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Abstract: Renewable Energy Communities (RECs) are emerging as an effective concept and model to
empower the active participation of citizens in the energy transition, not only as energy consumers
but also as promoters of environmentally friendly energy generation solutions, particularly through
the use of photovoltaic panels. This paper aims to contribute to the management and optimization of
individual and community Distributed Energy Resources (DER). The solution follows a price and
source-based REC management program, in which consumers’ day-ahead flexible loads (Flex Offers)
are shifted according to electricity generation availability, prices, and personal preferences, to balance
the grid and incentivize user participation. The heuristic approach used in the proposed algorithms
allows for the optimization of energy resources in a distributed edge-and-fog approach with a low
computational overhead. The simulations performed using real-world energy consumption and
flexibility data of a REC with 50 dwellings show an average cost reduction, taking into consideration
all the seasons of the year, of 6.5%, with a peak of 12.2% reduction in the summer, and an average
increase of 32.6% in individual self-consumption. In addition, the case study demonstrates promising
results regarding grid load balancing and the introduction of intra-community energy trading.

Keywords: energy community; scheduling; renewable energy; flex-offers; algorithms

1. Introduction

Traditional energy grids have been heavily dependent on the burning of fossil fuels,
such as coal or natural gas, to generate electricity. This type of electricity production there-
fore has a negative impact on the environment, while also posing geopolitical challenges for
countries that must rely upon others for obtaining these vital resources. In addition, energy
generation at plants distant from consumers leads to losses in its distribution infrastructure,
diminishing efficiency and increasing running costs [1].

Renewable Energy Sources (RES) emerge as a green, reliable, and economically viable
solution for electricity production. Given the replenishable nature of its sources, such as the
sun and wind, RES enables citizens and governments to become more self-sufficient, as the
energy can be produced on an individual basis in a distributed manner. Distributed Energy
Resources (DER) are closer to consumers, which also substantially reduces traditional
distribution losses and the energy costs of consumers, which incentivizes the use of RES.
As a result, the adoption of renewable energy has significantly increased, with its growth
forecast to speed up in the next five years [2]. Households, office dwellings, and factories
also play an increasingly prominent role in this transition [3], by installing photovoltaic
panels to satisfy their own energy needs and injecting their surplus production into the
grid. Such end-users are now being designated as prosumers, as they take on the role of
both producers and consumers of energy simultaneously.

However, the high penetration of RES poses new difficulties to grid operators in
managing and maintaining the necessary grid balance, as there is a time imbalance between
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peak demand and RES production due to the highly fluctuating operation characteristic
of these sources. In addition, at certain times of the year, namely spring and summer,
there is an overgeneration risk which may force grid operators to curtail RES or implement
negative electricity prices to force demand upwards, leading to higher operating costs and
thus reducing both the environmental and economic benefits of renewable sources.

Energy Flexibility Management offers a partial solution to this problem, minimizing
the impact of the introduction of RES in energy grids and preserving its economic and envi-
ronmental benefits. Renewable Energy Communities (REC) offer a powerful framework
in which energy sharing between members is possible and where Flexibility Management
can be further explored. In this context, Flexigy [4], the project in which this research work
has been conducted, aimed to develop an integrated platform for managing the energy
flexibility of consumers and prosumers belonging to a REC.

This paper builds on the three-level smart-grid architecture for REC management
introduced in [5], detailing the algorithms developed, whose main aim is to schedule
the energy flexibility of home appliances, considering the member preferences and the
consumption profiles of the appliances with the corresponding flexibilities. The scheduling
is performed at each of three architectural levels: (i) at the prosumer level (on a single
house or office dwelling), (ii) at REC level (to which the prosumer belongs), and (iii) at the
grid level. This paper’s contribution focuses on delivering fast and scalable algorithms
that do not use excessive computing resources so that they can be applied closer to the
end-user on an edge-and-fog low-cost computing platform, while maintaining a high level
of optimization with benefits for the users and the environment.

The proposed method is validated using a dataset composed of the energy flexibility
profiles, consumption, and production of fifty dwellings. The data were collected during
different seasons on real-world appliances during the project. Finally, the results are
presented and the benefits of the solution are thoroughly analyzed.

This paper is organized in multiple sections. Section 2 presents the state-of-the-art
concepts and projects related to demand-side response and energy flexibility. Section 3
gives an overview of the developed system model. Section 4 details the flex offer schedul-
ing algorithms. Section 5 presents and discusses the results obtained from a real-world
simulation. Section 6 addresses the main conclusions and future work.

2. State of the Art

The EU has committed to reducing 55% of net greenhouse gas emissions [6], integrat-
ing more than 40% of Renewable Energy Sources (RES) [7], and improving energy efficiency
by 32.5% [8] by 2030. Critical to achieving these targets is the large-scale penetration of
intermittent RES and the increase in the electrification of sectors such as transportation
and heating [9]. Balancing energy supply demand in the RES-dominated energy land-
scape requires the involvement of individual consumers in Demand-Side Management
(DSM) [10].

The spread of Distributed Energy Resources (DERs), smart IoT home appliances,
and advancements in information and communication technologies (ICT) has led to the
emergence of smart grids, which enable the participation of individual consumers in
existing and emerging electricity markets through DSM applications [11–13]. The scientific
literature on the state of the art of DSM includes many interesting studies. For example,
in [14], the authors examined the benefits of DSM in smart grids, while [11] focused on
the developments of energy scheduling and communication technologies for DSM. The
authors in [9,15] regarded the implementation of DSM in smart grids as one of the most
innovative strategies for optimizing the use of the existing grid, delaying and avoiding grid
expansion, and integrating intermittent RES, while electrifying transport and buildings.
Furthermore, Smart Energy Europe (smarten), a European business association integrating
the consumer-driven solutions of the clean energy transition, and Det Norske Veritas (DNV)
in their Demand-Side Flexibility (DSF) among other benefits, calculated €71 billion and
€300 billion, respectively, in direct and indirect cost benefits to the consumers [16].
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Furthermore, the importance of DSF is highlighted by the Clean Energy Package
(CEP) issued in June 2019 by the European Union (EU) [17]. The CEP consists of a set of
Directives and Regulations on energy efficiency [8], RES integration [8], energy performance
in buildings [18], governance, and common rules for the electricity market [19]. The CEP
has laid down ambitious goals for the coming decades and empowers final energy end
users, both consumers and prosumers, to be grouped in Energy Communities (EC) to help
Europe in becoming the world’s first carbon-neutral continent by 2050.

Simply put, RECs, as defined in CEP [17], represent a novel social construct and
concept that can enable their members (consumers and prosumers) to share and benefit
from local RES and eventually engage in electricity markets. RECs are groups of geographi-
cally close citizens (consumers and prosumers), managing a wide range of heterogeneous
energy assets, such as RES, storage technologies including home and EV batteries, home
appliances, and other types of load. RECs can participate in numerous activities [9] such as
engaging in distributed energy generation as a strategy to reduce costs (self-production and
sharing), optimizing the use of renewables for collective self-consumption schemes, and
offering flexible services to local system operators in order to avoid grid expansion or other
market operators, by taking advantage of the flexibility of several electrical appliances (e.g.,
water heaters, HVAC systems, dishwashers) and storage. The authors in [20] present a
systematic literature review of the history, definitions, programs, and future development
opportunities in Demand Response (DR). In addition, the authors discuss the introduction
of smart energy communities as a new DR participant with considerable load flexibility.
Regarding the quantification of DSF potential, authors in [21,22] analyzed device-level en-
ergy consumption data from several different households and concluded that, on average,
50% of the energy demand from the household comes from flexible devices. Furthermore,
several studies have demonstrated the demand reduction and shifting potential of flexi-
ble energy devices through the scheduling of residential appliances, particularly of wet
devices [23–25], heat pumps (HP) [26–30], and electric vehicles (EV) [31–35].

The activation of the DSF can enable the optimization of energy generation and con-
sumption resources by scheduling the DSF, based on electricity generation availability,
prices, and user personal preferences. With such a motivation, many schemes for schedul-
ing energy generation and consumption resources have been proposed. For instance,
direct centralized control of flexible devices has been widely put forward for optimizing
the use of individual and community DERs. This type of centralized control system has
been implemented to directly control the energy consumption of devices at an individual
or an aggregated level to reduce user cost [25,32,36], to level peak loads [12,31,37], or to
generate financial benefits to the distribution utilities [38]. Authors in [23] introduced
a novel framework enabling system operators to access DR from HVAC systems in a
timeframe suitable for operating reserves. In this study, washing machines, dishwashers,
and tumble dryers equipped with communication modules were considered smart appli-
ances. In [12], the authors implemented a power scheduling method to reduce both the
electricity cost and Peak-to-Average Ratio (PAR), thus strengthening the stability of the
entire electricity system.

Domestic thermal loads such as thermal accumulators and HVAC systems have been
the target of research as flexible resources for DR used in ECs. These devices can be used to
store excess electricity production such as thermal energy, taking into consideration the
limits of user comfort and the capacity of appliances. The authors in [39] present a peak
shaving solution that predicts water usage profiles from dwelling load patterns, computes
thermal losses to determine the water temperature in the tank, and consequently forecasts
an optimal consumption profile. Moreover, [40] applies a fuzzy adaptive competitive
algorithm as a load control model for scheduling AC units while minimizing the user’s
thermal comfort, while [41] introduces a model predictive control (MPC) algorithm to
schedule a dwelling AC unit considering variable weather, occupancy, and electricity
prices. [42] introduces a nonlinear optimization model for the scheduling of typical home
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appliances with a time-of-use electricity tariff, while [43] assesses the impacts of time-of-use
tariffs on residential electricity demand and peak shifting.

In addition, [43] approaches residential day-ahead energy scheduling for DR in smart
grids by formulating an optimization problem that, based on the service provider’s elec-
tricity prices given ahead of time, presents a solution with the desired trade-off between
cost and comfort. However, the report only tests six appliances (three schedulable and
three non-schedulable), leading to concerns of solution applicability in real-world energy
communities with hundreds of scheduling devices which results in major computational
and time requirements to solve the optimization problem. This has been one of our
main concerns for the algorithms proposed in this paper. In the literature [11,12,23–26,29]
and [31,32,36,37,42,44,45], the energy scheduling problem has been solved using many
methods such as linear programming, the particle swarm optimization (PSO) method,
and game theory. Normally, the equations for most of these optimization problems are
nonlinear, so the authors in [12] prefer approaches such as genetic algorithms to solve
this type of optimization problem. Moreover, the authors in [46] propose an adaptive
day-ahead load optimization and control solution with an edge-and-fog Internet of Things
(IoT) architecture.

Despite tremendous flexibility potential and energy community members’ readiness
to provide flexibility in their energy consumption, several significant challenges exist that
have been either only been partially tackled or remain unexplored:

1. A general representation of the flexibility, generalized to all device types, is lacking.
2. A simple, modular, and generalized solution/process which can extract flexibility

information from all device types with minimal user intervention is still lacking [47].
3. Novel, lightweight, scalable, and real-time flexibility scheduling algorithms to manage

and optimize individual and community Distributed Energy Resources (DER) need
to be developed [48].

4. The economic assessment of the benefits of activating demand flexibility in various
scenarios, taking into consideration energy exchanges inside the energy community
in connection with upstream markets, needs to be investigated.

In the Flexigy project, we tackled the issue of the flexibility representation and extrac-
tion challenge by adopting the FlexOffer model (previously introduced in the Mirabel and
TOTALFLEX projects [49]) to describe the energy flexibility which can be aggregated and
exchanged across several actors and markets.

As reviewed, various works have addressed small-demand flexibility scheduling.
However, most of them rely on heavy optimization algorithms that require large comput-
ing resources and may take a long computing time when scheduling real-world energy
communities with hundreds or thousands of devices, in multiple communities.

The heuristic approach used in the algorithms proposed in this paper allows for the
optimization of energy resources in a distributed edge-and-fog computing architecture
with low computational overhead. As such, our median-term goals focus on delivering an
integrated platform for the management and optimization of RECs, unifying dwelling-Level
DR, user energy flexibility, and peer-to-peer community energy sharing, while maintaining
a distributed edge-and-fog architecture with low computational requirements.

3. System Model and Architecture

In this study, we consider a REC where a set of prosumers can share the excess pro-
duction energy between themselves and the utility grid, to promote renewable energy
consumption and minimize overall costs. As described in detail in [5] in each prosumer
house, there are smart devices capable of switching on and off some appliances and record-
ing their consumption in 15-min time slices (TSs), or smaller. These devices communicate
with an edge or cloud device where scheduling decisions are taken to optimize local con-
sumption according to (i) each prosumer profile/strategy; (ii) the energy flexibility of the
monitored appliances, and (iii) the electricity prices for the day ahead.
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The following sections present the energy flexibility and Flex-Offer (FO) concepts and
an overview of the prosumer profiles, which were the basis for the development of the
algorithms. In addition, the system architecture is reviewed.

3.1. Energy Flexibility

Energy flexibility, which is the capability to shift the activation of certain loads (appli-
ances), thus changing the overall consumption profile of a facility (home) is the key concept
behind the development of the scheduling algorithms.

By taking advantage of these algorithms, the platform can schedule the activation of
certain loads in order to optimize the usage of locally generated energy in individual and
collective terms.

3.1.1. Flex Offer Concept

This work is based on the Flex-Offer (FO) concept, which was introduced in [50]. In
its simplest form, a FO is a standardized model to represent a generic energy flexibility
abstraction expressing an amount of energy or an energy profile, a duration, a price, the
earliest start time, and the latest start time. Three FO examples follow:

• “Consumption of 5 kWh during 3 h between 01:00 and 05:00, for a price of 0.25 €/kWh”;
• “Consumption follows the energy profile in Figure 1, no price specified”.
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Figure 1. FO Example.

In these cases, the FO represents flexible electric loads (e.g., charging electric vehicles,
heat pumps, and equipment for domestic use) and production units (e.g., discharging
batteries, and photovoltaic panels).

A FO can be formally defined as a tuple:

f _de f = ([tes, tls], 〈s1, s2 . . . ., ss.〉), (1)

where:
si = [ai

min, ai
max]

In Equation (1), tes represents the earlier start time and tls represents the latest start time
for the FO. The second parameter is a list that contains a sequence of slices s that represent
the energy profile of the device. Each one of these slices si is an energy range between
ai

min and ai
max, usually represented in kWh, which can be positive if the device consumes

energy or negative if the device produces energy. We assume that the duration of each
slice is a 1-time unit, adjustable to multiple sampling frequencies. In our use-case power,
consumption/production is sampled at 15 min intervals and defined by TimeSliceSize.
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The main interest of a FOs is in having it scheduled using several criteria. The main
result is that scheduled FO will also have its scheduling, i.e., the time at which the device
should be turned on tsch.

Consequently, Equation (1) can be updated as in Equation (2):

f _sch = ([tes, tls, tsch], 〈s1, s2 . . . ., ss.〉) (2)

Figure 1 displays a visual representation of a FO energy profile and respective schedul-
ing with the tes and the tls defining a time flexibility interval. The FO energy requirements
are represented by energy slices (si). The slice energy flexibility is detailed by the difference
between the ai

min and ai
max. The tsch represents the time at which the FO was scheduled.

3.1.2. Device Flexibility and Flex Offers Types

In terms of flexibility, devices can be categorized according to two factors, present in
Figure 1: (i) slice energy flexibility and (ii) time flexibility. More specifically, three distinct
kinds of devices are defined, originating from the three different types of FO used in
this work:

• Fixed Devices are devices whose consumption period and amount of energy con-
sumed cannot be modified (e.g., televisions and lights). Fixed FOs are used to translate
these devices into the system. A fixed FO can be formally restricted by:

tsch = tes and siai
min = siai

max (3)

• Shiftable Devices are time-flexible devices, meaning that the consumption time can
be shifted within certain limits without modifying the load profile (e.g., washing
machines and dishwashers). These devices offer an opportunity to optimize grid load
management. Shiftable FOs translate shiftable devices into the system. A Shiftable
FO is subject to:

tes ≤ tsch ≤ tls and siai
min = siai

max (4)

• Elastic Devices are the most flexible, being fully adjustable in terms of usage time
and instantaneous power consumption (e.g., heater, electric car). Similar to shiftable
devices, elastic devices provide grid load management capabilities to a greater extent.
Elastic FOs translate elastic devices into the system. An Elastic FO is restricted by:

tes ≤ tsch ≤ tls (5)

3.2. Prosumer Profiles

Prosumer profiles, introduced in [5], are defined so that each prosumer can customize
their objectives according to what best fits their goals and beliefs when participating in
a REC. From an energy consumption point of view, there are three distinct profiles from
which a prosumer can choose:

• Bold Profile the consumer only wants to maximize its renewable energy consumption,
regardless of the electricity price;

• Cautious Profile the consumer wants to buy energy always at the lowest total cost
possible, whatever its source;

• Local Community Supporter Profile the consumer maximizes REC consumption
irrespective of its price.

From the energy production side, the strategy for selling the prosumer excess produc-
tion can be one of the following:

• Go-Ahead Profile the producer wants to sell all his renewable electricity generation.
• Tactical Profile the producer only wants to sell his surplus renewable generation after

optimizing self-consumption.
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3.3. System Architecture

As stated before, the developed algorithms follow the three-level approach introduced
in [5]. This architecture aims to integrate prosumer profiles in the scheduling solution while
allowing for a distributed edge-and-fog implementation of community energy management.
The levels of this architecture are the following:

• Level 1—Prosumer level: executed for each prosumer to minimize the energy costs
and maximize the individual renewable energy self-consumption.

• Level 2—Local community level: executed at the REC level to minimize overall energy
costs and optimize the renewable energy-based supply via peer-to-peer energy trading
and collective renewable self-consumption.

• Level 3—Grid level: groups small-scale flex-offers at the REC level or between RECs
to respond to specific market requests from different stakeholders.

Figure 2 presents the system architecture from a logical point of view. Level 1, depicted
in green in Figure 2, represents each prosumer dwelling with energy consumption from
multiple home appliances, and, eventually, energy self-production from PV panels or other
renewable sources. At this level, the system collects the flexibility of different appliances
on the prosumer premises, expresses this flexibility as FOs, and optimizes individual
self-consumption according to prosumer profiles. The algorithm can be run directly at
the prosumer house (e.g., IoT hub) in an edge computation approach, retaining data
confidentiality and effectively distributing computing, as it does not need to be run on the
cloud. FOs left unscheduled at this level at each edge node (each prosumer) are then sent
to the fog computer, handling community needs at level 2.
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Level 2, illustrated by a red dashed line in Figure 2, represents a REC connected to a
single medium-to-low-voltage energy transformer. At this level, all the FOs generated at the
community dwellings (level 1), including the FOs partially or not fully scheduled at Level
1, are scheduled using the REC aggregated self-production. Once again, this algorithm
can be run in a distributed manner at the fog level (e.g., a fog device implemented at each
community). After the scheduling is performed by the algorithms operating at this level,
the schedule of the community FOs is sent to the edge nodes, which will orchestrate the
devices accordingly.
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Finally, level 3, depicted in blue in Figure 2, aggregates the different REC communities
FOs, which were not fully or were partially fulfilled at level 1 or 2, and sells those aggregate
FOs directly on a flexibility market. Aggregation is required to generate FOs with a higher
power, which can be offered on balancing markets [51]. This level can be run on cloud
servers, where one or more communities are combined.

4. Flex Offer Scheduling Algorithms

Following the introduced energy flexibility concept, user profiles, and architecture,
algorithms for the three scheduling levels are detailed in the following sections.

4.1. Level 1

Level 1 is executed for all FOs from prosumers who have chosen the tactical profile
and aim to maximize their energy self-consumption while minimizing the total cost. We
assume that the cost of self-consumption is zero. The diagram in Figure 3 depicts the
workflow of the level 1 algorithm.
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This level only includes prosumers with a tactical profile, which have self-production
capabilities. As such, the first step of level 1 algorithms, which might be running in an
edge device inside the prosumer dwelling, is to forecast the day-ahead self-production.
Once forecast, the algorithm fetches community and grid prices for the day ahead from the
REC fog device. Note that by changing the desired timespan while fetching information
(predicted prices and production), the algorithm can easily be changed to schedule the next
48 h, or even only the next 6 h. This means that the algorithm can be re-run to confirm its
schedule during the day.

Moreover, a forecast of the dwellings’ unpredictable consumptions is generated so that
the system can reserve part of the user production for unpredictable energy consumption
(e.g., turning on a computer, using a vacuum cleaner, or turning on the lights). This way,
the self-produced energy consumption is always maximized at the prosumer level.
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Finally, the production profile is updated according to the scheduled consumption. In
the following sections, the algorithms developed to schedule the distinct types of FOs at
level 1 are presented.

4.1.1. Level 1 Schedule of Fixed FOs

Algorithm 1 describes the solution designed to schedule fixed FO consumption in
an optimized manner by using the prosumer self-produced energy, block 3.2 in Figure 3.
Since self-produced energy is free for the prosumer, it is always more advantageous, for
any buyer profile, to use the maximum self-produced energy possible when a FO is of
type fixed FO. As such, this algorithm tries to always schedule the maximum forecasted
self-produced energy at any given time.

Algorithm 1: schedSelfConsumptionFixedFO algorithm used at Level 1 to schedule Fixed FOs.

Input:
fo—Consumption Fixed FO
prod—Multidimensional array containing: (i) user production and, (ii) energy prices for
each time slice
prosumer—Prosumer

Output:
prod—The updated prosumer production profile

1 Function schedSelfConsumFixedFO (fo, prod, prosumer)
2 t <- fo.tes
3 eProfile <- fo.getEProfile2Sched()
4 sched <- new Schedule(fo.tes)
5 For each eSlice in eProfile Do
6 e2Sched <- getMaxEConsum(prod, t, eSlice)
7 If e2Sched > 0 Then
8 sched.AddSlice(t, e2Schedule)
9 End if
10 t <- t + TimeSliceSize
11 End for
12 prod <- scheduleFO(sched, prod, fo)
13 Return prod
14 End

Given that a Fixed FO has no energy flexibility, its earliest start time (tes) is considered
the scheduling Time (tschd) (line 2). In line 3 the Fixed Flex Offer consumption profile is
fetched from a database to an auxiliary variable—eProfile. Moreover, a new schedule object
name sched, is created (line 4), with its start time set to the FO tes.

Next, for each energy slice of the FO energy profile, the algorithm verifies how much
energy consumption can be scheduled using self-production (line 6). If some or all the
energy can be scheduled using its self-production, a slice is added to the schedule (line 8).
This slice specifies the time, energy amount, and price of the scheduled energy consumption.
Finally, in the scheduleFO method (line 12), both the FO and the production energy profile
are updated, discounting the energy scheduled, and the FO schedule is saved. Note that
if fixed FO cannot be fully fulfilled by the self-production of the prosumer at level 1, the
remaining energy needs are stated in a transformed fixed FO that will be scheduled at level
2 and, eventually, at level 3.

4.1.2. Level 1 Schedule of Shiftable FOs

Algorithm 2 describes the algorithm designed to schedule shiftable FOs, also at level 1,
block 3.3 in Figure 3. At this level, the biggest concern was not only to maximize self-
consumption on all occasions but also that the algorithm should reflect the prosumer buyer
profile. In effect, it can be more monetarily rewarding for a user with a cautious buyer
profile to schedule the FO with less self-consumption if the price paid for the surplus is
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significantly less at that slice, instead of having more self-produced energy but ending up
paying more for the surplus scheduled at level 2.

As such, the approach shown in Algorithm 2 focuses on prosumers’ buyer profiles, as
it heuristically tries to find the best fit for FO consumption.

Algorithm 2: schedSelfConsumpShiftableFO

Input:
fo—Consumption Shiftable FO
prod—Multidimensional array containing: (i) user production and, (ii) energy prices for
each time slice
prosumer—Prosumer

Output:
prod—The updated production profile

1 Function schedSelfConsumShiftableFO (fo, prod, prosumer)
2 cost <- MAXVALUE
3 sched <- new Schedule(fo.tes)
4 For i = fo.tes; i < fo.tls; i = i + TimeSliceSize Do
5 t <- i
6 auxSched <- new Schedule(i)
7 sum <- 0
8 eProfile <- fo.getEProfile2Schedule()
9 For each eSlice in eProfile Do
10 e2Sched <- getMaxEConsum(prod, t, eSlice)
11 consumSurplus = eSlice.energy − e2Sched
12 sum = sum + checkProfileCost(consumSurplus, t, eSlice, prosumer)
13 auxSched.AddSlice(t, e2Sched)
14 t <- t + TimeSliceSize
15 End for
16 If sum < cost Then
17 sched <- auxSched
18 cost <- sum
19 End If
20 End for
21 prod <- scheduleFO(sched, prod, fo)
22 Return prod
23 End

A cycle is executed to check which of the time slices comprised between the FO tes
and tls is more financially advantageous for scheduling the start of the FO execution (tsch)
(lines 5 to 20).

At the start of the loop, a set of auxiliary variables is created each time a new candidate
tsch is evaluated (lines 5 to 8). Next, the solution price is determined by calculating the
price of the energy surplus of each time slice (lines 9 to 15). To determine it, the algorithm
starts by finding the maximum self-produced energy that can be consumed by the slice and
consequently the consumption surplus. Then, with the help of the checkProfileCost method
(line 12), the electricity consumption price is summed to the total price of the solution.

The checkProfileCost method is the solution presented in this work to be able to optimize
the level 1 self-consumption solution without disregarding either the electricity prices at
other levels or the prosumer buyer profiles. This method uses the forecast of day-ahead
prices and calculates the cost for the prosumer based on its profile:

• For users with a cautious profile, the cost returned at any given time is calculated
based on the cost of the surplus energy multiplied by the grid price for that time. As
such, an estimate for the scheduling of surplus energy at higher levels is returned.

• For users with a community supporter profile, the cost returned at any given time is
calculated based on the cost of the surplus energy multiplied by the REC day-ahead
prices at that time.
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• For users with a bold profile, the cost is how much non-renewable energy is consumed
in surplus of self-consumption. As such, the method returns the total amount of
surplus energy in this case.

• Finally, if the cost of the solution being evaluated (either price or amount of surplus
energy) is lower than the cost of the previously saved schedule (line 16), both the
schedule and cost variables are updated with the new solution values (lines 17 and 18).

After the best schedule is found, the scheduleFO method saves it and updates the FO
and the self-production energy profile accordingly, subtracting the energy scheduled at
each slice from the slice available energy.

4.1.3. Level 1 Schedule of Elastic FOs

This study also focuses on bringing environmental benefits and optimizing the op-
erational cost of elastic devices such as thermal accumulators and air conditioners by
scheduling their day-ahead energy consumption according to their time-of-use tariffs and
the prosumer profiles. Future work will be developed concerning battery storage and other
forms of elastic energy flexibility. Algorithm 3 details the heuristic algorithm designed to
create a FO for elastic devices, which is later scheduled at the same level as a fixed FO.

Algorithm 3: schedElasticDevi

Input:
prosumer—The prosumer to which the device belongs
tMax—Maximum temperature defined by the user to maintain his comfort
tMin—Minimum temperature defined by the user to maintain his comfort
tStart—Temperature at the start
prices—List with the energy self-production values of the user and energy prices of the
different grid suppliers available.
powerCom—average power consumption per time slice.

Output:
FO—The created fixed FO for scheduling

1 Function generateHeuristicElasticEProfile
2 t <- new Date(0,0,0)
3 temp <- tStart
4 totalCost <- 0
5 While (auxtime < end) Do
6 nextCoolDownTime = getNextCoolDownTime(tMin, temp, t)
7 If isLowestPriceUntilNextCooldown(nextCoolDownTime, prices)Then
8 newTemp <- calculateNewTemp()
9 If newTemp < tMax Then
10 temp <- heatUp ()
11 consump.add(powerCon, t)
12 Else
13 temp <- coolDown()
14 End
15 Else
16 temp <- coolDown()
17 End
18 t <- t + TimeSliceSize
19 End While
20 FO <- new FO(fixed, consumptions)
21 Return FO
22 End

The heuristic approach to solve elastic device scheduling can be simply explained as
an attempt to use the thermal appliance as a conditioned thermal battery.

For example, a client has a water heater that must maintain water between a specified
comfort range of temperatures, tmin, and tmax. Our approach focuses on heating up the
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water at the slices with the lowest price before the water cools down below tmin. However,
the water cannot be heated up above tmax. If the water is below tmin, the algorithm heats up
regardless of the price, until the desired comfort levels have been met.

When a client has self-production, for example, the most cost and environmentally
effective way to use his energy resources are to use surplus energy, which is free, to heat up
water, successfully storing renewable energy as heat.

Algorithm 3 does exactly that. First, a set of auxiliary variables are created (lines 2 to 4),
including a variable holding the actual temperature of the device. Then, in a loop (lines 5
to 19) each time slice is examined, as follows. First, the next cool-down time is calculated
(line 6), based on temperature change equations previously inserted on the system for this
specific device.

The cooldown time is the predicted time at which it is forecast that the temperature of
the water goes below tmin. Note that the calculation of the forecast of the cooldown time
can be improved over time, for example with client hot water consumption patterns. This
way the algorithm can more efficiently calculate the cooldown time and maintain comfort
temperatures, whilst optimizing energy consumption.

Next, the program checks if the current slice price is the lowest by the cooldown time
(line 7). If so, energy is used to heat up water, and the new temperature is calculated.
Otherwise, no energy is used, and the water continues to cool down (line 13). Finally (lines
20 and 21), a new fixed FO is created and returned to be scheduled with algorithm 1 with
the consumptions scheduled by this algorithm. Note that it results in a fixed FO since the
start time is already defined, resulting in a FO without time flexibility, but it can maintain
some consumption flexibility.

The main result of the level 1 schedule can be a set of unscheduled FOs, together
with another set of partially fulfilled FOs, which change from being flexible or elastic to
fixed FO. Alternatively, it is also possible that all FOs from a prosumer are fulfilled, and no
further scheduling is performed for FOs from this prosumer. A mix of both alternatives is
also possible.

4.2. Level 2

Level 2 starts by getting the users’ production surplus to generate a community energy
production profile. It then collects and shuffles in random order all unscheduled FOs of
level 1. An FO is considered unscheduled when there is still energy left unscheduled.
Finally, the FOs pending from the previous level are scheduled according to the prosumer
buyer profile and the FO type (steps 1.4, 1.5, and 1.6 in the diagram in Figure 4).

Energies 2022, 15, x FOR PEER REVIEW 13 of 25 
 

 

4.2. Level 2 

Level 2 starts by getting the users’ production surplus to generate a community en-

ergy production profile. It then collects and shuffles in random order all unscheduled FOs 

of level 1. An FO is considered unscheduled when there is still energy left unscheduled. 

Finally, the FOs pending from the previous level are scheduled according to the prosumer 

buyer profile and the FO type (steps 1.4, 1.5, and 1.6 in the diagram in Figure 4). 

 

Figure 4. Level 2 workflow. 

Note that in this level, the FO scheduling order is randomly selected, addressing the 

equity problem that may arise from scheduling always in the same order, as the first to be 

scheduled may benefit more from a large community excess production available than the 

last (considering that a typical RES does not produce enough energy to satisfy the con-

sumption of all REC members). Note again that by changing the desired timespan while 

fetching information (community production profile), the algorithm can be easily changed 

to schedule the desired number of ahead hours. 

4.2.1. Level 2 Schedule of Fixed FOs 

Algorithm 4 presents the pseudocode designed to schedule fixed FOs at level 2 (block 

1.4 in Figure 4), which are scheduled before other types, given their reduced flexibility. 

This algorithm takes into account the user profile and schedules energy consumption ac-

cording to it. 

Algorithm 4. schedLevel2FixedFO 

 Input:  

  fo—Consumption Fixed FO 

  
prod—Multidimensional array containing: (i) community production, (ii) en-

ergy prices for each time slice 

 Output:  

  prod—Updated production profile  

1 Function schedFixedFO (fo, prod) 

2  t <- fo.tes 

3  sched <- new Schedule(t) 

4  2eProfile <- fo.getEProfile2Sched() 

5  prosumer <- getFOProsumer(fo) 

6  For each eSlice in eProfile Do 

7   e2Sched <- eSlice.energy 

 
 
  
  
 
  
 
 
 
 
 
  
 
 
  
  
 
  
  
 
  
 
  

                

               

          

                 

            

        

         

                              

    

          

            

           

    

         

          

           

       

    

               

           

    

               

            

    

         

               

      

    

                

           

          

         

  

   

Figure 4. Level 2 workflow.



Energies 2022, 15, 8875 13 of 24

Note that in this level, the FO scheduling order is randomly selected, addressing the
equity problem that may arise from scheduling always in the same order, as the first to
be scheduled may benefit more from a large community excess production available than
the last (considering that a typical RES does not produce enough energy to satisfy the
consumption of all REC members). Note again that by changing the desired timespan
while fetching information (community production profile), the algorithm can be easily
changed to schedule the desired number of ahead hours.

4.2.1. Level 2 Schedule of Fixed FOs

Algorithm 4 presents the pseudocode designed to schedule fixed FOs at level 2 (block
1.4 in Figure 4), which are scheduled before other types, given their reduced flexibility. This
algorithm takes into account the user profile and schedules energy consumption according
to it.

Algorithm 4. schedLevel2FixedFO

Input:
fo—Consumption Fixed FO
prod—Multidimensional array containing: (i) community production, (ii) energy prices
for each time slice

Output:
prod—Updated production profile

1 Function schedFixedFO (fo, prod)
2 t <- fo.tes
3 sched <- new Schedule(t)
4 2eProfile <- fo.getEProfile2Sched()
5 prosumer <- getFOProsumer(fo)
6 For each eSlice in eProfile Do
7 e2Sched <- eSlice.energy
8 sched <- schedSlice(t, e2Sched, prosumer, prod, sched)
9 t <- t + TimeSliceSize
10 End for
11 prod <- scheduleFO(sched, prod, fo)
12 Return prod
13 End

Once again, since a fixed FO has no energy flexibility, its tes is also the resulting
scheduling time tsch (line 2). The algorithm then initializes an auxiliary variable with a new
schedule object, with its start time set to the FO tes (line 3), the FO energy consumption
profile (line 4), and with the user buyer profile (line 5). Next, the algorithm schedules each
energy slice of the FO energy profile using the schedSlice method.

The schedSlice method guarantees an adequate energy schedule according to the user
profile. It uses the forecast of day-ahead prices and calculates the cost for the prosumer
based on their profile:

• For users with a cautious profile, the schedule returned at any given time is calculated
based on the slice energy multiplied by the lowest price at that time.

• For users with a community supporter profile, the schedule returned at any given
time is calculated based on the slice energy multiplied by the REC day-ahead prices at
that time.

• For users with a bold profile, the schedule is calculated based on the slice energy
multiplied by the cheapest available renewable energy source.

Finally, in the scheduleFO method, both the FO and the production energy profile are
updated, discounting the energy scheduled, and the FO schedule is saved in the database.
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4.2.2. Level 2 Schedule of Shiftable FOs

Algorithm 5 describes the pseudocode designed to schedule the level 2 shiftable FOs
(block 1.5 in Figure 4), This algorithm takes into account the user profile and schedules
energy consumption by minimizing the cost of the schedule given the user flexibility.

Algorithm 5. schedLevel2ShiftableFO

Input:
fo—Consumption Shiftable FO
prod—Multidimensional array containing: (i) community production, (ii) energy prices
for each time slice

Output:
prod—Updated production profile

1 Function schedShiftableFO (fo, prod)
2 consumPrice <- MAXVALUE
3 eProfile <- fo.getEProfile2Schedule()
4 sched <- new Schedule(fo.start)
5 prosumer <- getFOProsumer(fo)
6 For i = fo.tes; i < fo.tls; i = i + TimeSliceSize Do
7 t <- i
8 auxSched <- new Schedule(i)
9 sum <- 0
10 eProfile <- fo.getEProfile2Sched()
11 For each eSlice in eProfile Do
12 e2Sched <- eSlice.energy
13 auxSched <- schedSlice(t, e2Sched, prosumer, prod, auxSched)
14 sum <- sum + auxSched.getPrice(t)
15 t <- t + TimeSliceSize
16 End for
17 If sum < consumPrice Then
18 sched <- auxSched
19 consumPrice <- sum
20 End If
21 End for
22 prod <- scheduleFO(sched, prod, fo)
23 Return prod
24 End

First, a set of auxiliary variables are created. At the start of the loop (lines 6 to 21), a set
of auxiliary variables is created each time a new candidate tsch is evaluated (lines 7 to 10).
Next, each possible solution price is determined by calculating the price of the energy of
each time slice (lines 11 to 16). To determine this, the algorithm uses the schedSlice method
presented before. Finally, if the cost of the solution being evaluated is lower than the cost of
the previously saved schedule (line 17), both the schedule and cost variables are updated
with the new solution values (lines 18 and 19).

After the best schedule is found, the scheduleFO method saves it and updates the FO
and the self-production energy profile, accordingly, discounting the energy scheduled, and
the FO schedule is saved in the database.

4.2.3. Level 2 Schedule of Elastic FOs

As described previously in Section 4.1.3. the elastic scheduling algorithms are executed
at level 1 for the users with forecasted self-production available. For the elastic devices of
all other users, the scheduling is done at level 2. The algorithm used is similar to the one
used at level 1, and consequently it will not be described here.
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4.3. Level 3

The level 3 algorithms schedule FO at the grid level, but they are out of the scope of
this paper as this topic has been extensively researched before.

These algorithms work by aggregating small FOs into large FO which can be scheduled
at the grid level or submitted to a flexible market. This schema allows the participation of
small consumers in DR, which otherwise would not have a significant impact on energy
grid balancing as traditionally energy-intensive industrial users and large customers have
by intentionally modifying their consumption patterns.

The authors in [52] theorize about a voluntary local flexibility market where users sell
their flexibility, which is then grouped by energy aggregators and sold, reducing costs for
all involved stakeholders.

For example, ref. [15] introduces an optimal scheduling algorithm based on load
constraints linked to the dwelling occupant’s comfort. Similarly, [16] uses aggregation of
energy flexibility expressed by market players as the key to balancing energy supply and
demand. After their creation and acceptance, the FOs are aggregated, preserving their
flexibility. Afterwards, the scheduling is performed based on forecasts to achieve a greater
balance of the grid. Next, the FOs are disaggregated and returned to the prosumer. Once
the execution is carried out, billing is conducted and, depending on the benefits of the FO
for the utility company, an incentive may be provided to the prosumer.

5. Case Study

This section presents the case study used to test the algorithms and evaluate a set of
environmental objectives and economic benefits accomplished through the introduction of
management and optimization of REC members’ energy consumption and production. The
scheduling is accomplished taking into consideration stated members energy flexibility.

5.1. Simulation Approach and Test Data

The simulations carried out follow the approach illustrated in Figure 5. At first,
the system is fed with data relating to historical energy consumption patterns, energy
prices, weather information, and users’ FOs for the next day. Finally, the system outputs
the user’s FOs schedule according to the algorithm presented in this paper, which maxi-
mizes the consumption of both user and REC self-production energy, while meeting the
users’ preferences.
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Figure 5. Simulation approach.

Setting energy prices is not the subject of this paper, and as such, the prices for the
simulation were obtained from the Iberian wholesale energy market (OMIE) [53]. OMIE is
the nominated electricity market operator for managing and setting the Iberian Peninsula’s
day-ahead (24 h) and intraday electricity markets. Given that price prediction is published
for the next 24 h at the most, the prices for the simulation were set at a 15-min granularity
within a 24 h timespan. After consulting experts working in the implementation of REC
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from a business standpoint, the energy transactions inside the REC were set at 80% of the
OMIE price, a 20% discount compared to OMIE prices.

Finally, to evaluate the effectiveness of the scheduling algorithm, the average of the
daily price was considered as the flatline tariff for energy consumption, enabling the
comparison between the cost before and after the application of the scheduling algorithms.
Figure 6 shows the energy prices per kWh used in the simulations during a day in all
four seasons. The simulations analyze the performance and results of the algorithm in the
summer, spring, autumn, and winter days in central Portugal. User consumption flexibility
is based on real-world data collected with the help of smart-energy meters for 50 different
dwellings. The testing data accounts for a total of 137 consumption FOs, of which 42 are
fixed FOs corresponding to consumptions of computers and fridges, 71 are shiftable FOs
characterizing the flexibility of appliances such as washing machines and dishwashers, and
24 are elastic FOs describing the flexibility of water heaters. The same consumption Flex
Offers were considered for all seasonal simulations to facilitate a comparison of the results.
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However, the solar production was adjusted to values captured during a day, also in
central Portugal, in July, May, October, and December, respectively. The energy prices were
also changed by values corresponding to the respective timespans, collected from OMIE.
Furthermore, during simulations, three different test scenarios were studied, regarding the
amount of self-production FOs in a REC.

• Scenario 1: 20% of the REC dwellings have self-production.
• Scenario 2: 40% of the REC dwellings have self-production.
• Scenario 3: 60% of the REC dwellings have self-production.

The testing data also encompasses a mix of all user/prosumer profiles. From a buyer
perspective, there were 22 cautious, 19 bold, and 9 local community supporters. From a
supplier point of view, there were 44 tactical and 6 go-ahead profiles. Table 1 summarizes
the testbed data information. Note that the control case, with which the results of the
algorithms are compared, is based on the usual electricity consumption time and number
of dwellings without energy flexibility scheduling. In other words, the control case is the
normal operation of a dwelling throughout a day.
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Table 1. Summary of case study test data.

Number of Dwellings 50 Dwellings

Dwellings with Self-Energy Production
(1) 10 dwellings (20%)
(2) 20 dwellings (40%)
(3) 30 dwellings (60%)

Number of Fixed FOs 42
Number of Fixed FOs 42

Number of Shiftable FOs 71
Number of Elastic FOs 24

Types of Prosumer Buyer Profiles
22 Cautious

19 Bold
9 Community Supporter

Types of Prosumer Supplier Profile 44 Tactical
6 Go-Ahead

5.2. Evaluation KPIs

To access the degree of accomplishment of both the environmental and financial
objectives of the project, three Key Performance Indicators (KPIs) are assessed during the
results section.

• KPI 1 User self-consumption—This environment-oriented KPI measures the total
amount of user energy self-consumption of each community member with available
self-production, and compares, by percentage, the values before and after the algo-
rithms were applied. Note that users with go-ahead profiles are not considered, since
all their self-production is sold, and its surplus consumption is not optimized by
the algorithms. KPI 1 is key to evaluating to what degree individual flexibility and
self-consumption optimization (level 1) are implemented.

• KPI 2 REC consumption—This environment-oriented KPI measures, by percentage,
how much of the total energy consumption in the REC comes from intra-community en-
ergy trading after level 2 algorithms are applied. This KPI is crucial to access the degree
to which the intra-community optimization (level 2) of energy resources is working.

• KPI 3 User total energy cost—This financial-oriented KPI quantifies the total spend-
ing on the energy of each community member with a cautious buyer profile, and
compares, by percentage, the values before and after the algorithms were applied.
KPI 3 is only applied to cautious users, due to their profile objectives, and these must
reduce energy costs. Users with a go-ahead buyer profile are not considered for this
indicator, as selling all their self-produced energy due to contractual terms impedes
cost optimization. Also, note that the total cost regards only consumption cost since
the profit made by selling self-production to other REC members is not considered in
the scope of these results.

• KPI 4 Computational cost—This performance-oriented KPI measures the time, in
seconds, to calculate the average run time the algorithms take to access their low
computational overhead.

5.3. Results and Evaluation

After applying the scheduling algorithms, the results obtained show a significant
improvement, both economically and environmentally, not only for end-users but also for
all involved players in the energy market value chain. The results are compared to the
situation before the algorithms are applied, which is as described in the Section 5.1, the
usual electricity consumption time and number of dwellings without energy flexibility
scheduling. First, the results of a summer day simulation are examined in detail. Finally,
the results obtained for scenario 3 during other seasons (spring, autumn, and winter) are
compared to the results obtained during the summer.
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5.3.1. Summer Day Simulation Results

Table 2 depicts the average increase in user self-consumption before and after the
algorithms were applied (KPI 1), for each test case scenario during a summer day.

Table 2. Increase of user energy self-consumption (KPI 1) during the summer.

Scenario KPI 1—Average Increase of User Self Consumption (%) during a Summer Day

1 37.3%
2 18.4%
3 29.3%

These results show that an increase in self-consumption was achieved by all test case
scenarios, as, on average, each user consumed 28.3% more self-produced energy after the
algorithms presented in this paper, mainly level 1, was applied to their dwelling. Figure 7
shows in more detail the KPI 1 results attained for each user in test scenario 3 during a
summer day.
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were applied to a simulation of test case scenario 3 during a summer day.

There is an overall increase in self-consumption among community members. How-
ever, some show a decrease, such as the users in dwellings B5 and B22. These situations
are explained by the cautious buyer profile chosen by these users, which prioritize total
energy cost minimization, proof that the algorithms are properly handling different user
profiles. The algorithms take that fact into consideration, and schedule their FOs at the
lowest price possible, even if it means consuming less self-produced energy at hours when
energy costs are higher, as leftovers would lead to a higher total cost. The financial benefits
are analyzed below; the same dwellings, B5 and B22, for example, show a decrease in total
energy cost, as expected. Also note that not all cautious users experience a decrease in
self-consumption, which is the case of B47 and B50, with an increase in self-consumption of
31% and 141%, respectively, which shows that even cost-oriented users can benefit from
the environmentally friendly nature of the optimization.

Table 3 shows the increase in the total REC energy production, which is consumed by
REC members, for each test case scenario.
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Table 3. REC consumption increases after scheduling for each test case scenario of the simulation
during a summer day.

Scenario KPI 2—Community Consumption after Scheduling
(% of Total Consumption) during a Summer Day

1 16.5%
2 25.7%
3 28.3%

When examining KPI 2 in the case study during a summer day, results show that for
the three test scenarios, an average of 23.5% of the total consumption registered in the REC
was satisfied by intra-community energy trading. The results also show that the higher
the number of self-producing users, the higher the community consumption achieved. In
scenario 3, where 60% of the houses have self-production, approximately 28% of the total
energy consumed in the community came from energy produced by other members of the
community. Figure 8 shows, for test scenario 3 of a summer day, the percentage of the total
energy consumption from each energy source before and after the algorithms were applied.
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were applied in scenario 3 during a summer day.

As seen in the results of KPI 1 and KPI 2, REC members’ renewable self-consumption
is optimized according to their profiles, and a significant intra-community renewable-based
consumption is achieved. Not only do they increase the integration of distributed RES
in the grid, leading to higher renewable energy consumption, but also, as the energy is
consumed locally, our approach helps to reduce energy transmission losses, accomplishing
and validating the environmental benefits of the proposed algorithms in a REC.

Table 4 depicts the average reduction of users’ total energy cost before and after the
algorithms were applied, for each test case scenario during a summer day.

Table 4. Average reduction, by percentage, of each prosumer total energy cost during a summer day
simulation.

Scenario KPI 3—Average Reduction of Users’ Total Energy Cost (%) during a Summer Day

1 9.2%
2 10.6%
3 12.2%

These results show a reduction in the total energy cost in all test case scenarios, as on
average, each user consumption cost is 10.6% less after the algorithms presented in this
paper are applied to optimize their energy needs. Figure 9 details the total cost before and
after for some of the users in test scenario 3. As projected, the graph shows an overall
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reduction in users’ total energy cost. As mentioned before, users with cautious profiles,
who had reduced their self-consumption before, such as the users in B5 and B22, now show
a reduction in their total energy cost, attaining their profile objectives. If examining the KPI
3 is extended to users with a bold buyer profile, such as B10 and B20, both saw their energy
total cost increasing. However, since the bold profile aims to maximize renewable energy
consumption regardless of the cost, their personal objectives were accomplished.
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Figure 9. Dwelling total energy cost before (blue) and after (orange) the algorithms for test case
scenario 3 during a summer day.

5.3.2. Seasonal Results

During different times of the year, conditions change, such as daylight hours and
climate, and lead to different production profiles and production flexibility. To access
the effectiveness of the algorithms under these conditions, seasonal solar production was
adjusted to values captured in a day in May, October, and December. The energy prices
were also changed accordingly, as depicted in Figure 6. The results obtained show that, for
scenario 3, the algorithm fulfills its promise and delivers a value proposition for the users
in every season analyzed (see Table 5). The result analysis shows three key points:

• Despite the season, every simulation showed both an average increase in self-consumption
between self-producing members and a reduction in price for users which mainly
focuses on the total cost of the solution.

• The higher the intra-community consumption, the higher the reduction in the total
cost, which proves that REC can not only be an environmentally friendly solution
for diminishing energy losses through transmission, but can also be profitable for
its members.

• Seasons with more sunlight hours achieved the lowest average increase in user self-
consumption, and months where sunlight hours are reduced achieved the most in-
crease in self-consumption. This can be explained by the nature of energy flexibility
and its core benefits. In the summer, a user who leaves home early and usually runs
his washing machine before leaving, at 7:30 am, is using the energy generated by its
solar panels unawares, which are already producing energy due to the longer daylight
hours. However, if the user carries out the same routine in the winter, it might not
utilize any solar production at that time. So, when the user specifies to the system
the flexibility of use all morning, the algorithms can better harness solar production,
which translates to a bigger increase, on average, in the use of solar production during
these months.
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Table 5. Comparison of KPIs for test case scenario 3 simulation during different seasons.

Season KPI 1—Average Increase of
User Self Consumption (%)

KPI 2—Community Consumption after
Scheduling (% of Total Consumption)

KPI 3—Average Reduction of
Users’ Total Energy Cost (%)

Summer 29.3 28.3 12.2
Autumn 46.9 21.2 7.1
Winter 32.7 13.9 2.5
Spring 21.5 17.7 4.1

5.3.3. Computational Tests

The simulations of the previous case studies were run in a centralized manner, where
both levels 1 and 2 were executed sequentially in the same machine. Note that paral-
lelization of the level 1 of each consumer is possible but was not considered in these
results. The hardware and software on which the simulations were run have the following
characteristics and services:

• Processor-Intel Core i7-8550U CPU @ 1.80 GHz 1.99 GHz
• RAM-8.00 GB
• Programming language-C#
• Database-SQL Server (the biggest time bottleneck during the simulations)

Figure 10 shows the average time taken, in seconds, to schedule both level 1 and level
2 from REC with 1 dwelling, 5 dwellings, 10 dwellings, and increments of 10 dwellings
until a total of 50 dwellings is scheduled.
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Figure 10. Average computation time taken by REC with different numbers of members.

Consider also that level 1 can be distributed among several computers, in an edge
architecture, as presented in Section 3. This decentralization of level 1 can significantly
reduce the time taken to schedule the REC FOs by lowering processing requirements and
enabling decentralized parallelization of computing resources. During our simulations,
level 1 executed for optimizing the user self-consumption takes, on average, 3.37 s to run.
Once level 1 is scheduled, level 2 can be executed at the REC fog computer. On average, for
50 dwellings, level 2 took 124 s.

6. Conclusions

The energy produced from RES has emerged as a green, reliable, and environmentally
friendly solution for the replacement of traditional energy production methods, which are
heavily dependent on the burning of fossil fuels. Moreover, RES, such as sun and wind,
can be individually harnessed by citizens, allowing for energy self-sufficiency, and the
reduction of transmission losses. As a result, RECs are emerging as an effective concept and
model to empower the active involvement of citizens in the energy transition as promoters
of RES and participation in the energy markets.
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This paper aimed to contribute to the management, scheduling, and optimization of
individual and community energy consumption and production in a REC. It follows a
previous REC architecture and introduces heuristic algorithms that aim to address the eco-
nomic and social needs of different players. The algorithms are organized in a distributed
edge-and-fog approach and are designed for low computational overhead.

The test case scenario carried out with 50 REC members aimed to simulate a real-world
community, with diverse buyer and supplier profiles, energy flexibility, and production
capabilities. The results demonstrate very promising results, for every season of the year,
encouraging the use of RES, and helping producers reduce the initial investment pay-
out time not only by maximizing the use of self-produced energy but also by selling the
energy surplus to other community members at a profitable price. The test case scenario
also demonstrated the low computational overhead of the algorithms presented when
applied in a decentralized edge-and-fog architecture. These results mean that this service
can be applied closer to the end-user in an edge-and-fog low-cost implementation, while
maintaining a high level of optimization and benefits for the users.

The algorithms are currently being updated to take into consideration the scheduling of
optimized battery energy storage and consumption and the introduction of electric vehicles
in a vehicle-to-grid fashion. Future work should evaluate these algorithms against real-
world implementations, with a more diversified list of dwellings, appliances, flexibilities,
and other seasonal data. Future work should also encompass a strong economic analysis of
scenarios for business implementation purposes.
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