensive list of all the
algorithms used in extracting the parameters of different PV module models; and Section 6
presents the conclusions drawn from this work.

2. Mathematical Modeling of Single, Double, and Triple Diode Equivalent Circuits

This section presents a comprehensive review of the published work concerning an-
alytical trials conducted to estimate the three most well-known models for PV modules.
Those models are:

Single Diode Model (SDM);
Double Diode Model (DDM);
Triple Diode Model (TDM).

Other models can represent PV modules as well, but they are out of this article’s scope.

2.1. Single Diode Model (SDM): Parameters Estimation

This is the most basic and straightforward circuit representation for the PV module.
This model contains a single diode, shunt and series resistance, and irradiance source.

The values provided by the PV manufacturer are the open circuit voltage (Voc), short
circuit current (I5¢), maximum power point current (Iy;pp) and voltage (Vpipp), and max-
imum power (Py;pp). Some manufacturers’ datasheets offer the temperature dependence
coefficient for the short circuit current (Kj) and the open circuit voltage (Ky). However,
the PV model has other values that specify the module’s performance. The PV model val-
ues are photocurrent/light current (Ipy), reverse saturation current (Ip), ideality constant
of the diode (a), and the resistances, shunt (Rgp), series (Rg). Therefore, the PV model pa-
rameters need methodologies calculated from the datasheet values. The methods can be
analytical/deterministic or metaheuristic/probabilistic [9].

2.1.1. Parameter Estimation of SDM — Analytical Method #01

Any PV module contains many solar cells. Thus, to obtain the I-V characteristics of a
PV module, the I-V characteristics of the ideal solar cell shall be used. The exemplary solar
cell has the following mathematical formula:

I =Ipy —Ipy (1)

%
Ip; = Iy [exp(Zl K”;) - 1] 2)

Substituting (2) into (1), then

V]
1= Ipvcan = o [exp (Zl jj;) - 1] ®)
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Therefore, Equation (3) becomes:

o q(Vev + RsI)\ o] Vev+ Rl
F=lev=lo {e"” ( NestiKT ) ' TRy,

NegKT

But the term V; =

RsI RsI
I[=Ipy —In {exp<vlj‘gl—'{45> 1} 7VPVR%
S

, thus introducing the last term to (4) leads to:

4)

®)

To model the PV module (single diode one), additional parameters shall be added, as

illustrated in Figure 1.
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Figure 1. Circuit diagram of the single diode model.

Where
Ipv ceil Total current generated from PV cell
Ipy Light current, i.e., generated due to solar irradiance
I;p Shockley diode current (single diode)
I Reverse saturation/leakage current of diode
q Electron charge (1.60217646 x 1071 C)
Vpy Voltage across the device
ay Ideality constant of the diode (single diode)
K Boltzmann constant (1.3806503 x 10-23 [ /K)
T p-n junction temperature (Kelvin)
Rq Equivalent series resistance
Rqp Equivalent shunt resistance
Vi Thermal voltage of the PV module
Nes Number of series connected cells that form the PV module (provided by the

manufacturer)

The accuracy of the SDM is not the best, and it can be further enhanced. The enhance-
ment increases by adding extra diodes to the previously illustrated model, which is then

named the double diode model (DDM) and the triple diode model (TDM).

Equation (5) has five unknown parameters, which are (Ipy, Ip1, a1, Rs, and Ryy,). There
are several methods to find the values of those parameters. The methods are categorized
into analytical and metaheuristic methods. The analytical methods use equations to eval-

uate the parameters. For the Ipy, it has the following formula:

G
Ipy = (Ipv.n + Ki(T — Tn))?
n
where

Ipy ., —Light current (A) at nominal conditions (25 °C and 1000 W/m?)
Ky —Temperature coefficient for short circuit current (A/K)

(6)
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T — Actual temperature (K)

T, —Nominal temperature (K)

G —Solar insolation at PV panel surface (W/m?)

G, —Solar insolation at nominal conditions (W/m?)

Afterward, the saturation current Iy; has the following equation:

T\ 2 E./1 1
Io1 = Io1.n <;) f?xP(lef <T - T)> (7)
n

where E¢ denotes the semiconductor bandgap energy.
Finally, Iy; ,, can be calculated as follows:

Iscn ®)

Ipjp = —F——~—
. Voor
exp (752 ) -1

where

Isc ;,—Short circuit current at the nominal conditions
Voc.n—Open circuit voltage at the nominal conditions.

The authors in [10-12] suggested replacing Equation (7) with another new equation;
thus, the parameter estimation methodology is improved. The equation is given as follows:

I = tscnt Ki(T = T) ©)
Voca tKy (T—T,
exp( oc. al“//t,(n )) 1

Equation (9) improves Equation (8) by utilizing both current and voltage temperature
coefficients. Thus, the error of the previous model is eliminated, where Ky —Temperature
coefficient for open circuit voltage (A/K).

The diode ideality factor value varies as follows: 1 < a; < 1.5. Any initial value can
be selected as a start and then finetuned later. The variation of a; affects the accuracy of
the methodology. The values of Rs & Ry, are still undetermined. To find both without ne-
glecting any of them, the authors in [10-12] suggested that there is a single pair of Rs & Ry,
that will make both I-V & P-V curves fit the manufacturer’s datasheet. This pair can be
found by assuming the maximum power calculated using Equation (5) (Pyax.,) equals to
the nominal power of the PV array (Pyax.). The latter value can be found in the manufac-
turer’s data sheet. The derivation for the required equation, based on Equation (5), is given
as follows:

Vinp + Rs 1,
Pmax.m = Vmp{IPV — 101 [exp(W) -1

_ Vinp + Rslp
Rsh

} = Pmux.e (10)

Ordering the terms in Equation (10) to find an equation for Rp, will be expressed
as follows:

q(vnzp+RsInzp) Vnp+RsImp o

Viplpv — Vinplo1 |exp v + Vinplor — Vinp b= Ra = Ppaxe
q(Vaup+RsImp) o Vinp+RsImp

Vinplpy = Viplot |exp| =——av—— | | T Vmplor = Pmaxe = Vip | =1, (11)

Viup (Vinp+RsInp )

Vinp+Rs1
VmpIPV_Vmplﬂl [EXP <‘7(71’1;11117V:W1p)>:| +Vmp101_Pmax4e}

Rsh:{
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The light current Ipy is still undetermined and can also be found using numerical
methods via Equation (5). The authors suggested using the following equation to get the
value for Ipy. The equation is given as follows:

Rsh + Rs

I 12
R,  sCn (12)

Ipyy =

The initial value for Rgj, ;,ira; Was suggested to be as follows:

V Vocn — Vi
Ropinital = 7~ = —— ] (13)
SCn — tmp mp

2.1.2. Parameter Estimation of SDM — Analytical Method #02

The authors in [13] used the following set of equations for modeling and parameter
estimation of SDM. The model starting equations are given as follows:

I=1Ipy — In {ex}g(‘/l";l_‘—‘/fsl) _ 1} _ VPVT—:RJ (14)
S
G
Isc = Isca -+ Ki(T —Ty) (15)
n
G
Voc = Vocn + Kv(T — Tn) + a1 Viln Ieh (16)
n

The model has the following initial conditions: (0, Voc.i); Isc.n, 0); Unippn, VMpran);
(ImpP.n, VMpp.y)- Then to estimate the series and shunt resistances, the following equations

are used: v
Rgg= ——2C 17
S0 I (17)
av
R = - 18
SH,0 dlsc (18)
Finally, the following equations can be used to estimate the model parameters:
el () 1]
Ipy = I 14+ — )1y |ex -1 19
PV sc( R, ) p Vi (19)
Voc Voc
Ing = [ Ier — — 20
o= (e = 326 [ (255 @)
a1 Vi { ( Voc ﬂ
Rg¢=Rgg— — |exp| ——— 21
s 07 o p oV (21)
Rsy = Rshp (22)
V I Rgo — V

0y — mprp + IMppRso oC 23)

_ Vmpp _ _ _ Voc _ Impp

Vt{li’l(Isc Rexy IMpp) lﬂ([sc Rsnl ) + <ISC1¥SO§> }
dVOC av

The details for finding the derivatives (=<, @) can be found in [14]. The values
of Isc & Vpc are obtained using Equations (15) and (16), respectively, then the rest of the
values (a1, Rg, lp1, and Ipy) using the previously mentioned equations.
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2.1.3. Parameter Estimation of SDM — Analytical Method #03

The authors in [15] used the following set of equations for PV of type SDM, but the
estimation of (Ip;) was based on the international standard coded by IEC891:

VpV+RSI> } Vpy + Rl
I =1Ipy — Iyt |lexp| ——— | — 1| — —— 24
% 01[ P( T R, (24)
_ 3 qEgn
Ip1(T) = DT {exp(alKT)] (25)

Using the same initial conditions mentioned in analytical method #2, the series and
shunt resistances are initialized as follows:

v,

Rsg = ——2° (26)
dv

Rspo = “dlse (27)

The model continues as follows for estimating the rest of the model parameters:

V V
Ipy = Iy {exp (a 10‘2 ) — 1} + —R‘;i (28)
Isc (1575) _ 1‘2’@
101 _ SH VOC SH (29)
exp(m)
1% IscR
. Rs.o(ﬁ - ) + Rsm.o (1 - 7551‘/;90) 0
S~ Voc—IscRsH.o
a1V¢
Rsg = Rsgo — Rs (31)
V 1 R¢ — V,
g = MPP + IMpPRg oC (32)

R v
Isc—Impp (14 g2 ) — 4B
Vi x Zn( ( RSH) RsH

Rg Voc
Isc (1+ Rsy ) " RsH

The model starts with the initial value for Rg, then the value of Rgy and a; are ob-
tained. In turn, the value of Rg is obtained. The new value of Rg is then compared with
the previous ones. Iterations are done to reach a value of Rg that is equal to the previous
one. The values of Rgy, Ipy, and Iy, are then computed, where

Rg.o—Reciprocal of slope at open circuit point
Rgsp.o—Reciprocal of slope at short circuit point

2.1.4. Parameter Estimation of SDM — Analytical Method #04

The authors in [16] used concepts developed at Sandia laboratories for a decade. The
model uses the data provided by the PV manufacturer, along with other calculated param-
eters known as “empirical parameters”. Those parameters are addressed hereunder. This
model can be used in various applications, including sizing and monitoring the actual out-
put versus the estimated output. In addition, it can be adapted to any PV technology (thin
film, polycrystalline, mono-crystalline, etc.). The model starts as follows:

V RsI V RsI
pv + Rs >_1}_ pv + Rs (33)

I = Ipy — Iy |ex
% 01{ P< A, Ry,

o LllkT
q

Am (34)
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G M
v = Isca( & % 3 ) Ki(T = T,) @)
n n
. T\? 1 qu.n qu
Inn = IOl'n<Tn> {EXP<K< T, T))} (36)
G
RSH = RSH.n (G) (37)
n
T
n
~ Vocn — Voc
Ky = ~T.-T (39)

where

a1, —Ideality constant (at nominal conditions)

A,;; — Air mass

A —Air mass (at nominal conditions)

E¢ n—Energy bandgap at reference temperature (=1.12 eV for silicon)

In1 »—Reverse saturation/leakage current of the diode (at nominal conditions)
M — Air mass modifier

M, — Air mass at standard rating conditions

R ,,—Series resistance (at nominal conditions)

Ry, —Shunt resistance (at nominal conditions)

The model has the following initial conditions: (0, Voc.); (Isc.n, 0); (Umppn, Vimpra);

(+¢2_ = 0). To solve (39), the following equations shall be solved using Engineering

dv,
Equation Solver (EES) along with Equation (36) [17];
ai T
o _ T 40
A1.n Ty (49
Eg
8 _1-0.0002677(T — T,) (41)
Eg.n
G M
Ipy = — (1 K(T—T, o)
PV =G5 Mn( pv.a + Ki( n)) (42)

The authors in [18] modified the model to be suitable for an array of PV panels con-
nected in series and parallel. In addition, they introduced the use of MATLAB instead of
EES to evaluate the Equations (36) and (40)—(42).

Another attempt was made in [19,20] to reduce the equations’ five parameter equa-
tions into only two equations in terms of a7, and Rg,. This reduction in the number of
variables guarantees that the nonlinear solver will converge to a solution at its first launch.

2.1.5. Parameter Estimation of SDM — Analytical Method #05

The authors in [21] introduced a new model for PV modules, as follows:

H(ac.T) = aclpy(T) — Iy (DCG.T) |:exp(tXG[VPV+KTHI(T*Tn)]+IRS) _ 1}

aca1 T
g [Vey+KrnI(T=Ty)]+IRs o (43)
Rsy
G
ac =\ & 44
G (Gn> (44)
Vmpp.o — Vipp
Kry = ——7F77—2+ (45)
Lypp(T* = Tn)

Ipy = Ipy., + Ki(T — Ty) (46)
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Voc(ag.T) = Vocu(ag) + Ky (T — Ty) (47)
Rsu(ag) = Ks (48)
aG
Rsu(ag) = R; (49)
—0.2
In1(ag.T) = exp{ (“16: 05 ) ( (()

T)

To (
To calculate the values of (Ip1(1.T))and (Ip1(0.2 ) the authors in [21] used the fol-

lowing equation:
Ipy(T) — Yoc(ag.T) )

Rsy
exp ( Voca(ftTcT) ) -1

I()] (DCG.T) = QaG ( (51)

where
«c—The ratio between current irradiance and irradiance at standard rating conditions
K7 —Thermal correction factor (()/°C)
Vi pp— The voltage at maximum power point (at standard irradiance = 1000 W/m?)
I3 pp—Current at maximum power point (at standard irradiance = 1000 W/m?)
T* —PV cell temperature (the value lies between the minimum and maximum values pro-
vided in the manufacturer’s datasheet)

The model has the following initial conditions: (0, Voc.,); (Usc.n, 0); (Umpp.si, Vmpp.a);
(Rgp = — VOC) and (Rgy o = ;’C )- This model has the following steps for evaluation:

e  An initial value for Rg and a; are set, with the assumption that Ipy, = Isc, and
Rsp = Rgpo- Therefore, the values of Iy1, Ipy, and Rgy are computed.

e  The value of a; is updated and compared to the value previously computed. Thus, the
value of a1 can be adjusted correctly. This process stops when the difference between
previous and current values is within a predetermined margin.

e Following the same manner and using the adjusted value of a1, the value of Rg can be
evaluated.

e  When the value of R is adjusted, this requires readjusting the value of a;. This process
is called the double-nested algorithm. The algorithm stops the iterations when both
values of Rg and a; achieve convergence.

The authors in [22] provided more details for validating this model.

2.1.6. Parameter Estimation of SDM — Analytical Method #06

The authors in [23] adopted the PV module model used in [21]. The value of Kty is
calculated via trial and error till the model estimated power matches the maximum power
indicated in the datasheet. The following is the power model of the PV module:

Kp
P =P 1+ — 52
max e < * 1OO<T:mx - Tﬂ)) ( )

The model continues as follows:
Ipy = Ipy., + Ki(T — Ty) (53)

Ipy(T) — LOCR(;S'T) (54)
exp(Voca(fé]g-T)) 1

Voc(ag.T) = Voc.u(ag) + 5.468511 x 10_2(17’1(066')) + 5.973869 x 10_3(l1’l(0éc))2
+7.616178 x 10~4(In(ag))® + Ky (T — T,)

Ioi(ag.T) = ag

(55)
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The model has the following initial conditions: (0, Voc.); (Isc.ni, 0); Umpp.n, VMPP.R);
(Rsg = —dVoc/d1); (Rsp.o = —4V/dlsc).

In the new model [23], the authors do not need to use the graphical data (required
in [21]) to solve the model. This occurred by using the following equations:

Vi
Reo = Co( 12 )
sC
Vi
Rsiio = Csn (ISOCC) (57)

where

Py, —Maximum power estimated for PV module

Kp—Temperature coefficient for power

Cs—0.11175 or 0.16129 (in case of heterojunction with intrinsic thin layer “HIT”)
Cspy—34.49692 or 124.48114 (in case of HIT)

The model has the following steps to be evaluated:

Initial values are suggested by setting Ipy,, = Isc,, and Rsg = Rsyo.
Another assumption for Rg value is suggested, thus the value for a; and Iy; are
calculated.

e If the assumed value for Rg failed to satisfy Rgy = _%’ then the value of Rg will
be updated using a modified bisection method. The iterations are carried on till the
predetermined tolerance is fulfilled.

e  Concerning the input values of the parameters (Voc, Isc, Vmpp, Impp, Rsp, and Rspy o),
they are scale-ranged rather than assuming a particular value to avoid the need to re-
adjust the bisection method parameters, such as (search interval, accuracy level, and
bisection step).

2.1.7. Parameter Estimation of SDM — Analytical Method #07

The authors in [24] started the PV module modeling using the standard equation

as follows: v R v R
+ pv + Ks
I =Ipy — Iy |ex PVS) - 1} _ PV T st
v 01{ p( m Vi Rgp

Then the model relates the PV module model parameters to the meteorological condi-
tions, specifically the solar irradiance “G” and temperature “T”. The first set of equations
describes the PV module parameters to irradiance are given as follows:

(58)

Isc(G) = IscnG (59)
Ipv(G) = Ipv.nG (60)
Voc(G) = hn (A= YoclE) ) vy )

For the PV module parameters that are dependent on temperature, their model is
expressed as follows:

Voe(T) = Vo + Ky (T T) ©)

foe(T) = fsea (14 06T~ T0)) )

fn(7) = (1sc() - 2oL Sse LR ) oy (oL ) (64
() = I (T (0L ) Yot &
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The model has the following initial conditions: (0, Voc.); (Isc.ni, 0); Umpp.n, VMPP.R);
(4P /avypp = 0); then to determine Rgpy g (4lsc/dv = —1/Rsy).

The PV module model with five unknowns expressed by five equations is reduced
by substitution to only three equations with three unknown parameters (Rsy, Rs, and
a1). Then, the Newton—Raphson iterative algorithm can be used to solve for the unknown
parameters. The model has the following steps to be executed:

e Initial values are suggested for a; and Rgy using the expressions written in the initial

conditions.
e  The calculated values are tested against the equation 4P/avy;pp = 0. If the equation is
satisfied, then a further test is done using the equation 4lsc/av = —1/Rgy.

e If any of the tests are not successful, a new value for Rgy is generated, and the new
value is tested again. The selection of Rgy; value depends on satisfying both equations.
e  Using the calculated values of (Rsy, Rs, and a;), (64) and (65) can be evaluated.

The authors in [25] reduced the unknown parameters to only two by using a look-up
table for the value of a;. This table contains the values of a; for various PV technologies.
While the authors in [26] classified the equations for the five parameters into three cate-
gories as follows:

o Category #1: data sheet values.
e  Category #2: unknown parameter.
e  Category #3: output quantities.

Further, the Gauss—-Seidel iterative method was used to obtain the values of the pa-
rameters.

2.1.8. Parameter Estimation of SDM — Analytical Method #08

In modeling the PV module, the authors in [27] adopted the conventional I-V charac-
teristic equation as follows:

va+RSI> } Vpy + Ryl
I =Ipy — Iyt |lexp| ——— ) — 1| — —— 66
Py { p< Ncsa1 Vi Rgp, (66)

Rslsc Rslgc
I =1 — I — ) -1 - == 67
scn = Ipvn — Iorn {EXP( 7 > } R, (67)
Ipyg — g

Io1.n = BN (68)

qVOC.n
exp ( Ncsa1 KT, ) -1
The first step in the PV module simulation is evaluating the parameters at the stan-
dard test conditions (STC). It was also found that all the module parameters vary with me-
teorological conditions, such as temperature “T” and solar irradiance “G”. The following
equations depict the relation between the PV module parameters and the meteorological

conditions, as follows:
Ipy = G(In + Ki(T - Ty)) (69)

Voc(G.Tn) = Voc(G.T) + Ky (T — Ty) (70)

exp(%)G([sc +Ki(T—Ty))

Ty
(GIIOSTC,, + 1) - exP(iq%‘éL%;?))

The model has the following initial conditions: (0, Voc.,); (Isc.n, 0); Umpp.n, VMPP.R);
(dP/dVppp = 0).

The authors in [27] found that the value for Rgy cannot be zero, as with increasing the
value of Rgp, the curve fitting enhanced. Furthermore, it was found that the best value for
Rsy must approach infinity.

The model has the following steps to be executed:

Ioy (71)
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I
Vocn = (Ioin + Ipv.y) X Rgy — ﬂlVT.nW<alo‘1/'” Rgy % exp<

Based on the previous findings, the algorithm initially sets Ipy , = Isc.,.

The value of Ry = 107 (as an emulation to infinity).

If the results lead to valid values for Rg and a1, then the value for Iy; is computed.
Else, the value of Rg is set to zero, then the values of Rg, a1, and Iy; are computed
respectively.

2.1.9. Parameter Estimation of SDM — Analytical Method #09

The authors in [28] selected the following model equation for modeling the PV module:

va—i-RSI) _1} ~ Vpy + Rl 72)

[=1Ipy—1I YRV TR
by %xiy( Ncsa1 Vi Rgp,

Then the model uses the equations that relate the temperature and solar irradiance to
the PV module parameters, as follows:

Ipy(T) = Ipyn + Ki (T — Ty) (73)

In(1) = — 250 (74)
exp(wciﬁfvt) -1

Igc(T) =Isc, + K[(T — Tn) (75)

Isc(G) = Isc (fj) (76)

The model has the following initial conditions: (0, Voc); (Isc.n »0); (Umppn » Vmpra);
(dP/dVMpp =0 ),‘ (dp/dIMpp =0 )

The authors in [28] used the equation (dP/dIypp = 0) as the fifth equation in the
parameter estimation model. Therefore, the need for graphical data is eliminated. The
authors in [29] followed a similar approach. MATLAB toolboxes were used in [28] for
optimization, especially in the following three algorithms:

e  Trust-region-dogleg algorithm was prioritized as it is designed to solve nonlinear
equations;

e  Trust-region-reflective algorithm;
e  Levenberg-Marquardt algorithm.
e  The model has the following steps to be executed:
e  The initial value of the diode ideality factoris 1 < a; < 1.5.
L] IPV.n = ISC.n is set.
o  The initial values for the rest of the PV module parameters are expressed as follows:
Isc
Io1 = (77)
Voca
exp (i) ~ 1
Voc
Rsy = Toc (78)
Ipy — Vocn
EXP(Ncs“in ) !
Ncsa1 Vi Ipy — 1
R = ( s t)(1n< PV sc) +1> 79)
Isc Io1

2.1.10. Parameter Estimation of SDM — Analytical Method #10

The authors in [30] adopted Kirchoff’s electrical circuit laws and the Lambert W func-
tion to model the PV module. The model starts with the following equations:

(Io1.n + Ipy.p) X RSH))
a1 Vin

(80)

t.n
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_ (o1 +Ipv.n)Rsy
§ 1 Iscn ; 4R5+R€F 7+1 e (Ret R (81)
1n n N N X
_ulRSL W(aloxljt'n X RsfllgSHexp( 01 PVathln S SH ))
G
Ipy = IPV.HE(1+S(T_TW)) (82)
n
=t (1) et (i) (7~ ) )
01 01.n T, 14 411 Vin T
exp ( Isc.nRs )
_ Rs+ Rsy | Iscn(Rs+ Rsy) — Vocau a1 Vin
Ipy.n = Iscy R + R X Voo ToeoRs (84)
o o exp (52 ) —exp ()
1 Rery — V,
Iy, — —pvnRst = Vocu (85)

V n
o (3 -1
For the temperature dependence coefficients, the coefficients of Vpc and Isc are ex-
pressed as follows:

E¢lo1 nRsg+qRsy (31o1.n+1, Ty €)a1 Vs
TCVp = EelanRsita sHBlor.n+1py.nTn €)1 Vi

qa1TnVin(B+1)
_ B(Eg—4Rsri(Ior.n+1py.n) +941 Vin (B+3)) (86)
Ip1.nRsH |:RSH(101.n + Ipy.n) } )
B=W ex 87
( 0 Vin 7 a1 Vin (87)

R
TClsc = (Rsffg’sﬂ) <qﬂlTnV3n(B+1)) (Eglorn + qa1Ven(3lo1n + Ipv.nTu €)

RsRsp) (Eq—3qa1 Vip—qa; VinC (88)
+9(Iorn + Ipyn) — (RsRor)( gRSTI%SI: ViC) + 15;}{45'; C>
RsRsyH >< Inin ) [( RsRsy )(101.n+11>v.n)D
C=W ex 89
((Rs +Rsg ) \a1Vin P Rs+ Rsy a1Vin ®9)

where

e— Coefficient for photocurrent temperature [K~!]
TCVpc —Temperature coefficient for open circuit voltage
TClsc —Temperature coefficient for short circuit current

The model has the following initial conditions: (0, Voc.); (Isc.ni, 0); Umpp.n, VMPP.R);
(dP/dVMpp = 0); (dp/dIMpp = 0)

The authors in [30] mixed two approaches in their attempt to solve the parameter
extraction of the PV module model, which are:

Using a system of algebraic equations (aforementioned in Equations (80)—(85));
Minimizing the curve error calculation, i.e., the error that arises between the modeled
and measured curves.

The model has the following steps to be evaluated:

Using Equations (84) and (85) and substituting them into the model equations (i.e.,
(80) and (81) at maximum power point and (dP/dIypp = 0), two transcendental equa-
tions arise with only three unknown parameters (a1, Rg, and Rgp).

e  Asthe number of equations is less than the variables, the value of 41 is assumed to be
1 < a; < 2. An optimization technique named the least square approach is used to
find the value of a;.

e  The values for (Rg, Ry, Ipy and Ipp) are obtained after finding the value of 4.
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2.1.11. Parameter Estimation of SDM — Analytical Method #11
The authors in [31] started the modeling of the PV module as follows:

Vpy + Rl Vpy + Rl
S.
G
Isc = Isc.n(G> + K(T — Ty) (91)
n

T\? E.Ncs T,

)] e
n n
G
Ipy = (G) [Ipy.n + Ki(T — Ty)] (93)
n
a Vi
Rs=Rg, — [( 11-")exp<— OC)} (94)
01 a1.n
G
Rsu = Rsh.n (Gn> (95)
G

o= ) 96)

G
Voc = Vocn — Ky (Ty — T) +aqln <G> (97)

n

G
Impp = Imppa (G> (98)
n

Vmpp = Vmppn — Ky (Ty = T) (99)

The model has the following initial conditions: (0, Voc); (Isc.n, 0); (Umppn, Vampran);
(@Vimpp/dl = —Rgy); (dV/dIypp = —Rsh.)-
The model parameters in Equation (90) can be calculated from the following equations:

R I R
Ipv.n = Iscn (1 + 3 S ) + Iot.n [EXP (SC"S") - 1} (100)
SH.n M1.n
Voc. Voc.
I()l.n = <ISC.n - R - )exp (_n (101)
SH.n a1.n
a1, — Vmpp.a + Impp.unRs.n — Vocn (102)
N/
[ln (ISC.n - V'\ﬁgi'" - IMPP.n) —In (ISC.n - ‘;ﬁﬁ”) + (ISCIMPP‘/SC.W )]
R Rg

2.1.12. Parameter Estimation of SDM — Analytical Method #12
The authors in [32-35] adopted the following model for PV module simulation as

follows:
= Ipy—1 {ex <qu,-%1?51> __1} _ Vev Rl (103)
pv — lo1 |exp Vi R,
G
Ipy(T) = Isc.n(Tn) (G) +Ki(T = Ty) (104)
n
I T,
Toun(T,) = —3can(Tn) (105)

qVoca | _
exp(alKT:) 1

Voc(T) = Voc(Tu) + Ky (T — Tn) (106)
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. dVoc 1
Rs = —[ T Xv} (107)
qlo1(Tn) qVoc.n
Xy = 1
V= T kT CPUakT (108)
_ Vmpp + RsInvpp
Rsm = I — Ipy + 1, {ex (q(VMPP+RSIMPP)) _ 1} (109)
mpp — Ipy + lo1 |exp a1KT,

The model has the following initial conditions: (0, Voc.,); (Isc.n, 0); (Umppn, Vimpra);
(dVoc/dl = —Rgy); (AV/dIppp = —Rspyo). The authors in [32-35] used the following
steps to evaluate the model:

e  The value of a; lies between 1 < a7 < 2.
e  Equations (107)—(109) are used to estimate the values of Rg and Rgp.

2.1.13. Parameter Estimation of SDM — Analytical Method #13
The authors in [36] started the model for PV module simulation as follows:

va+RsI> } Vpy + Rsl
I=1Ipy — Iy |lexp| —— | — 1| — —— 110
pv 01{ P( Y R, (110)
T
a1 = a1 — 111
1=ty (111)
G
Ipy = E [Ipv,n-l-K[(T—Tn)] (112)
n
T\3 NesTo\ [ Egn  Eg
In = Ioin | =— —Cson -2 11
o 01.,1(Tn) exp[( = )(T T)] (113)
G
Rsg = Rspon <G> (114)
n
Rs = Rg, (115)

The authors in [36,37] introduced a model for SDM with seven parameters to increase
the accuracy of the ordinary five-parameter SDM model. This was found using a sensitivity
analysis. The added parameters have the following equations:

Ipy = (g) [Ipy.n + Ki(T —Ty)] (116)
ap = a1n (;;)f (117)

In [36], the authors used the Nelder-Mead simplex search algorithm to optimize the
value of the five-parameter PV module model. To verify the obtained values, the following
error expression was used.

(118)

| 22 [Ic(Ve i Ipy o1.a1.Rs.Rspy) — Ig(Ve))? dap
error = 3 i W

(Impp.E- Vmpp.i - Ipv-Io1-a1.Rs-Rsp)
where

m—Irradiance dependence parameter of Ipy
r—Temperature dependence parameter of a4
C—Subscript denotes calculated values
E—Subscript denotes experimental values
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The model has the following initial conditions: (0, Voc.); (Isc.n ,0); Umpp.n » VMPP.1);
(dP/dVypp = 0). For the seven-parameter model, the estimation of both m and r was done
using a secondary optimization routine using (119).

error = \/(Pmax,c - Pmax.E)z‘ atlow T \/(PmﬂxC — Prax)” at high (119)

irradiance temperature

2.1.14. Parameter Estimation of SDM — Analytical Method #14

The authors in [38] provided an improved PV module model that relates the voltage,
current, and resistances as follows:

Vpy + Rs.ul Vpy + Rg, I
n . n

The value of y is given as:

1
=—7r (121)
exp (525
The rest of the model equations are expressed as follows:
ay = ayy (122)
Rs =Rsy (123)
G
Rsy = RsH.n e (124)
n
G
Isc =Ipva| 5 ) + Ki(T = T) (125)
n
G
Voc = Vocan — Kv(T — Tn) + aqViln c. (126)
n
1 Vi -V —1 R
Rs, = ( ){VMPP‘n a1, Vin [1 +exp< oc.n — VMpP.n — IMPP. S.n)]} (127)
Ipmpp.n 1.0 Ven
. (Vmppr.an — 1.0 Ven) (Vmppn — IMmppaRsy)
Rspn = (128)
mppn(Iscn — Imppn) + Impp.n (Impp.nRs.n — 2Isc.nRs.n — a1.0Vin)
Repimin = Vmern  Vocn — Vmppa (129)

Isc.n — ImpP.s Impp.n

The model has the following initial conditions: (0, Voc); (Isc.n, 0); (Umppn, Vampra);
(dP/dVpypp = 0). The authors in [38] used the following steps to evaluate the model.

e  The value of a1 equals 1.

e  To estimate the value of Rg,, (127) is used.

e  Afterward, the value of Rgy ;, can be calculated using (128).
e  The value of Rgp iy is computed using (129).

Finally, the values of Rgp ,, is compared to Rgpy . If the value of Rsy,, < Rspmins
then the value of Rgyy,, is set to be equal to Ry 1in- Otherwise, the value of Rgyy,, remains
asitis.

2.2. Double Diode Model (DDM): Parameters Estimation

For the sake of achieving more precise modeling of PV modules [9], the importance
of DDM arises. In DDM, the neglected recombination current loss (in depletion region) is
adopted. This makes the DDM have seven parameters as compared to the five parameters
of the SDM. Therefore, along with the five unknown parameters from SDM, the added
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parameters are the ideality factor and saturation current of the added diode, as illustrated
in Figure 2. In the following sections, various mathematical models of DDM are presented.

Ipy

+
R

Ip; l Iozl I, l

I,

Ol

Figure 2. Circuit diagram of the double diode model.

2.2.1. Parameter Estimation of DDM— Analytical Method #01

The authors in [12] proposed a simplified model for DDM that reduces the number of
variables from seven to four. The model starts as follows:

I'=1Ipy —Ip1 —Ipy — Isy (130)
qVpy qVpy Vpy + Rsl
= Ipy — 1| - _q| - v st 131
I=Ipy — Iy {EXP(MKT) 1} Ipp [EXP (azKT> } Ren (131)
where

a, —Ideality constant of the diode (double diode).
Ipo —Reverse saturation/leakage current of the second diode.

The parameter supposition comes from the following two assumptions:
Ior = Iz = Io (132)

a1+ ap
p
To find the value (p) in Equation (133), further assumptions are made, assuming the

value of a1 = 1, and ap = 1.2. This makes the value of p > 2.2. Therefore, a simplified
version of DDM can be formulated as follows:

=1 (133)

Vi Rql Vpy + Rl Vpy + Rgl
I K T Ty)
T = Iop = Ip = € TR = T) (135)
Vocn+Ky (T—Ty)
exp< oc. aﬁﬂ‘g)vt ) -1
G

Ipy = E(IPVn +Ki(T = Ty)) (136)
Rsp = Vupp+R IVMPP - IMPP\FS +Rsl P (137)

IPV _ IO |:exp( MPP WS MPP) _|_ exp( MIE;fl)SWMPP) _ 1:| _ ]/HAZ/?;;

The initial values of series and shunt resistances are given as follows:

Rgo =0 (138)
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Vmren  Vocn — Vmpra
Iscn — IMPP.n Ivpp.n

Rspo = (139)

2.2.2. Parameter Estimation of DDM — Analytical Method #02

The authors in [39] used the following equations to model the DDM. The model in-
cludes the seven parameters of the DDM model. Then, the iterative numerical methods
were used to extract the various parameters. The model started with the following equa-
tion:

. Vpy + Rgl Vpy + Rgl Vpy + Rgl
I= IpV 101 {exp( 111N(j5 th 1 102 exp HQNCS Vtz 1 RSH (140)

To help in reducing the complexity of the model, the authors assumed that the value
of a1 = 1, and ap = 2. This makes the total number of DDM variables equal to five only.
Thus, (140) can be rewritten as follows:

Equation (141) is evaluated at three points: (0, Voc.,); (Isc.n, 0), and (Ippp.n, Vapp.s)-

Getting the derivative of (j—g = ( ;—‘I/) V+1I ) in (140) and using <5—‘I/ = — ‘1/11\\;5 5 ) will give

the following equation:

Vumer _ _In _ Vmpp Vpy+Rsl Ip _ Vmpp Vpy+Rs!
Impp — NcsVn 1-Rs Tvpp )P\ NesVa +2NcsVrz 1-Rs Tvpp ) ©*P\ 2NcsVia

1 V]
x5 (1 - Rz )

(142)

The equation of the module current was obtained from the substitution of (0, Vpc.,)
in (140). The result was obtained as follows:

Voc.n Voc.n Voc.n
Ipy = I — | -1 I — | -1 143
PV Rgp o [exp<Ncth1 | e 2NcsVip (143)

Voca RsIscp Voca Rslscn
Isc = In [€XP<NCOSC141) —exp ( NeoV )} + Inz {eXP (zNgng) —exp (zﬁci%tz)} (144)
+ oc.ngjslsc.n

Rs \ _ Vocu ) _ (VMPP+RSIMPP):|
Impp (1 + R5H> = Ion [exp(NCSVfl exp NesVn
Voc. Vmpp+RsImpp Vocun—Vmpep
+lo2 [exP(ZNcs{}tz) o exp( 2Ncs Vi + ?{SH

Equations (142), (144), and (145) are three equations in four variables: R, Ry, Iy, and
Ipz. Therefore, to solve this equation system, an additional equation is needed. The follow-

(145)

ing assumption is considered: (I =Isc; V=0 g—{/ = —ﬁ) This gives the following
equation:
1 Iox (RSISC.n) Iop ( Rslscn )]
Rs—R + ex + ex —-1=0 (146
(Rs = Rsn) {RSH NesVin© P\ NesVin ) 2NesVie ™ F \2NesVia (146)

Therefore, (142), (144)—(146) describe the relationship between R, Ry, o1, and Ip.
This forms the analytical model that could be used to estimate the parameters of the DDM.
This system of equations would be solved using the Newton—-Raphson iterative method.
Sometimes the previous system of equations does not converge as the values of Ij;, and
Iy; are very small. Thus, these terms were removed from Equations (142), (144)-(146) using
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mathematical ordering and manipulation of terms. This leaves only two equations with
the variables Rs, Ry;,. The equations for saturation currents are given as follows:

_ Vocu |\ _ _ Yvpp+RsIppp
a x exp( INect b xexp Nestr

Tor = v, Vapp+Rsl (147)
exp (oSt ) - exp (i)
—Yocu ) _ _ Yupp+RsIypp
Iy — ax exp( NCSVrz) b x EXP( NesVig ) (148)

_ Vocu |\ _ _ Yvpp+RsIppp
exp( 2NcsVi exp 2NcsVi
where

_ Vocu .
a-( +RSH>ISC Rsp 7

v
b= (1 + m) (Isc — Impp) — “REE.

Then by using (147) and (148) in (142) and (146), an alternative set of equations were
evolved as follows:

1 _ Rslympp\ _ Impp _ Vocn—Vmpp—RsIypp
[( )(1 1% 2—exp 2N,

Rsy 'MPP Vmpp csVn
Vmrp—VYocu+RsImpp
2NcsVn

(L -)(1= RsInvpp
NcsVi Vmpp (149)
% d— (% + b) {exp ( *Voc.nJEI‘\/]AC/I;’&TRSIMPP )}

a —VocutVmpp+RsIpmpp
+(3) |exp Nes Vi

(b Vocn—Vmpp—RsInvpp 3|
(2) |:€xp( ZNCSVH + a - O

RSH_RS){ [ (RSISC—VOC,nH _ ( Rslsc VMPP+Vocn+R51MPP)}
( Rsy aexp NcsVi (a+b) €XP\ NesVin 2Ncs Vi

Rslsc _ Vmpp+RsIvpp a RsIsc—Vocn
+b [exp ( NesVi NcsVi + ( 2 ) EXP\ " 2Nesvn
_ %) exp<Voc pﬁRsIsc _ VMPP+R51MPP)

a
5) |ex

—exp

NesVhn NesVi
Vmpr+RsIvpp+Rslsc — Vocu ]
2NcsVn NesVi (150)

b Rslsc—=Vmpp—RsIyvpp
+ (2 exp( 2Ncs Vi
R

_ s _ Vocn—=Vmpp—RsImpp
Re [2 exp 2NesVn
_ Vmpr—Vocu+RsImpp

exp ( 2NcsVn

With minimal differences, (149) and (150) could be solved instead of solving (142),
(144)-(146). To compute the initial value, the authors in [39] suggested another set of ap-
proximations, which makes Equations (147) and (148) as follows:

_ _Voc _ _ _ Vmpp+RsImpp
ISCBXP( 2NC5{},1> (Isc IMPP)EXP( 2NcsVn

oc. _ Vmpp+RsInpp
exp (ZNcs\'}n) 3xP< 2NcsVn

Ip1 = (151)

_ Vocu \ _ _ _ Ympp+RsImpp
I Iscexp< NCSVQ) (Isc IMPP)exP( RV ) 152

_ Vocau ) _ _ Vmpp+RsIppp
exp( 2NcsVi exp 2NcsVi
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Further, a simplification for Equation (149) is given as follows:

[ Ipmpp } {2 —exp ( Vocn*VMPP*RSIMPP) —exp Vmrr—Vocu+RsIvpp ﬂ

~ Vmpp 2NcsVn 2Ncs Vi
_1 _ Rslvpp
- (NCSth
31 —V +V, +Rg ],
% {7( 2sc — Lypp exp( oC.n ZNAc/Ig‘I;n s MPP)} (153)
Isc —VocntVmpp+RsIpmpp
+( 2 ) {exp NcsVi
_ ( Isc=Impp Vocn—Vmpp—RsIyvpp 3(Isc—Impp) | _
( 2 )[exP( TINesVa + 2 =0

Then to solve (153), the algebraic method for solving quadratic equations was
used [16,40]. Alternatively, (146) can be rewritten as follows:

Ry = J Rs (154)

In Rglsc I Rslsc
Ncs Vi €*P ( NesVi + INes Vi ©XP\ 2NGs Vi

Rsl Rsl Rsl
Ipy = Isc + Ipy {exp(SEEC) _1] + I {exp<2NSC:‘(/:ﬂ> —1] + Ijs;ic (155)

To calculate the initial values of Iy; and Iy, Equations (151) and (153) should be used,
in addition to (154) for the Rgyy and (155) for Ipy. In conclusion, either of the following
systems of equations could be used to determine the parameters of DDM analytically:

e  System of equations #1: Equations (142)—(144), and (146) along with (144) for Ipy; (151)
and (152) for Iy; and Iyy;
e  System of equations #2: Equations (149) and (150) to avoid the non-convergence of

system #1;

e  System of equations #3: Equation (153) in its quadratic form, (151), (152), (154), and

(155). This system can either be used alone to replace the above systems; or obtain the

initial parameters values.

2.2.3. Parameter Estimation of DDM — Analytical Method #03

The authors in [41] presented another simplified analytical method to estimate the
parameters of DDM. The model starts as follows:

Vpy + Rgl Vpy + Rgl Vpy + Rgl
I=1Ipy—1 — | = 1| — I —_— ) -1 - —————= (156
e {exp( a1NcsVi ) } . [exp( a2Ncs Vi Rsy (156)

In an attempt to save some of the computational time, both series and shunt resis-
tances were assumed to be negligible, which in turn reduces the number of variables from
seven to only five. This represents (156) as follows:

=il () <1 el () 1) o)

The other parameters are given as follows:

G

Ipy = (Iscn + Ki(T = Tn)) & (158)
n

Iscn + Ki(T — Ty)

Vocut+Kv(T—Tu)
exp ( a1NcsVy -1

2
o = [ o) (160)
02 — 377 01

Ip1 = (159)
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Finally, the expression for a1 and a5 is formulated as follows:
Voc
ap = Voo (161)
Tev—Ion {EXP ( aNCs T ) 71]
N, cS Vi In Tos +1

In (161), the expressions of a; and a4, could not be algebraically separable, thus the
following iterations should be followed:

Step#1: initiate a value for a1, then find the value of a, using (161);

Step#2: substitute the value of 4y and a, in (157). This gives the value of Py;y. The
voltage should be in the range of 0 < V < Vs

Step#3: divide (Pyax/Vmpp) to find the value of Ly,

Step#4: repeat the steps from #1 to #3 until the error between the calculated ;4 and
the Ipipp is within a predefined tolerance value.

2.2.4. Parameter Estimation of DDM— Analytical Method #04

The authors in [34] presented a model to calculate the DDM parameter analytically,
and it is solved using the Newton—Raphson iteration method. The model starts as follows:

Vpv + Rl Vpy + Rl Vpv + Rl
I=1Ipy — I — 2 —1| — I ) -1 - —4—= (162
e [exp( a1NcsVi ) } 2 [exp( azNcs Vi Rsy (162)

Then the model relates the parameters to the environmental conditions (solar irradi-
ance and ambient temperature) as follows:

Iy (T) = Isc(T) - + Ki(T = T,) (163)
It (Tn) = Isc(Tu) (164)
o)
oo (Th) = Isc(Ty) (165)
2|exp (%555 ) -1
iy E(T
In(T) = 101(Tn)(T%e”) X |exp g(l) - (166)
n alNcsK<T — Tn)
0 E (T
Ino(T) = Ioo(Ty) (T;f”> exp g(l) . (167)
" ﬂzNCSK(T - TT,)
Voc(T) = Voc(Tu) + Ky (T — Tn) (168)

The authors neglected the value of Rg, and considered only the value of Rgy. The
equation for the shunt resistance is given as follows:

Vmpp
Ipipp — Ipy + Iy [exp(ﬂz\ch[;PVr) — 1} =+ Ip2 [Exp(afl\%ipvj — 1}

Rsno = (169)

2.2.5. Parameter Estimation of DDM — Analytical Method #05

The authors in [42] adopted an analytical model for DDM parameter identification.
The authors presented a model in which two parameter estimation techniques will be used.
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The model considered the dependence of PV module parameters on solar irradiance and
ambient temperature. The primary model starts as listed below:

I=Ipy —Ip {exp<VPV+RSI) _ 1} — I [exp (M> _ 1] _ Ve +Rsl (170)

0NGsV; 22N Vi Rsir
- (2) <ol (-]
I02(T) = Ioo.n (;ﬂ) g X [exp(az;CSK (Egg”) -~ Eg;”)ﬂ (172)
E¢(T) = Eg(0) — T“fb (173)
Rs(G.T) = Rs(T)[1 + kg (T — T)] + Rs(G) (éi) e (174)
Rsy(G.T) = Rsp(T)[1 — kg, (T — Ty)] (éi) o (175)
Iov(G.T) = (Ipy + a1 (T — T)) (g) (176)
Voc(GT) = Vocu + Broc(T = T) + ki Tin( - ) 177)

where

E¢(0) —Reference energy at zero Kelvin

a, b—Constants dependent on the material

kg, —Linear coefficient of series resistance

krs;; —Linear coefficient of shunt resistance

TRrs —Exponential coefficient of series resistance concerning solar irradiance

YR — Exponential coefficient of shunt resistance concerning solar irradiance

a1, —Linear coefficient for short circuit current related to temperature (datasheet)
Bv,,c —Linear coefficient for open circuit voltage related to temperature (datasheet)
ky, —Linear coefficient for open circuit voltage related to solar irradiance (datasheet)

Regarding the parameter estimation techniques, the first one adopts the dependence
of PV module parameters on temperature and solar irradiance. The model equations are
given as follows:

Rslsc ) } [ ( Rslsc ) } Rslsc
Icc = Ipy — Ipt |lexp| ———=— | — 1| — Ip |exp| ———=— ) — 1| — 178
e v { P <01 NcsVi 02| €XP a2NcsVi Rsy (178)

With some term’s arrangement, the equations of photocurrent are expressed as fol-
lows:

Rs Rslsc ) ] { ( Rslsc > }
Ipy =1 14+ ——)+Iy|lexp| ——— ) — 1|+ Ip|exp| ——— | —1 179
i SC( R5H> 01[ p<ﬂlNcth 02|¢XP ayNcsVi (179)

Lic(GT) = (1sc + a1 (T~ 1) () (150)

Gn
Rs(T) +Rs(G) = Rsp (181)

Ip2

In = 107 (182)
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Impp = Ipy — Ipn [exp(

10/ x ISC(RSH;RS*VOC)
Ip = = (183)
Rgl. Vi Vi Rgl
exp(lllf\sfcic‘/) _exp<ﬂlNoC§Vr> +10/ x (exp(ﬂzNOCEVt) _exp<ﬂ21\S’chCVr))

where | denotes a number with a maximum value of 7 [43].

Therefore, the first estimation technique uses Equations (179), (182), and (183) to find
the values of Rg;;, Rsy.pi, a1, a2, and J. The second parameter estimation technique adopts
the I-V and P-V curves, and the model equations start from (179). The second and third
terms were omitted as their value combined were less than the short circuit current. This
makes (179) as follows:

R
Ipy = Isc (1 + R5> (184)
SH
V Rl V Rgl V Rl
mpp + Kg MPP) 1] Iy {exp( mpp + Rg MPP) 1] Mpp + Rglppp (185)
a1Ncs Vi a2 Ncs Vi RsH
Ipy — 3£ — Iy [exp(%) - 1}
I — SH 1NCS Vit
02 e ) (186)
EXP\ %NesW
VmpptRsIpmpp
\% EXP(W)_l v R
(s ) (LT ) ot a1 )
Iy = e (187)

Vmpp+RsIpmpp ) 1

V, EXP\ — o NegVy \% Rgl
(=) () (i) -

ex
P\aNcsWr

Finally, the authors calculated the value of ky,,. using curve fitting. The parameters
Rs(G), Rs(T), kRS, kR YRss YRy Were calculated using an optimization algorithm. The
optimization was performed using the following steps:

Step#1: the model was built using (173), (174), (177), (180), and (181).

Step#2: in the first optimization technique, (179), (182), and (183) were used to calcu-

late the photocurrent and the two diode currents, respectively.

e  Step#3: in the second optimization technique and the same values, (184), (186), and

(187), were used instead.

2.2.6. Parameter Estimation of DDM — Analytical Method #06

The authors in [44] provided an approach to estimate the DDM parameters of the PV
module. The authors tried to avoid approximations by introducing a simple, rapid, robust,
and precise model. The model starts as follows:

Vpv + Rl Vpy + Rl Vpv + Rl
I=1Ipy — I — 2 1| — ) -1 - ———- (188
rye [exp( a1NcsVi ) } 2 [exp( azNcs Vi Rsy (186)

For the short circuit equation, replace the current in (188) to be I = Is¢c and Vpy = 0.
The formula should be as follows:

Isc ) } [ ( Isc ) } Rslsc
Iee = Ipy — Ipy |lexp| ——— | — 1| — Ip |exp| ——— | — 1| — 189
e v { P (ﬂl NcsVi 02| €XP a2 NcsVi Rsy (189)

The maximum power point formula is expressed as follows:

V +Rgl, V +Rgl,
o = 1o s (SEE) ] e i) 1

_ Yvpp+Rslppp

(190)

Rspy

Voc ) } [ ( Voc ) ] Voc
Ipy — gy lexp| ———— | — 1| — Ip|exp| —— ) —1| — =—= =0 191
v { P (ﬂlNcth 02| exP a2 NcsVi Rsy )



Energies 2022, 15, 8941

23 of 56

The following equations depict the parameter dependence on the environmental con-

ditions: X
T G
Rs(G.T) = Rs,, (Tn) <1 - 0.2171n(Gn>) (192)
Gn

Rsy(G.T) = Rsgn (G) (193)
Ipy(GT) = Ipy ((‘j) (1+K(T—Ty)) (194)

3 Eo(T,) Eo(T
I (G.T) = Ior.s (;) [exp(a1 A}CSK( g;ﬂ )&l >>)] (195)

3 Eo(T,) Eo(T
I0o(G.T) = Igp.n (;{;) [exp(uzz\}csK( g;n ) g; )))] (196)
Eg = Eg(1—0.0002677(T — Ty)) (197)

2.3. Triple Diode Model (TDM): Parameters Estimation

This PV module model has nine parameters: three ideality factors for diodes and the
three diode saturation currents, the shunt and series resistances, and the photocurrent, as
shown in Figure 3.

IPV

+
R

L IDll IDZl ID3l I, l

VP V
Rsh

O
Figure 3. Circuit diagram of the triple diode model.

The TDM can be considered the most accurate model for PV modules. It accounts
for most of the optical and electrical losses in the PV module. The triple diode model
comprises three diodes, each having a particular function. The first diode models the re-
combination that occurs in the region of space charge. At the same time, the second diode
is for two things—the carrier recombination in the region of space charge and the losses
in the surface recombination. The third diode accounts for the losses due to the defective
areas. In the following sections, various mathematical models for TDM are presented. The
hereunder methods were the only found after an extensive literature review.

2.3.1. Parameter Estimation of TDM — Analytical Method #01

The authors in [45-48] presented the mathematical modeling of the TDM of the PV
module as follows:

I =1Ipy —Ip1 —Ipy — Ip3 — Isy (198)
Vpy +Rsl Vpy+Rs1
oo (8 ] () o]
—I va+RsI . 1 o va+R5[ ( )
03 |eXp az Vi Rsp
G
Ipy = —(Ipv_n—l—K](T—Tn)) (200)

Gn



Energies 2022, 15, 8941 24 of 56
T\[ 1 Eo(Ty) Eg(T)\\]
T\ 1 Eo(Ty)  Eo(T)\\]
I2(G.T) = Inpu | = s _ 2 202
261 =toa (1) Jewr( o (B - 250 ) ) 02)
T\T 1 Eo(Tw)  Eg(T)\\]
I .T) =1 — —
@(G.T) = o (Tn> 7 (ﬂchsK ( Ty T )) (20)
E¢ = Eg.(1—0.0002677(T — Ty)) (204)
G
Rsu(G.T) = Rsun| & (205)
n
G
Voc = Voc.n + Vilog . + Kv(T — Tn) (206)
n
where
a3z —Ideality constant of the diode (triple diode)
Ip3 —Reverse saturation/leakage current of the third diode
2.3.2. Parameter Estimation of TDM — Analytical Method #02
The authors in [49,50] adopted the conventional model for TDM as follows:
_ _ Vov+RsI\ _ 1| _ Vey+Rsl) _
= o) ] el () ]

Vpy+Rsl Vpy+Rs!
o exp (M) 1] = MG

The authors in [49,50] proposed using the Lambert W function to help in obtaining an
accurate RMSE. Then the values of RMSE were used to extract the parameters of the TDM
model. The TDM model (207) is reformulated as follows:

&+ Be’Y + yeV = ye¥ (208)
(%) \% ( V)(Ipv-i-lm + T2 + oz — T)

x= <1le;SSH)IOlexp (ﬁ)exp Sl <1 N RSH) = (209)
(ﬁ> Vv ( ) (IPV + Io1r + o + oz — *)

_ (1—‘:‘1/%;}1)10269(;7 (61213‘2) exp 2V (1 N RSH) Rou (210)

Rs_ v Ipy + I + o2 + oz —

Y= (1<f‘§£) Inzexp (5131)‘2) exp <u3Vt> ( (1 . RSH) RSH) (211)

S—=1— % (212)

r=1- % (213)

The parameters («, B, v, §, and o) are used in the Lambert W function. Using (208)—
(213), (207) can be rewritten as follows:

R
y(1+ g2
IPV+101+102+103_VPV_(<RSRS)H)
I= o1 (214)

(1+5%)
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Equation (214) is a transcendental equation, which means it cannot be solved analyt-
ically. Therefore, the authors suggested the following iterative method to solve the equa-
tion. The iterative method uses 6, and y as variables for Lambert W’s iterative method. The
first iteration (denoted by () and y¢)) has the following formula:

0 = o+ BV ) 4 e 0) (215)
Then the second iteration and the ith iteration have the following formulas:
010) = ypye’™ (216)

Yoy = W(a+ pe¥en 4 ye¥in) (217)

Finally, the value of the ith diode current has the following formula:

) Rs
Ipv+101+102+103_1@_w
B a Vi
I(z‘) _ (1 . T ) (218)

Rsu

3. Comparison between Different PV Models and Technologies

Table 1 compares the previous section’s three main types of PV modules. It offers the
main advantages and disadvantages of each model type. Moreover, it is essential in order
to highlight the difference between the PV model and PV technology. The model includes
three main types: SDM, DDM, and TDM; the main difference lies in the accuracy of the
representation of PV module performance. This means that TDM has the highest accuracy
as it considers most of the phenomena in the PV module. Next is DDM with intermedi-
ate accuracy, ending with SDM with the least accuracy. In comparison, technology refers
to the way/type of material used in manufacturing the PV module that directly impacts
the light/electricity conversion efficiency and other aspects. Table 2 explores the various
technologies of PV modules while listing their advantages and disadvantages [50].

Table 1. Comparison between SDM, DDM, and TDM.

Model Advantages Disadvantages Field of Application
e  Simple in structure, Poor accuracy, The most widely used model
e  Low complexity, Unable to predict PV module due to its simplicity,
SDM e Less calculation burden, performance under partial Suitable in case fast
e  Easy to implement in the shading, estimation is needed with low
laboratory. Less accurate in predicting manufacturing cost.
the I-V curve.
e  Higher in accuracy compared M . Suitable in case accurate I-V
ore complex in structure, . T
to SDM, Hieh implementation cost in estimation is needed,
DDM Acceptable performance, th & P Can easily consider the
. . e laboratory. .. .
Easy to implement in the variations of environmental
laboratory. conditions during simulation.
e  Highest accuracy compared More complex than the other For predicting values with
to the previous two models, two models, high accuracy,
TDM e  Models most of the Large calculation time Can easily model the complex

phenomena in the PV module
during performance.

burden,
Complex concerning
hardware implementation.

nature of different PV module
types.
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Table 2. Comparison between PV technologies.

Technology Efficiency Advantages Disadvantages
Mono-Crystalline Silicon 26% High efficiency in conversion, Elegiloioiicgzﬁi?; ti;liento
[51-53] Minimum maintenance cost. p &
process.
) o Considered high efficiency Limited supply,
Poly-Crystalline Silicon 229, but less than Complex manufacturing
[54-56] mono-crystalline, process (less than that of the
Low cost. mono-crystalline).
o Prone to deterioration due to
Thin film 239 The low cost helps in mass low structure stability,
[57-59] production. The conversion ratio is not as
good as other technologies.
High Concentrating PV (HCPV) . Low production cost, Require solar tracking of high
[60,61] 28% Highest conversion efficiency, accuracy to maintain its
Good total energy production. efficiency.
4. Error Expressions Used in Objective Function Formulation

In the parameter extraction of PV modules, regardless of the algorithm used, an ob-
jective function is needed as a part of the optimization process. The objective function can
provide a quantitative figure for any metaheuristic algorithm. This enables the comparison
between the algorithms’ performance on a fair basis.

Meanwhile, a measure of the quality of the obtained results is needed. Table 3 lists
some error expressions used in objective function formulation [62]. In addition, hereun-
der is a list of statistical evaluations that could be used in assessing and judging the per-
formance of different metaheuristic algorithms. This is accomplished by comparing the
score the obtained optimization results achieve to those obtained from the counterpart’s
algorithms [63]. The enhancement in the statistical evaluation tests in terms of the num-
ber of tests and value of each test indicates the performance of the concerned algorithm.
The standard statistical evaluations are (but are not limited to): mean, median, minimum,
maximum, standard deviation, rank, ¢-test, and p-value.

Table 3. Formulas of error functions used in objective function formulation.
Function Variables
— Expression
Name Abbreviation Power Current
RMSE =
Root mean square error [64] RMSE N %}
1 2
N ‘Zl(lestimuted - Icalcu]uted)
i=
Normalized root mean square 1N 2
N Zi: (ICS imate _Im culate ) M
error [61,65] NRMSE NRMSE = /4 - = ti ool
\/N i Iesfinmted
Root mean square deviation Newroe (1. 1\2
[66] RMSD RMSD — 1/ ot N(I ) v
Normalized root mean square RMSD
e NRMSD NRMSD = )
deviation [66] Isc
Mean absolut[z 6e]rror in power MAEP MAEP — Z‘Pcstirnulcdl\;Rncasumd‘ ™
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Table 3. Cont.

Function Variables
— Expression
Name Abbreviation Power Current

N
Mean absolute error [67] MAE MAE — % ~21( Listimated — Inoasured) %}

i=

. N
Mean bias error [68] MBE MBE = % 121|Iestimuted - Imeasured‘z &

i=
Absolute error [69] AE AE = |Ies — Lg| M
Individual absolute error [70] IAE IAE = |Lyeasured — Lostimated| 4]
Relative error [71] RE RE = M [}

. N
Mean relative error [72] MRE MRE = % }21 RE; %}
i=
Mean absolute percentage N
[VPIC/ZSXU’L’ _IL’S imate M
error [73] MAPE MAPE = % .ZJW
i=
. N
Mean absolute bias error [73] MABE MABE — % -21| Lstimated — Imeasured | ™
i=
Systematic Error [74] SysErr SysErr = vV RMSE? — MBE?
Standardized Mean Square SMSE SMSE — LN rstmated— Leateutaed)?

Error [75]

Variance (Iestimated )

5. Soft Computing Used in Parameter Estimation of PV Models

In Section 2, the mathematical models were demonstrated with their relevant equa-
tions. These equations are used to analytically extract the parameters of SDM, DDV, and
TDM modules. Meanwhile, various algorithms could be used to extract the PV module
parameters. Those algorithms adopt the concept of soft computing. Soft computing con-
sists of three major categories—fuzzy logic, artificial neural networks, and metaheuristic
“minimum seeking” algorithms. All of these techniques are presented in Figure 4 while
demonstrating the inputs/outputs to the optimization process, whatever the algorithm
type (analytical/metaheuristic-based) [76].

In Figure 5, the details of the metaheuristic algorithms are presented based on their dif-
ferent categories. The categories are based on the source of inspiration for each algorithm.
Unlike analytical methods, metaheuristic algorithms need an objective function as a stop-
ping criterion. This paper is concentrated mainly on covering soft computing algorithms.
Furthermore, the analytical methods are mentioned if it has been used in a hybrid mixture
with the metaheuristic algorithms [76-80]. The presentation of algorithms is tabulated in
the following tables, categorized based on algorithm category.

The first category of soft computing is fuzzy logic (FL). In ordinary logic, the param-
eter is not allowed to take any value. In other words, the parameter value can either be 0
or 1. At the same time, fuzzy logic (FL) allows any variable to take any value freely from
0 to 1. If the value zero resembles “false” and one “true”, the variable’s value can range
from absolutely false to absolutely true. This is done by using the membership function.
Fuzzy logic mimics human reasoning. The main advantage of FL lies in its ability to han-
dle uncertainties and lack of sufficient input information. However, the estimation of the
membership function is a challenge. In Table 4, some published works on PV parameter
extraction are tabulated.
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The second category of soft computing is artificial neural networks (ANN). The arti-
ficial neural network is used to model and extract the parameter of the PV module model.
ANN is based on the concept of the human mind, constituting interconnected neurons.
Some neurons act as the input layer that simulates the input parameters, then the hidden
layer, which resembles the calculation layer. Finally, the output layer affects the output
parameters. Each neuron is connected to another one using a weighted connection. The
aim is to tune the weights, thus reaching an accurate model. This tuning is called training,
which needs training data. The advantage of ANN is that once it is trained, the model can
give a reliable response that was not in the training phase. However, the main disadvan-
tage is that the training data is scarce and highly variable based on the model used and its
underlying parameters. The contributions in published literature are tabulated in Table 5.

Inputs for PV Circuit Modelling

SDM DDM
(IPV, |011 RS’ RSH) (IPV1 |011 |021 RSa (IPVa IOla |02! IO
al) RSH) al! aZ) RSI RSH1 all aZ!

e ——
/" Analytical ) (Metaheuristic\

\ Methods Methods

—>( Least Square >—>
—>@ewton RaphsoD—>
—>( Gauss Seidal )—>
i)

Estimated parameter
(Ipv, lo1, oz, los, Rs, Rsp, @1, @2, a3)

Figure 4. Methods used in PV parameter extraction.
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Figure 5. Categorizing metaheuristic algorithms used in PV parameter extraction.



Energies 2022, 15, 8941

30 of 56

Table 4. Soft computing algorithms—fuzzy logic.

Ref.

Algorithm

Model

Contribution

[81]

Fuzzy logic
(FD)

SDM

Used the FL regression model to extract the PV module parameters. The model
is based on limited input measured data.

(82]

FL

Organic PV

Used the FL to extract the parameters of the organic PV. The parameters of the
organic PV module are significant in number and primarily correlated. The
model behavior was incorporated into the FL model to simplify the parameter
extraction task.

[83]

Neuro-fuzzy

Organic PV

The authors coupled the ANN with fuzzy logic into a hybrid neuro-fuzzy model.
This new hybrid model outperforms the pure ANN, as it needs less data for
training, which is beneficial in cases with limited measured input data.

[84]

FL-DE

SDM

The authors provide a hybrid algorithm to estimate the PV module parameters.
The algorithm used differential evolution (DE) to assess the five-parameter SDM.
It uses the manufacturer’s datasheet to find the electrical circuit parameters.
Then the FL was used to design a controller (FLC) for maximum power point
tracker (MPPT). The FLC proved it could converge to a steady state with
minimum fluctuations.

[85]

FL-PSO-GA

MPPT

The authors designed a new FLC for MPPT. The parameters of the FLC were
tuned using particle swarm optimization (PSO) coupled with a genetic algorithm
(GA). The model performance was tested against rapid variations in temperature
and irradiance.

[86]

FCM

The authors used fuzzy c-means (FCM) to cluster the defected PV module
samples.

[87]

Neuro-

fuzzy + PSO

The authors used a hybrid neuro-fuzzy model that was tuned with PSO. This
model simulates the I-V characteristics of PV modules. The model shows speed
learning and fits well with the manufacturer’s data.

Table 5. Soft computing algorithms —artificial neural networks.

Ref.

Algorithm

Model

Contribution

[88]

Feedforward
ANN

SDM

Feedforward ANN is used to model the PV module. Their ANN model
comprised two hidden layers, one of six neurons with linear connection and the
other of twelve neurons with logsig transfer function. For training the ANN, the
Levenberg-Marquadt function was used for the backpropagation optimization.
This was used to model the classical single-diode PV module.

[89-91]

ANN

SDM

The authors used an ANN with a hidden layer of 20 nodes to extract the
parameters of a single-diode PV module. To train the ANN model, the authors
used output from the Sandia lab model depicted in [90]. The output results were
more accurate than the classical model [91].

[35,92]

RDF-GA

Model I-V
curve

The authors used ANN to model the I-V curves of the PV module. The genetic
algorithm (GA) was coupled with the radial basis function (RBF). The role of GA
was to determine the optimum number of RBF connections of the ANN hidden
layer. The authors used the PV model in [35] to train this ANN.

[93,94]

ANN

PV modeling

The authors proposed using ANN to make a model for various PV module types
(crystalline and CIS “Copper Indium Diselenide”). This model aims to predict
PV module behavior in various atmospheric conditions as the manufacturer
provides only the STC (standard test conditions). Hence, the gap between the
provided data from the manufacturer and the actual conditions is
decreased/eliminated.

[95,96]

ANN

Hybrid system
sizing

For sizing a PV system, the authors used the ANN. The different components of
a standalone PV system are modeled (PV modules, battery, and inverter).
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Table 5. Cont.

Ref. Algorithm Model Contribution
[97,98] ANN PV ?zlzrgy The authors used the ANN to estimate the energy yield PV system. The
! os t?ma tion estimation was done to systems mounted in parking, pergolas, and fagades.
PV fault The authors proposed using ANN to model the PV module for fast detection,
[99] ANN . . diagnosis, and classification of PV faults. This is to ensure reliable operation and
diagnosis & p

high-energy performance.

The third and final category of soft computing is metaheuristic algorithms. These
algorithms use mathematical foundations inspired by nature, animal biological behavior,
physics, etc. All algorithms try to balance exploration and exploitation concepts perfectly.
Exploration means finding new diverse solutions, while exploitation means the best use
of the obtained solutions. There is no super technique, as all the algorithms follow the
no-free lunch theory’s optimization concept. A list of algorithms frequently used in pub-
lished literature is presented in the following tables. Therefore, this review will concentrate
only on the algorithms” work. Tables 6-9 present the various categories of metaheuristic
(evolution-based, nature-based, human-based, and bio-inspired) algorithms.

Table 6. Soft computing algorithms —evolution-based metaheuristic algorithms.

Ref. Algorithm Model

Contribution

[100] DE SDM

The authors proposed using DE to estimate all the parameters of SDM
with varying cell temperatures and solar irradiance. The values of diode
current and photocurrent are computed using analytical methods, while
the values of the diode ideality factor, shunt resistance, and series
resistance are optimized using the MPP equation.

[101,102] DE DDM

Then, the authors investigated the accuracy and speed of DE in extracting
DDM parameters for various types of PV modules. The authors proposed
using two variations of DE, one named boundary-based DE (B-DE) and
the other penalty-based (P-DE), while in [102], the authors used P-DE to
extract the parameters of DDM.

[103] DE SDM

After that, the authors used the DE to extract the parameters of the
photovoltaic module. The model incorporated the different operating
conditions based on digitalized I-V curves.

[104,105] Re-IJADE SDM, DDM

In addition, the authors used a variation of DE named repaired adaptive
DE (R-IJADE) to extract the parameters of SDM and DDM. This
variation proved its superiority compared to the ordinary JADE [105].
The superiority lies in the quality of the final solution, success rate, and
convergence speed. The (Rer-IJADE) used a crossover rate repairing
technique and mutation based on ranking to attain superiority.

DE + Lambert

[106] W function

SDM, DDM

Further, the authors used DE to extract the circuit parameters of SDM and
DDM. The algorithm was coupled with the Lambert W function to
reconstruct I-V and P-V curves. The model was validated by comparing
the results with GA and PSO. DE provided superior results in terms of
accuracy, consistency, computation time, and convergence speed. In
addition, DE scored low RMSE with regard to experimental vs. simulated
curves of I-V and P-V.

[107] SL-DE SDM, DDM

The authors suggested using DE coupled with analytical and social
learning in the hybrid algorithm (SL-DE). SL-DE was tested against SDM
and DDM. The algorithm accurately predicted the PV module parameters
under low irradiance and partial shading.
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Table 6. Cont.

Ref. Algorithm Model Contribution

For another enhancement, the authors suggested using a DE variation
that uses multi-strategy, adaptive, history-based, and linearly reducing
population size. The technique was used to extract the parameters of
SDM and DDM. This technique balances exploration and exploitation
and avoids being trapped in local minima. The technique surpasses other
techniques in computation time, reliability, and accuracy.

Multi-stage &

[108] adaptive DE

SDM, DDM

For additional enhancement, the authors proposed using past vectors
from individuals and an adaptive mutation strategy. The technique was
applied to extract the parameters of both SDM and DDM. The past

[109] Enhanced DE SDM, DDM individual vectors enhanced the future offspring. At the same time, the
adaptive mutation balanced the exploration/exploitation ratio. The
proposed algorithm excels in terms of convergence, reliability, and
accuracy.

For further improvement, the authors made the DE adaptive. This was
done by varying the factors of both crossover and mutation. The

[110] Adaptive DE SDM, DDM algorithm was used to extract the parameters of the SDM and DDM. The
obtained results scored low errors between estimated and calculated
values. The new technique outperforms other evolutionary techniques.

For another boost in DE performance, the authors proposed to use

Onlooker- onlooker ranking with the mutation of DE. The algorithm was used to
[111] ranking SDM, DDM extract the parameters of PV SDM and DDM. In terms of accuracy,
DE convergence speed, the time needed for calculations, and computation

effort, the new technique surpassed another 31 evolutionary techniques.

Then the authors adopted multiple strategies to enhance DE performance.
The strategies are mutation, reverse learning mechanism, parallel
population, and multi-population. The proposed algorithm is used to
extract the parameters of SDM and DDM. The proposed strategies are
incorporated in boosting regular DE performance. Reverse learning
helped enhance the velocity of convergence and maintain population
diversity. At the same time, parallel population assisted in increasing
search efficiency. Overall, the new DE algorithms made the obtained
values surpass other algorithms in terms of accuracy, convergence speed,
and reliability.

Multiple

[112] strategy DE

SDM, DDM

The authors proposed using directional permutation with the DE. The
proposal came from the fact that PV parameter extraction is challenging
due to the nonlinearity in the models, multiple variables, and
SDM, DDM,  characteristics. The proposed algorithm enabled the ordinary DE to

TDM overcome local minima by possessing the ability to explore the global
problem surface. Then the algorithm was applied to SDM, DDM, and
TDM. Remarkably, the new DE had a robust performance that surpassed
another 15 evolutionary algorithms.

Directional
[113] permutation
DE

Moreover, the authors introduced using an adaptive sorting mechanism
for the crossover rate, in addition to a strategy to dynamically reduce the
population. Combining both with DE helped suppress some of the
deficiencies in ordinary DE. The technique was applied to extract the
parameters of SDM and DDM. The results were also competitive and
superior in terms of convergence speed, reliability, and accuracy.

Adaptive

sorting + DE SDM, DM

[114]




Energies 2022, 15, 8941 33 of 56

Table 6. Cont.

Ref. Algorithm Model Contribution

Also, the authors suggested using novel mutation techniques consisting
of three different strategies. The strategies possess other properties and
are divided into two groups that update every individual. Then, a
self-adaptive scheme was adopted to maintain equilibrium among the
Novel SDM. DDM diversity of the population and solutions convergence. The self-adaptive

Mutation + DE ! scheme was also used in determining the proportion of mutation among
the three different mutation strategies. The technique was tested by
extracting the PV parameters of SDM and DDM. The obtained results
showed the superiority of the new method among other evolutionary
techniques with their higher efficiency.

[115,116]

In another trial for DE performance enhancement, the authors introduced
a strategy called reinforced learning. This combination is explicitly used
with the fitness function of DE. Each fitness function evaluation takes a
Reinforced SDM. DDM reward action toward parameter value adjustment, then the parameter

learning + DE ! value is adjusted through reinforced learning. The proposed technique
was used to extract the parameters of SDM and DDM. With lower RMSE
values, the algorithm showed robust and accurate performance among
other competitive evolutionary algorithms.

[117]

The authors suggested using teaching learning-based optimization
(TLBO) along with DE. Thus, to face the challenging and complex PV
models, in this hybrid mixture, the learning ranking probability was
modified to be adaptive. The adaptive probability was coupled with
adaptive teaching. Finally, the DE was introduced to the learner phase to
improve the exploration behavior. The algorithm was applied to SDM
and DDM to extract the unknown parameters. In terms of competition,
the results were more accurate and reliable.

[118] TLBO + DE SDM, DDM

Finally, the authors suggested using an improved version of DE to extract
the parameters of the PV module. This improved version is called
adaptive DE. Contrary to ordinary DE, the population size is dynamic,
thus eliminating the need for user-defined value. This is to overcome the

[119] Improved DE DDM, TDM lack of experimental data. Hence, the authors used the manufacturer’s
datasheet values only. The algorithm was applied to DDM and TDM
models without any assumptions. The obtained results recorded almost
zero errors. With promising results, the algorithm could be used to obtain
results under varying solar irradiance and cell temperature.

The authors used the GA for optimizing the parameters of SDM guided
by the measured data. The optimized parameters were used to obtain the

[120,121] GA SDM value of the MPPT. The authors used the standard optimization technique
of Newton-Raphson, which GA surpassed in not being trapped in local
minima.

While the authors suggested using GA to extract the parameters of TDM
[122] GA TDM based on the values of the I-V curve. The GA outperforms the
conventional quasi-Newton methodology (based on ordinary search).

Then the authors utilized the GA in extracting the parameter of SDM that
was derived from the Lambert W function, which was based on the I-V
synthetic curve. Regardless of the correctness of the extracted values, the
process was admitted to be relatively slow.

[123] GA SDM

Afterward, the authors used the GA to find the optimum global value of
[124] GA SDM the parameters of SDM. The obtained values were used to calculate the
output of the SDM under various operating conditions.
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Also, the authors enhanced the performance of conventional GA by
Improved GA introducing new mutation techniques and crossover. This is by using
(GA with non-uniform mutation and blended crossover, respectively. The
. SDM, DDM . .
non-uniform performance of the enhanced GA was tested against experimental data.
mutation) The new GA obtained estimated curves with fewer errors than the
experimental curves.

In addition, the authors mixed the GA with PSO. This hybrid
combination performed very well and expressed a high ability to extract

[126] GA+PSO SDM, DDM both the parameters of SDM and DDM correctly. Meanwhile, the
calculated root mean square error (RMSE) was very low. This indicates
that the obtained parameters were correctly predicted.

[125]

The authors introduced a hybrid technique using the GA and the
[127] GA+IPM SDM interior-point method (IPM). It was used to extract the parameters of PV
modules.

The authors suggested using an adaptive version of the GA,
multi-objective optimization for PV cells. The objective was to optimize

[128] Adaptive GA SDM the design parameters of the PV cell in SDM. Both the errors least mean
square error (LMSE) and the Pearson residual error optimization (PREO)
were used to govern the optimization process.

Hybrid PV Then the authors used the GA to optimize the size of a hybrid generation

[129] GA system system composed of a PV module, wind turbines, and a battery.

Finally, the authors compared the GA, PSO, and DE to their performance
in extracting the parameters of dye-synthesized solar cells. After reaching

[130] GA SDM the error in estimation from the three techniques, the PSO showed better
convergence and recorded less error. Additionally, it proved its ability to
resist noise in data input.

Table 7. Soft computing algorithms —nature-based metaheuristic algorithms.

Ref. Algorithm Model Contribution

The authors suggested an enhancement to the standard Bat algorithm (BA). This
is by adding and incorporating enhanced Lévy flight, thus boosting the
diversification of the solutions. Additionally, to effectively exploit local findings,
which, in general, balances the exploration/exploitation of the algorithm, the
algorithm was applied to extract the parameters of the PV module’s SDM and
DDM. The modeling considered the variations in solar irradiance and cell
temperature. The ELBA proved its competitiveness with other metaheuristic
algorithms. This is in terms of effectiveness, stability, robustness, speed of
convergence, and execution time. The algorithm’s objective was to decrease the
RMSE between measured and simulated data.

[131] ELBA SDM, DDM

The authors proposed using FPA to extract the parameters of the PV module.
The algorithm was validated using the following data sources; the first was
previously published data. At the same time, the second source was the data
measured in the laboratory. The third source was the datasheets of the
manufacturer. This algorithm was applied to the SDM and DDM of the PV
module. The obtained results scored the least RMSE. The FPA surpasses the
other metaheuristic techniques regarding convergence speed and time. This
makes FPA one of the most accurate and fastest algorithms for this problem.

[132] FPA SDM, DDM
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[133]

FPA+NM

SDM, DDM

While the authors suggested hybridizing the FPA with the Nelder-Mead (NM)
Simplex method and a generalized opposition-based learning algorithm (GOBL),
the authors used FPA for global exploration and the NM for exploiting the
findings. Yet, the NM is prone to entrapment in local optima, hence the relevance
of the role of GOBL to avoid the local optimas. This algorithm was applied to
extract the parameters of the SDM and DDM of the PV module. The modeling
considered solar irradiance and cell temperature. The results show the
algorithm’s superiority in terms of accuracy, speed of convergence, and stability.
Additionally, the results had a low RMSE value between measured and
simulated data.

[134]

Modified
FPA

SDM, DDM

Finally, the authors suggested using a modified FPA. The modification adopted
four different rules for switching selection probability. In other words, the
selection probability varies at the beginning of each iteration. This is to increase
the accuracy of the algorithm. The algorithm was applied to extract the
parameters of the SDM and DDM of the PV module. The obtained results scored
minimum RMSE between measured and simulated data. The algorithm was
superior in terms of a minimum number of iterations and fast convergence.

[72]

ER-WCA

SDM, DDM

The authors proposed a new algorithm based on the nature of the water cycle
called ERWCA. The aim is to get precise and accurate values of the nonlinear
parameters of the PV module. The algorithm comprises four steps: initialization,
water movement to river/sea from streams, rain, and finally, evaporation cycle.
The algorithm was applied to extract the parameters of the SDM and DDM of the
PV module. Along with the modeling, variations in cell temperature and solar
irradiance were considered. The objective of the optimization was to minimize
the RMSE and the mean absolute error. In this regard, ER-WAC has proven its
effectiveness and practicality.

[135]

PS

SDM, DDM

The authors proposed using PS for parameter extraction of SDM and DDM
modules. The algorithm is used to address the transcendental function that is
depicted in the current-voltage model. The proposed approach shows its
effectiveness compared to other optimization techniques. Additionally, the
obtained estimated parameters scored a low error. This adds to the favor of the
algorithm in terms of stability and accuracy.

[136]

PS

SDM

Then the authors proposed using PS to tackle the nonlinearity in the PV model
while considering different meteorological parameters. The algorithm was used
to extract the parameters of the SDM. The results validate the algorithm’s
effectiveness regarding the accuracy, fast convergence, and execution time.

[137,138]

SA

SDM, DDM

The authors proposed using SA for extracting the PV parameters as no analytical
solution exists. Moreover, the governing function between current and voltage is
transcendental. So, the models were SDM and DDM PV modules. The SA
performance and results were compared against other techniques and showed
their effectiveness, and the results of the estimated parameters were accurate.
While in [138], the SDM model was only studied.

[139]

SA

SDM

Another proposed enhancement the authors proposed using SA to handle the
uncertainty in the parameter extraction of SDM. The procedure has three steps;
the first step is using SA to extract the parameters without considering the
uncertainties. The second step regards the uncertainties to narrow the search
space for the optimal solution, guided by results from the first step. In the third
and final steps, the iterations are done to find the optimal solution considering
the results from the previous two steps. The new SA algorithm proved its
effectiveness by surpassing performance compared to other techniques.
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[140] SA+LM

SDM

Then the authors proposed a hybrid algorithm that couples the
Levenberg-Marquardt (LM) algorithm with SA. The proposed algorithm
addresses the problem of non-linearity in the PV model. In specific, the LA
damping factor was optimized using SA. The hybrid LMSA was used to extract
SDM PV module parameters. The proposed algorithm proved its effectiveness
by obtaining accurate results. Those results scored minimal errors between
experimental and simulated data. The high accuracy of LMSA shows unmatched
efficiency compared to other metaheuristic algorithms.

[141] SA+PSO

SDM, DDM

Finally, the authors suggested coupling PSO with SA. This is to overcome the
premature convergence problem. The hybrid algorithm was applied to both the
SDM and DDM PV modules. The performance of the proposed algorithm was
tested against other optimization techniques. The results were estimated with
high precision, indicated by the low RMSE and the mean absolute error (MAE).

[142] SFO

TDM

The authors suggested using SFO for parameter extraction of the PV module as a
novel application for the algorithm. The algorithm was applied to the TDM
model of the PV module. The analytical method was used to calculate the series
and shunt resistance, which reduced the nine parameters of TDM to seven. So,
the other seven parameters were obtained using SFO. The obtained results
scored minimum RMSE between measured and estimated data.

[143] SFLA

SDM

The author suggests a novel optimization technique named SFLA. Thus to deal
with the model of PV modules, to achieve accuracy. This affects the dynamics,
transients, and PV maximum power point tracking. The algorithm was applied
to extract the parameters of the SDM of the PV module. The modeling considered
the variations in both solar irradiance and cell temperature. The obtained results
scored low absolute error (between the measured and estimated) values. Thus
SFLA could be considered a candidate for accurately estimating the PV model.

[144] TSO

TDM

The authors suggested using a novel technique TSO, to deal with the extraction
of the complex and nonlinear PV model parameter. The electrical phenomenon
inspires the algorithm in inductive and capacitive circuits, called the transient
process. The algorithm was applied to the TDM of the PV module. Based on
datasheet values, the optimization process begins. Further, the algorithm used
various PV modules with cell type, power, and voltage differences. Along with
the models, the variations in solar irradiance and cell temperature were
considered. TSO achieved optimal desired values to avoid stagnation in local
optima, solving the complex objective function formed from the sum of absolute
erTors.

[145] WDO

DDM

The authors proposed using WDO to extract the parameters of the PV module.
The DDM model was adopted (instead of the single diode model), seeking a
highly accurate representation of PV performance. Twelve parameters further
defined the DDM model to add more accuracy. Then the WDO was fed with all
these highly non-linear variables. In addition, the temperature and solar
irradiance were considered. To demonstrate the flexibility and accuracy of WDO,
three sets of data were used: controlled environmental conditions, experimental
data, datasheet values, and experimental data at non-controlled environmental
conditions. The performance of WDO was put head-to-head with other known
metaheuristic algorithms. The WDO proved that it could provide optimized
values with low RMSE for the power model and other environmental conditions.
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The authors suggested a hybrid algorithm that uses AOA backed with the
Newton-Raphson method of the third order. This was to achieve the
following goals: balancing exploration/exploitation of the search algorithm,
dealing with the adopted objective function, and handling the nonlinearity
and complex nature of the PV module. The algorithm was utilized to extract
the parameters of the SDM, DDM, and TDM. The results prove the
superiority of this algorithm to other metaheuristic techniques. This is in
terms of stability, accuracy, convergence speed, and reasonable computation
time.

SDM, DDM,

[146] AOA TOM

The authors suggested using AIS as a candidate algorithm to tackle the PV
parameter extraction problem. However, the required calculations by AIS are
tantamount to the other metaheuristic algorithms, and the AIS converges
[147] AIS DDM faster. This algorithm was applied to extract the parameters of the DDM of
the PV module. The model considered the variations in solar irradiance and
cell temperature. The results from AIS outperform the ones produced by GA
and PSO. In terms of convergence speed and value of the objective function.

The authors used three metaheuristic algorithms original HS,
grouping-based global HS (GGHS), and innovative global HS (IGHS). The
three algorithms were applied to the problem of extracting the SDM and
DDM PV module model. Both variants aim to use better the solutions
“harmonies” stored in harmony memory. In GGHS, harmonies are divided into
three groups, and using two probabilistic techniques to select among them.
The probabilistic methods are tournament selection and the roulette wheel,
while in IGHS, a predefined number of harmonies are chosen, and some of
the best are considered elite. The superiority of HS and its variants lies in
accuracy, quality, and low RMSE between measured and estimated values.

[71] HS+GGHS+IGHS ~ SDM, DDM

The authors suggested using ICA to extract the parameters of the PV
generation unit. The algorithm was applied to various technologies of SDM
and DDM of PV modules. Additionally, the cell temperature and solar
irradiance were considered in the optimization. The authors used the
maximum power tracking equation as the objective function. Finally, the
obtained results were compared to other metaheuristic algorithms and
experimental data, which prove the reliability of using ICA in such types of
problems.

[148] ICA SDM, DDM

The authors proposed using MVO to tackle the problem of extracting the
parameters of the PV module. The initial values of the five parameters were
obtained using analytical methods. This algorithm was applied to extract the
parameters of the SDM PV module. The modeling considered the variations
in solar irradiance and cell temperature. The estimated values were
compared to results from mathematical values and other metaheuristic
algorithms. Moreover, the simulated results matched that of the
experimental data. From those validations, the MVO proved its efficacy.

[149] MVO SDM

Table 9. Soft computing algorithms—bio-inspired metaheuristic algorithms.

Ref. Algorithm Model Contribution

The authors introduced using ABSO to solve the parameter extraction of

[150] ABSO SDM SDM and DDM of the PV module model.
While the authors provided using of Artificial Bee Colony (ABC) to tackle
the problem of parameter extraction of SDM and DDM of the PV model,
[151,152] ABC SDM. DDM the authors added modifications to the ordinary ABC to boost the slow

convergence speed and to avoid entrapment in local minima. The
improvements gave the technique a promising performance, leading to
the ABC as one of the primary candidates for solving such a problem.
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[153]

BPFPA

SDM, DDM

Afterward, the authors suggested hybridization of bee pollination (BP)
and the flower pollination algorithm (FPA), thus enhancing the overall
performance, avoiding slow convergence, and improving the quality of
solutions. The new hybrid algorithm was applied to the
parameter-extracting problem of SDM and DDM. The improvement was
made by replacing the flower pollination operator with its counter bee
pollinator. The obtained results surpassed other metaheuristic techniques
and the individual techniques that form the new hybrid. The
enhancement in developments was shown in the fast convergence to
global optima. In addition, the robustness and less complexity of the new
algorithm.

[154]

TLBO+ABC

SDM, DDM

Further, the authors introduced the mixing of teaching-learning-based
optimization (TLBO) with ABC. This enhances the algorithm’s overall
performance in terms of reliability and accuracy. The proposed hybrid
algorithm consists of three search phases. The problem of extracting the
parameters of SDM and DDM was addressed.

[155]

TRR+ABC

SDM, DDM

In addition, the authors suggested the use of the trust-region-reflective
deterministic algorithm (TRR) along with the ABC metaheuristic
algorithm. This hybrid combination is used to exploit TRR with the
exploration of the ABC. This is to tackle the parameter extraction of SDM
and DDM of PV modules. The hybridization was advantageous in terms
of accuracy, reliability, and efficiency.

[156]

Improved ALO
(TIALO)

SDM

The authors suggested using ALO to extract the parameters of the PV
module accurately. The authors proposed using a chaotic sequence to
enhance the convergence speed and avoid premature convergence, thus
the technique became IALO with a uniform population. Another
improvement was adopting the dynamic contraction region; therefore,
the algorithm execution time is shortened. The algorithm was applied to
the SDM of the PV module. The IALO outperforms its counterparts in
terms of accuracy.

[157]

ALO+ Lambert
W function

SDM

While the authors used ALO backed with Lambert W function for SDM.
The algorithm considered variations in the cell temperature and solar
irradiance. The RMSE was the validation for the obtained results.

[158]

ALO

DDM

Further, the authors suggested using ALO with consideration of
parameter uncertainties. The algorithm was applied to extract the
parameters of the DDM of the PV module. This algorithm presented
effective performance compared to other counterparts.

[159]

ALO+NM

SDM, DDM

Additionally, the authors coupled the ALO with the Nelder-Mead
simplex technique and opposition-based learning mechanism. These
improvements help enhance the poor performance and decrease
uncertainties, preventing immature convergence. Finally, to balance the
exploration (diversification)/exploitation (intensification). The algorithm
was applied to extract the parameters of the SDM and DDM of the PV
module. The hybrid algorithm remarkably scores minor errors between
the measured and simulated values.

[69]

BFA

SDM

The authors adopted the biological metaheuristic algorithm BFA to
extract the parameters of the SDM PV module model. The algorithm
considered the variations in both the cell temperature and solar irradiance.
The diode current and saturation current values are computed using the
values in the manufacturer’s datasheet, while shut resistance, series
resistance, and diode ideality factor were obtained using the algorithm
that optimizes the maximum power point tracking slop equation.
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[160]

BFA +PSO

SDM

The authors presented an algorithm that uses PSO and BFA. The hybrid
algorithm was used to extract the parameter of the SDM PV module. The
PSO was used to guide the bacteria’s direction in each iteration, thus
enhancing the overall performance of BFA. The optimization process was
based on the datasheet values. It was targeted to minimize the error
between estimated and measured values. Each of the PSO, BFA, and
hybrid algorithms was applied individually and independently to the
optimization problem. The results show the superior performance of the
hybrid algorithm over the individual algorithms. The effectiveness lies in
the minimum value of error and accuracy.

[161]

BFA

SDM

Then the authors proposed using BFA to extract the parameters of the
SDM PV module. A comparison between the simulated data and
experimental ones considering four types of PV panels. In addition, the
model contained the dependence of the PV parameters on both the solar
irradiance and cell temperature. The obtained results from BFA showed
the surpassing performance of the used algorithm. The use of BFA had
the following advantages: BFA has the implicit tendency to eliminate the
poor solution, avoid premature convergence, fast convergence speed,
more accurate values, and finally, less error. All the advantages arise
when comparing BFA to PSO and enhanced simulated annealing.

[162]

BMO

SDM, DDM

The authors proposed using BMO. This technique has many search
patterns, eliminating premature convergence and maintaining diversity.
The parameter extraction for SDM and DDM was tackled. The obtained
results accentuated the accuracy and superior performance among other
meta-heuristic algorithms.

[163]

SBMO
(simplified)

SDM

A further modification was proposed, as the authors introduced using
BMO in a more simplified form, eliminating the efforts needed for
parameter setting in the original BMO. In addition, to modifying some
rules. The algorithm was used to address the problem of extracting the
parameters of the SDM PV module. By comparing it to other
meta-heuristic algorithms, SBMO shows more accurate results.

[164]

Cat Swarm
Optimization
(CSO)

SDM, DDM

The authors proposed using CSO to determine the parameters of the PV
module. The algorithm was applied to the SDM and DDM. To control the
operation of CSO, the authors used control parameters. Sensitivity
analysis was performed to measure the effect of changing some
parameters. The following parameters were varied: seeking range effect,
dimension of the count, pool for seeking memory, and mixture ratio. The
quality of the obtained values was compared to other metaheuristic
algorithms. The CSO was characterized by consistency, high-quality
results, and convergence. The sensitivity analysis proved that small steps
and mutation with one dimension enhance the performance.

[165]

COA

TDM

The authors presented a novel application for COA for handling the
nonlinearity in the PV model to extract the parameters of the PV module.
The authors applied the technique to extract the parameters of TDM of
the PV module. The model’s RMSE was targeted to get a high precision
value. The optimization process considered cell temperature and solar
irradiance. The algorithm presented high effectiveness, robustness, and
precision, which made the technique a candidate for model PV systems.

[166]

CS

SDM

The authors adopted using Cuckoo search to solve the nonlinear problem
of parameter extraction. The proposed algorithm offers high accuracy
and low RMSE value. It was applied to the SDM PV module. The CS
outperforms the GA, PSO, and PS.
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The authors proposed a hybrid algorithm that consists of heterogeneous
CS based on biogeography optimization as an attempt to overcome the
premature and slow convergence of other metaheuristic algorithms. The
proposed hybridization offers a perfect balance between exploration and

SDM, DDM exploitation. This is to tackle the nonlinearity and multiple models used
in PV modeling. Specifically, the SDM and DDM models. The hybrid
algorithm performed competitively compared to individual CS and
biogeography optimizations. This competitiveness appears in both the
accurate and reliable values of the results.

CS+

[167] Biogeography

The authors proposed using two variations of CS, named: improved CS
and modified CS. Both modifications were applied to SDM and DDM. The
improved CS uses an adaptive coefficient to determine the step size of the
random walk, which is based on Lévy flights. With the modified CS, the
information is interchanged between top solutions, thus attaining better
convergence and uniformity at the same time. The improved CS achieved
better results than the modified and original CS, as the results from the
enhanced CS pose lower RMSE between measured and simulated data.

improved CS +

[168] modified CS

SDM, DDM

The authors proposed using CSA to identify the parameters of the PV
module. The algorithm aims to determine the parameters at great
precision and high convergence speed. The algorithm possesses a simple
structure and easy tuning of its parameters. The algorithm was applied to
both the SDM and DDM. CSA presented remarkable performance
compared to its counterpart’s metaheuristic algorithms.

[169] CSA SDM, DDM

The authors suggested using a hybrid mix between the firefly algorithm
and pattern search. The firefly can explore the problem space in search of
a possible solution. However, it needs to be adjusted to exploit the
findings effectively. Here arises the role of pattern search as a backup
algorithm in this concern. The hybrid algorithm was applied to the
parameter extraction problem of SDM and DDM. The algorithm’s
performance was found to be competitive with other metaheuristic
algorithms.

[170] FA +PS SDM, DDM

While the authors suggested using the firefly algorithm to tackle the
problem of extracting the SDM and DDM parameters of the PV module,
they considered both the solar irradiance and cell temperature. The
obtained results from the firefly algorithm were compared to another
metaheuristic one. The results were competitive in terms of root mean
squared errors, the sum of squared errors, and mean absolute errors.

[171] FA SDM, DDM

The authors used GOA to extract the optimum values of the parameters.
The algorithm was applied to the TDM of a PV module. The modeling

[172] GOA TDM considered the variations in temperature and solar irradiance. GOA
performed better than the other metaheuristic algorithm based on RMSE
values between measured and estimated values.

[173] GOA SDM, DDM The algorithm was applied to SDM and DDM.

The authors suggested using GWO for a reliable, accurate, and precise
estimate of PV model parameters. The algorithm was applied to the SDM

[174] OG;?,‘ i‘szc)ilfn SDM of the PV module. The solar irradiance and cell temperature were
P (GW Oa) © considered in the modeling. The obtained results were validated by

comparing the estimated to datasheet values. The GWO succeeded in
giving accurate estimates of the parameters.
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[175] GWO +CS

SDM, DDM

While the authors proposed using a hybrid mixture between GWO and
CS. This balances exploration (using GWO) and exploitation (using CS).
The hybrid algorithm was used to extract the parameters of the SDM and
DDM of the PV module. Additionally, with consideration of varying
solar irradiance and cell temperature. The algorithm was backed with an
opposition learning technique to add diversity to the population. This
hybrid algorithm has shown a remarkable performance, making it a
promising candidate for such problems. The performance of GWOCS
was superior (to the other GWO variants) in terms of precision,
convergence speed, and achieving global optimum solutions.

HHO +
[176] computation
methods

TDM

The authors suggested hybridizing HHO with computation methods to
be used as the metaheuristic algorithm to optimize the model of the PV
module. The computation methods will be sued to identify four
parameters, leaving the five remaining parameters to HHO. The new
objective function relies on manufacturers’ datasheet values instead of
laboratory experiments. The algorithm was applied to extract the
parameters of the TDM of the PV module. The obtained results scored
minimum RMSE compared to other algorithms. This shows the efficiency
of the proposed algorithm, in addition, to its easiness of application.

[177] MIGTO

SDM, DDM,
TDM

The authors suggested using a new hybrid algorithm called MIGTO to
handle the PV module model’s complexity, nonlinear, and multimodal
nature. Therefore, the hybrid algorithm helps in preventing the
individual algorithm from being stuck in local optima. The improvement
lies in two changes: the first is called: an explorative gorilla backed with
an adaptive mechanism for mutation. At the same time, the second
improvement is called: the gorilla memory-saving technique. This is to
maintain the exploration/exploitation balance. The hybrid algorithm was
applied to the PV module’s SDM, DDM, and TDM. The results of the
proposed hybrid algorithm’s superiority among other metaheuristic
techniques in terms of RMSE, computation time, and absolute individual
error.

[178] MRFO

SDM, DDM,
TDM

The authors adopted using MRFO to handle the PV parameter extraction
computational problem. The algorithm was implemented to extract the
parameters of the PV module’s SDM, DDM, and TDM. Additionally, the
modeling considered solar irradiance and cell temperature variations.
The obtained results from MRFO show that the value of RMSE (measured
and estimated data) was at its minimum.

[179] MPA + SHADE

SDM, DDM

The authors suggested using a novel metaheuristic algorithm based on
the biological behavior of marine predators (MPA). This is to obtain the
optimum solution. Then the algorithm is backed with another successful
history-based adaptive differential evolution (SHADE). This shall offer
the best balance between exploration and exploitation needed to achieve
the best-optimized answer. The hybrid algorithm was applied to SDM
and DDM PV modules. The authors used the hybrid technique to
optimize three out of five parameters in SDM and five out of seven in
DDM. the unoptimized parameters were calculated analytically.

[180] MPA

TDM

The authors suggested using the original MPA to tackle the problem of
parameter identification of TDM of PV modules. This new application
aims to optimize all nine parameters of the TDM model. The model
considers the meteorological parameters, cell temperature, and solar
irradiance. The obtained optimized values were compared to other
metaheuristic algorithms. The MPA performance surpassed them in
accuracy, robustness, and efficacy.
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Table 9. Cont.

Ref. Algorithm Model Contribution

The authors suggested improving the MPA algorithm to tackle the
challenging task of PV parameter estimation. The authors realized that
most available metaheuristic algorithms suffer several drawbacks, such
as a vast computation burden, stagnation in local optima, and complex
parameter tuning. The improvements to the MPA were by using two
steps; the first was the adaptive mutation technique. While the second

[181] IMPA SDM, DDM improvement was, updating the location of the solution with low quality,
guided by the best solution with a good location. The model took into
consideration both the solar irradiance and cell temperature. The IMPA
was superior to the other metaheuristic algorithms. This is in terms of
RMSE (between measured and simulated data), the standard deviation of
values, computation time, absolute individual error, average sum of
ranks, and the sum of ranks.

The authors proposed using MFOA to extract PV module parameters
from various PV technologies and types. The algorithm was applied to
extract the parameters of DDM and TDM of the PV module. The
modeling considered the variations in both solar irradiance and cell
temperature. In addition, the values of RMSE, mean bias error, absolute
error, and maximum power point; were far less than those published in
the literature and obtained from counterparts of other metaheuristic
algorithms. The algorithm acquires the data more rapidly and accurately.

[182] MFOA DDM, TDM

Using the I-V curves, the authors implemented PSO to the parameter
[183] PSO SDM, DDM extraction problem in both SDM and DDM. The PSO outperforms the GA
in both the accuracy and computational speed of optimization values.

Then the authors used PSO to extract the PV cell parameters under

[184] PSO PV cell variable conditions of solar irradiance and cell temperature.
After that, the authors employed the PSO to predict the values of SDM
[185] PSO SDM under varying cell temperatures. The PSO was coupled with the penalty

objective function. Thus, preventing the PSO algorithm from proposing
solutions beyond a predefined range/boundaries.

Also, the authors used PSO to optimize the parameters of DDM. The
[186] PSO DDM results were statistically clustered. The results gave a good representation
of the model and were also physically accurate.

Moreover, the authors implemented PSO two to extract the parameters of
[187] PSO DDM DDM from various cell and module types. The results were studied to
investigate the effect of each on PV’s overall performance.

In addition, the authors coupled PSO with chaos to extract the
parameters of SDM for both module and cell. The chaos search helped in

[188] PSO + chaos SDM initiating the sluggish/inactive particles. This boosted the local and global
search capability, which enhanced the algorithm’s overall performance.
In addition, the authors proposed a variation to the chaotic concept to be
. coupled with PSO. The modified chaotic concept PSO was tested to
[189,190] Chaotic SDM, DDM, extract the parameters of SDM, DDM, and TDM. The new algorithm
concept + PSO TDM . L
proved consistency, short execution time, fast convergence, and less
deviation in estimation compared with data sheets.
Then the authors tested PSO to extract the parameters of the PV cell. The
[191] PSO PV cell obtained RMSE was lower than that obtained with other metaheuristic
algorithms.
While the authors introduced adaptive mutation to the PSO algorithm,
[192] Adaptive SDM. DDM thus, preventing PSO from prematurely converging when dealing with
mutation PSO § parameter extraction of solar module parameters. Thus the PSO has

balanced exploration and exploitation capabilities.
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Ref. Algorithm Model Contribution

The authors used a new approach called inverse barrier constraint with

I i . . .
nverse barrier PSO. Thus overcoming the shortage in manufacturing data and

(18] con;t;gmt * SbM minimizing the error in the optimized value of the unknown PV module
parameters.
In addition, the authors introduced a variation to PSO called enhanced
[193] ELPSO SDM. DDM leader PSO. This prevents a significant drawback in PSO, which is

premature convergence. This is done by introducing five steps of
mutation that are applied successively.

The authors proposed adding more flexibility to the PSO algorithm when
applied to PV SDM and DDM parameter extraction. This further

[194] Enhanced PSO SDM, DDM enhancement is done by replacing several stagnant individuals with new
ones. In each iteration, the replacement is done. This boosts both the
robustness and accuracy of the algorithm.

A further enhancement was introduced by adding binary constraints to

[195] COE;I:;;i}rll ts SDM PSO. To enhance the performance of the process of parameter extraction
PSO of SDM for both multi and mono-crystalline types. This added constraint
eliminated the effect of varying temperatures on the performance of PSO.
Additional enhancement, implemented by combining PSO with Grey
Wolf optimization (GWO). The enhancement lies in using the influential
exploitation of the PSO and the superior exploration of the GWO. This
[196] PSO+GWO SbM, DM push the overall performance of parameter extraction of SDM and DDM.
Along with decreasing the RMSE between estimated vs. experimental
data.
The authors introduced another solution for premature convergence as
they introduced a novel enhancement called classified-perturbation
Classified- mutation PSO. After each iteration, the new methodology assesses the
. location of each individual. The individual with a good position receives
[197] Perturbation SDM, DDM good p

a small perturbation mutation. However, the individual with the wrong
position receives a high perturbation mutation. This is in the seek for
global enhancement of the PSO performance. The algorithm
demonstrated rapid, stable, and accurate parameter extraction values.

mutation PSO

The authors proposed using PSO to extract the PV module parameters of
a dynamic thermal model. The model counts all the possible heat transfer
from the module to the surrounding environment.

Dynamic

[198] PSO thermal model

Then the authors proposed using Niche PSO with parallel architecture to
prevent the technique from being tapped in local minima. The algorithm
was implemented in SDM, DDM, and PV module models with varying
cell temperatures and irradiance.

The authors used PSO in the parameter extraction of the TDM. The PSO
[200] PSO TDM could predict the parameters of the TDM with a low mean absolute error
compared to the DDM.

[199] Niche PSO SDM, DDM

The authors propose using a novel optimization algorithm, SSA, to
extract PV parameters. The algorithm was compared to several other
metaheuristic algorithms to compare results. It was applied to the DDM
of the PV module. The obtained results using SSO scored the minimum
values in both mean square and absolute errors compared to other
metaheuristic algorithms.

[201] SSO DDM

While the authors presented SSO as an optimization algorithm for
extracting and dealing with the uncertainties in PV module parameters,
the optimal solution could be found via three steps: parameter retrieving

[202] SSO SDM, DDM conventionally, determination of parameter uncertainty, and
instantaneous determination of the parameters. The algorithm was
applied on both SDM and DDM. The algorithm was applied to multiple
PV datasheets for effectiveness confirmation.
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[203] Chaotic WOA SDM, DDM

The authors proposed using chaotic WOA, a variant of the original WOA,
to handle the nonlinear and multimodal model that describes the PV
module. To tune the WOA algorithm, chaotic maps are used. This helps
in finding the best optimal solution. The algorithm was applied to the PV
module’s SDM and the DDM. The impact of varying cell temperature on
both current and voltage was studied. The chaotic hybridization with
WOA boosted the algorithm’s overall performance in stability, avoiding
local optima and convergence speed. Regardless of its superiority
compared to other metaheuristic optimizations.

Opposition-
[204] based learning
WOA

SDM, DD},
TDM

The authors suggested using opposition-based learning to improve the
exploration of WOA. Both the cell temperature and solar irradiance
variations were considered in the model. The algorithm was applied to
the PV module’s SDM, DDM, and TDM. Statistical methods were used to
test the performance of the proposed algorithm. The model’s
performance was enhanced (at least for SDM). In terms of accuracy and
stability.

[205] WOA + DE SDM, DDM

The authors suggested hybridizing the WOA with DE. As the DE
possesses strong exploring abilities, it is sluggish in exploiting the
findings. Hence, the role of WOA is to back the DE up in terms of
exploitation. Additionally, this hybrid mixture gets rid of WOA
premature convergence. Therefore, the authors postulate that this hybrid
combination balances the exploration/exploitation of the optimization
problem. This new algorithm was used to extract the parameters of the
PV module’s SDM and DDM. The optimization considered varying solar
irradiance, cell temperature, and cloudy weather. The hybridized
algorithm outperforms the individual algorithms and other algorithms.
This is in terms of solution quality, speed of convergence, and robustness.

[206] IWOA SDM, DDM

The authors suggested improving WOA (IWOA) to avoid premature
convergence. The improvement lies in searching consisting of two prey
instead of one. This shall regain the exploration/exploitation balance,
enhancing the algorithm’s overall performance. The IWOA was applied
to extract the parameters of the SDM and DDM of the PV module. The
obtained results demonstrate that suggest improvement boosted the
performance of the original WOA.

SDM, DDM,

[207] WOA TOM

While the authors applied WOA to extract the PV parameters of SDM,
DDM, and TDM, the optimization was implemented on the MATLAB
program. The authors use the advantages of WOA, such as a small
number of parameters that need tuning. Along with simple structure,
minimum computational burden, and high speed in convergence, and the
output results were compared to other metaheuristic algorithms. The
results scored low errors between measured and simulated values.

[208] RLWOA SDM

The authors suggested using refraction-based learning along with WOA
(RLWOA) for an additional improvement trial. Thus, improving the
convergence and entrapment in local optima, hence the balance between
global search and fast convergence could be achieved. Additionally, this
reflects on the exploitation of solutions. In return, this improves the WOA
to handle high-dimensional problems. The algorithm was applied to
SDM only of the PV module. The RLWOA was compared to other
variations of WOA along with other metaheuristic algorithms, and the
results were competitive.
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[209] RWOA

The authors suggested two variations to the original WOA. The first is
ranking-based WOA (RWOA), aiming to exploit each individual (whale)
in the population. At the same time, the other variation, hybrid WOA
(HWOA), uses a new exploration-exploitation operator. Integrating both
variations helps avoid entrapment in local minima and enhances the
overall convergence speed. The hybrid algorithm was applied to extract
the parameters of the TDM of the PV module. The results were validated
by comparing the RMSE between simulated and measured data. The
RWOA was superior in some cases in terms of accuracy and convergence
speed; however, HWOA was good in all cases.

TDM

The DDM model is more convenient for the polycrystalline-type PV module. At the
same time, the SDM can be applied to amorphous silicon. Regarding the TDM, there is little
effort in estimating its parameters compared to SDM and DDM models due to the model’s
complexity. Concerning metaheuristic algorithms, GA is the oldest one presented. This
makes GA the frame of reference for other modern minimum-seeking algorithms. Com-
paring GA to other algorithms, the following could be concluded: BFA gives reasonable
solutions. Furthermore, PSO can converge to global optimum solutions. DE requires a low
number of tuned parameters. CS outperformed GA, PSO, and PS. In addition, GGHS &
IGHS have greater accuracy than CPSO, SA, PS, and GA. Some literature proved that ABSO
is superior to HS, CPSO, PS, SA, and GA. BMO provided enhanced results compared to
ABSO, HS, GGHS, IGHS, PS, CPSO, SA, and GA. However, SBMO performed better than
PSO, IGHS, and GGHS.

Table 10 tabulates the link between PV technology, PV model, and best metaheuristic
methodology.

Table 10. Selection of metaheuristic algorithm vs. PV module technology and PV model.

PV Module Technology

Thin Film Am(.)r.phous
Silicon

Polycrystalline Monocrystalline

SDM

Simplified Birds
Mating
Optimization
(SBMO) [163]

Particle Swarm
Optimization
(PSO)

Improved Adaptive
differential evolution
(IADE) [210]

Flower Pollination
Algorithm (FPA)

PV Model
DDM

Bee Pollinator
Flower Pollination
Algorithm
(BPFPA)

Guaranteed Convergence
Particle Swarm
Optimization (GCPSO)
[211]

Barnacles Mating
Optimizer
Algorithm

(BMOA) [212]

Salp Swarm
Optimization (550)

TDM

Northern Goshawk
- Optimization -
algorithm (NGHOA)

Equilibrium Optimizer
Algorithm (EOA)

Table 11 lists a summary of the advantages and disadvantages of some optimization
algorithms.
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Table 11. Advantages and disadvantages of some of the optimization algorithms.

Algorithm Advantages Disadvantages
Care is needed to calculate and estimate
Superior in handling uncertainties. the me.mbershlp function.
. . To achieve more accurate results, more
Uses simple mathematics to model .
} nonlinear and complex systems grades of fuzzy rules are needed. This
Fuzzy Logic (FL) ' increases the rule in an exponential

Has High precision.
Rapid in operation.

manner.
No real-time response.

Cannot receive feedback from a learning
strategy.

Artificial Neural Networks

After training, no need to know the
relations between the parameters of the
PV module.

Needs extensive training data, which
sometimes are not available easily.

(ANN) . . . S Due to its black-box nature, it cannot
[ It is responsive to real-time applications. . .
. . grasp the details of the relations between
Based on the low computations effort is ,
) the model’s parameters.
required.
i : Fast convergence. Complicated in tunin

Genetic Algorithm (GA) It can handle a large number of variables. P &

Implicit parallelism.

Large computational burden.

Particle Swarm Optimization
(PSO)

Requires few parameters to tune.

There is no evolution or mutation for the
population.

Requires less computation time
(concerning GA).

Its flexibility enables the balance between
local and global search.

Low-quality solution.
It needs memory to update the velocities.
Prone to premature convergence.

Differential Evolution (DE)

Easy to be coded.

Fast convergence.

For PV models, DE and its variants
provide better accuracy, reliability, and
computational time results.

Prone to premature convergence.
Three parameters need to be tuned.

Simulated Annealing (SA)

Can reach global optimum easily.
Easy to code.
Can handle various types of problems.

Very slow.

Small changes in the input lead to
significant changes in the output.
To increase high-quality results,
laborious parameters shall be tuned.

Artificial Bee Swarm
Optimization (ABSO)

Strong ability to search.
High convergence speed.

Prone to be tripped in local optima.
Its search speed is not steady and slows
down as the search process proceeds.

° No parameters to tune.
Teacher Learning-based ° Easy to implement. Slow in convergence.

Optimization (TLBO) ) Improved TLBO is more accurate and It needs large computing resources.
reliable in estimating SDM & DDM
parameters.
Few parameters to be tuned.

Whale Optimization Ability to search the entire problem Slow in convergence.

Algorithm (WOA) space. Prone to premature convergence with

Its exploration abilities can be enhanced
by hybridization with other algorithms.

high dimensional problems.
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6. Future Research Trends

In this section, future research trends are presented for both PV modules” parameter

extraction and metaheuristic algorithms. The following points summarize future trends
in the metaheuristics used in the extraction of PV modules parameters [80]:

The atmospheric parameters (irradiance and ambient temperature) should be consid-
ered in the simulation and modeling stage. This is due to the PV modules operating
outdoors mainly.

The model TDM should be studied in detail and draw some attention in future re-
search.

Most published work depends on RMSE value as the main optimization target, and
the other statistical parameters are rarely addressed. However, the listed statistical
functions should be addressed to assess their influence on overall optimization values
and compare different metaheuristic algorithms’ performance.

It is recommended in future work that CPU time should influence the decision to
adopt a specific metaheuristic algorithm or decide on the suitability of a proposed
hybrid algorithm.

The previous two points can contribute to framing an overall picture of the studied
algorithm. Hence, a comprehensive picture of the algorithm’s performance in terms
of accuracy, reliability, suitability, and stability is clear.

Most analytical models are dominated by mono- and poly-crystalline silicon. How-
ever, the thin film modules have been expanding recently. Specifically, amorphous
thin film is famous for possessing high ideality factors due to its low fill factors.
Limited work is dedicated to multi-junction cells, organic cells, and solar concentra-
tors. Therefore, there are several issues in their model that need resolving.

Finally, in testing new algorithms/hybrid algorithms, it is recommended to use com-
plex PV cell models, such as a 57 mm diameter R.T.C France solar cell or Photowatt-
PWP201.

The following points summarize future trends in upgrading the metaheuristic algo-
rithms [213]:

Algorithm accuracy and needed computational burden should be addressed concern-
ing the GA. This is by combining GA with other metaheuristic algorithms. This adds
to the overall performance of GA and decreases the probability of entrapment in local
optimas.

DEs and PSOs, in general, have remarkable performance. However, DEs have en-
hanced performance when coupled with other algorithms and obtain better RMSE.
At the same time, PSO has remarkable CPU resource consumption compared to DEs.
The algorithm TLBO is parameter-free, which means that there are no parameters
that need to be tuned in advance. However, with this advantage, the convergence
speed is questionable and needs further enhancement. This is also applicable to WOA
convergence speed.

Also, the hybrid algorithms may possess complex structures regarding the number of
parameters needed to be tuned, such as ABSO+FPA. Therefore, when tuning these al-
gorithms’ parameters, great care should be paid to harnessing the benefits and avoid-
ing the drawbacks.

Developing a combination of local search and metaheuristic algorithms is also recom-
mended for new hybrid algorithms. Local search can reduce the computation burden,
optimize the usage of computation resources, and improve accuracy, for example, on
local search algorithms: Nelder-Mead (NM), simplex method, and trust-region reflec-
tive (TRR).

There are evolutions in swarm techniques to add diversity to the existing techniques.
This evolution explores more available relations, such as animals, cells, molecular mo-
tors, granular matter, and robotic swarms. This enables exploring novel applications.
In addition, investigate more advanced and/or simplified or rapid and accurate con-
vergence algorithms, introducing new approaches to solving more complex models.
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e An important issue concerning agent-dependent algorithms and which interaction
pattern between agents is adopted, namely, hierarchical or egalitarian: they need del-
icate balance and immense fine-tuning to achieve the best solution. The advantages
and level of information interchange among agents need further investigation.

e  The negatives of the metaheuristic algorithms should be considered, especially the
interactions between agents and how they benefit the algorithm’s performance. The
interactions should be studied to weigh their impact as they can lead to the devalua-
tion of a critical element or decrease in sensitivity to the variations in the topography
of the problem.

7. Conclusions

The analytical models for SDM are still widely used due to its simplicity, and provided
values in the datasheet are sufficient to extract the parameters with minimum calculation
burden. However, there is a need to have a more precise model for handling the uncer-
tainties arising due to the installation of large PV farms and variations in environmental
conditions. Hence, the importance of the DDM (seven parameters) and TDM (nine pa-
rameters) arises. Furthermore, the PV distributed generation has become more prominent
nowadays. All these issues encourage adopting algorithms that can predict parameters
with the highest precision possible.

The accuracy of PV module modeling is based mainly on the datasheet, along with
the number of parameters (SDM, DDM, or TDM) and the level of approximation. Thus,
without a doubt, the accuracy and complexity of the PV model are directly proportional.
The more complex the model, the more accurate the modeling. However, an increased
number of parameters increases the difficulty of obtaining correct values.

It is worth mentioning that shunt resistance is sometimes omitted from SDM for sim-
plicity. However, it significantly contributes to estimating the value of the ideality factor,
as well as series resistance.

With the significant increase in computational power of workstations and even per-
sonal computers, soft computing algorithms attract more attention and are expected to
dominate other algorithms. However, hybrid algorithms are more appealing than many
metaheuristic algorithms that suffer premature convergence. The hybridization can be
with two or more metaheuristics. Additionally, it can be between a metaheuristic and a
deterministic algorithm. Some trends now prefer to estimate some parameters analytically
(PV current, saturation current, or even diode ideality constant). Thus, the selected meta-
heuristic algorithm must handle the shunt and series resistance (diode ideality constant if
not estimated).

Itis also noticed that there is a tendency to use multiple objective functions besides the
well-known RMSE. This should be coupled with different statistical evaluations to check
the consistency of the obtained results from the optimization process. The calculation bur-
den (i.e., computation time and complexity) should be considered in judging specific algo-
rithm performance.

PV modeling should include the aging factor and other environmental conditions
(such as dust coverage) to obtain a more realistic model that can reflect the actual per-
formance of the PV module. In return, this may provide a minor marginal possible error
during simulation. In addition, these enhanced models can provide a deep understanding
of the performance of the PV module. Finally, this will reflect on the accuracy of estimating
financial issues, such as the payback period.

The authors aim to present a comprehensive overview of PV module modeling and
parameter extraction by gathering analyses along with various metaheuristic models. The
three main models (SDM, DDM, and TDM) for PV modeling were presented, thereby pro-
viding a valuable reference for both researchers and engineers in this field.

As this is a review article, some data were not available, such as computation speed,
which is always dependent on the workstation used and the complexity of the model. In
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addition, error values were not added as the models listed are not similar and dependent
on the input data and used algorithm.
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