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Abstract: Nontechnical losses (NTL) are irregularities in the consumption of electricity and mainly
caused by theft and fraud. NTLs can be characterized as outliers in historical data series. The use
of computational tools to identify outliers is the subject of research around the world, and in this
context, artificial neural networks (ANN) are applicable. ANNs are machine learning models that
learn through experience, and their performance is associated with the quality of the training data
together with the optimization of the model’s architecture and hyperparameters. This article proposes
a complete solution (end-to-end) using the ANN multilayer perceptron (MLP) model with supervised
classification learning. For this, data mining concepts are applied to exogenous data, specifically the
ambient temperature, and endogenous data from energy companies. The association of these data
results in the improvement of the model’s input data that impact the identification of consumer units
with NTLs. The test results show the importance of combining exogenous and endogenous data,
which obtained a 0.0213 improvement in ROC-AUC and a 6.26% recall (1).

Keywords: nontechnical losses; outliers identification; exogenous data; power system distribution;
artificial neural networks; hyperparameter optimization; data mining; big data

1. Introduction

Nontechnical losses (NTL) are characterized by theft, fraud or irregularities in the
consumption of electricity that are not properly or effectively billed by distribution com-
panies. In addition to financial losses attributed to the costs of stolen energy, NTLs have
consequences for the quality of energy delivered to consumers that can, in the worst case,
result in material damage.

NTLs can be carried out in several ways, sometimes ingenious. The most common
and easily practiced energy theft occurs when the consumer performs a by-pass of the
meter clock, thus forging or not accurately counting the consumer units (CUs). However,
other methods are used by fraudsters. In [1], the authors describe that meter violations are
a major cause of NTLs in addition to other methods used by fraudsters, such as tampering
with voltage or current measurement or applying a magnetic field or high-frequency waves.

In this context, NTLs are a common problem in all electrical systems around the world,
and they mainly focus on electric distribution systems, where voltage levels are adjusted
for the end use of electricity. In addition, NTLs are directly related to the socioeconomic
indices of a nation, and consequently, an even greater problem in developing regions such
as Latin America and sub-Saharan Africa [2]. Therefore, the mitigation of NTLs warrants
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constant study, so that the identification of fraud, theft or irregularity results in financial
returns on the part of energy companies and reductions in consumers’ costs as well as
maintaining the network standards within the established parameters.

Within this scenario, data science and artificial intelligence (AI) are areas of great
expansion and development in the last decade, and their main objectives are to detect
patterns and generate knowledge through data [3]. When used assertively, they can be
applied to solve complex and nonlinear problems such as identifying outliers in historical
data series, as in the case of CU with NTL.

AI models aim to develop algorithms to perform cognitive tasks, with attributes capa-
ble of storing knowledge through experience and employing them to design solutions [4].
One of these models is artificial neural networks (ANN), regarded as one of the most
modern and powerful machine learning (ML) and AI tools. The ANN is inspired by the
human brain and capable of operating massively parallel and distributed systems, as well
as performing nonlinear and highly complex mappings, with the possibility of adjustment
through hyperparameters.

Today, ANN with ML and deep learning (DL) are state-of-the-art models of NTL
detection. As an example, convolutional neural networks [5], long short-term memory
(LSTM) [6], and hybrid models [7,8] together with other binary classification models are
regularly applied in research and have achieved the best robustness in the classification of
electricity consumers with NTL.

One important characteristic of a multilayer perceptron (MLP) ANN is the ability to
learn complex and nonlinear relationships between data and targets, which allows the
employment of categorical and continuous variables in the same level. In addition, there
is no restriction on data format. In [7], a MLP ANN was used in a hybrid model where it
received several inputs such as longitude and latitude and voltage from the CU. It was also
used as part of the hybrid model in [9], where geographic information data were passed to
the MLP. Next, in the search for architectural optimization, it was used in the last hidden
layers of [10] to detect NTLs. However, the treatment and quality of the database is of vital
importance for the good performance of NTL classification models.

However, the problem of identifying NTLs is characterized by great imbalance be-
tween classes, since the anomalies (fraudulent consumer) occur at a much lower frequency
than the normal data (regular consumer or N-NTL). Therefore, it is important to emphasize
that the algorithm requires amounts of data representative of the two classes [11]. There
are techniques and methods for mitigating the effects that occur in the model due to the
unbalanced database (DB). The techniques are mainly used in the learning phase of the
classification algorithm, as it becomes necessary to have representation of both classes of
consumers, as in the case of data oversampling and undersampling.

These sampling methods are reviewed in [12], which compared several oversampling
and undersampling techniques considering recall as a relevant performance metric. The au-
thors concluded that undersampling majority data is the best sampling technique. Likewise,
the strategy used to label the data of each CU in [13], which compares between labeling
data by analyzing the expertise in the area and by means of field inspections, through the
results of technical inspections of suspected consumers. The authors [13] concluded that
the second approach had the best results. Additionally, ref. [14] proposed a method for
generating suspicious consumers knowing the patterns of fraudster consumers and regular
consumers in a model trained using simulated samples.

Recently, new concepts are being developed in the field of ML, among them the
application of exogenous data, that is, information external to the environment under
analysis, to improve the performance of models. Additionally, concepts of essential size
(smart size) and data-centric models have also been highlighted [15]. In essence, the
concepts aim to improve the quality and quantity of data, so that they contribute to the
robustness of the ML project.

In [16], a classification proposal was developed to identify suspicious energy con-
sumption profiles, comparing these with regular energy consumption profiles. For this,
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the distance between the customer with suspicious consumption and regular consumption
is calculated. In [17], comments from inspectors and energy company staff, consumption
information and contract information such as contracted power and economic activity were
used as input resources. Similarly, in [18], socioeconomic status as a categorical variable
was used for each electrified sector, and activity was classified as high, medium or low.
In [19], econometric models are estimated to analyze and predict short-term NTLs. The
dataset contains number of inhabitants in risk areas, default rate, and the time variable,
representing the year of data collection. Table 1 summarizes and highlights some references
related to the identification of NTL that employs ANN models.

Table 1. Summary of references related to the identification of NTLs.

Reference Inputs ANN Model Description

[6]
Mainly

consumption
(sequential)

LSTM

The model detects abnormalities in a
consumer’s power consumption and

classifies it as an anomaly, uses
advanced metering infrastructure and
consumption with half-hour intervals.

[7] UC longitude and
latitude and voltage

Hybrid
(MLP-LSTM)

Uses a LSTM model for the
consumption of smart meters and
auxiliary data are the input for the
MLP; the model outperforms other
models in PR-AUC and ROC-AUC.

[8] Consumption (daily
smart data)

Hybrid
(CNN-LSTM)

Uses consumption data to
characterize consumers as either
benign or thieves and a synthetic

minority oversampling.

[9] Geographic
information Hybrid (MLP-GRU)

The author highlights fraudster
users’ generation techniques for the
problem of imbalance and the use of

auxiliary data.

[10] Consumption
(Daily) Optimized Uses Bayesian optimization to find

the optimal neural network structure.

[20] Multiple Sources Multiples
Employs various data sources such
as climate and location to identify

sources of electricity.

[21] Consumption Hybrid (LSTM–
UNet–Adaboost)

Uses SMOTE with an imbalanced
dataset obtained from a smart grid.

A study carried by [22] show that exogenous data can be useful as additional infor-
mation for improve load forecasting accuracy. This study evidences that several factors
can influences on power consumption, especially weather data, but also others can be
related to consumption of electricity like socio-economic and demographic information.
As can be seen, the ANN is recognized and widely used in classification models due to
its easy comprehension, configuration, and reproduction, especially with qualitative and
quantitative data [23]. More detailed theoretical aspects of the ANN-MLP that is used in
this research can be found in [24].

It is well known that temperature significantly influences energy consumption. Many
studies have approached the problem, such as [25,26]. In [27], there is a strong correlation
between consumption and temperature, especially in the residential market. In addition,
in [20], it was observed that illegal consumers use more electricity than legal consumers
and that the consumption of electricity by these consumers intensifies in periods of high
and low temperatures, in order to establish thermal comfort conditions. In [28], an applied
tool was developed for the selection of climatic variables for load forecasting. In this study,
heat caused people to turn up their air conditioners, and cold caused them to turn up
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their heaters. In [29], an index was defined for possible climate effects on electrical energy
irregularities: As this index increases, diverging from the considered ideal point that is
assumed for a comfortable temperature, electrical energy consumption should increase.
Table 2 summarizes and highlights some references related to the validation and use of
temperature in NTL identification.

Table 2. Temperature Validation.

Author Description

[20] The consumption of electric energy is intensified in times of high and
low temperatures.

[28] Due to thermal discomfort from cold and heat, there is a tendency to
increase demand on of the system.

[29]
In electrical energy irregularities, energy consumption increases,
diverging from the point considered ideal that is assumed for a

comfortable temperature.

[30] Focuses on fraudulent activities based on the temporal analysis of
consumers who show reduced consumption in summer and winter.

Due to the various fraud modes reported in the electricity sector, managing NTLs is
one of the most challenging tasks for energy distribution companies. Therefore, studies
that use AI and ML models are essential for the identification of outliers so that energy
companies can dispatch technicians to locations more likely to find NTLs, since depending
on the method used by the fraudster, the determination and confirmation of the fraud can
be costly and technically difficult.

Thus, for the development of tools for detecting NTL, several sources of exogenous
data can be useful as input objects of the system, each one of these sources of data being
related to climatic factors such as temperature. Even though there is scant evidence
in the literature of the use of exogeneous data [20] such as temperature in a model of
identification of NTL, the unavailability of weather data for every place or granularity in
the database (hourly/daily/monthly) could lead to a misclassification of NTL consumers,
by applying mismatching data. To overcome that, a previous study [31] presents the use of
the correlation of ambient temperature data associated with electricity consumption, where
consumption is the main data point for the identification of NTL [3]. The results show that
the use of this metric can bring significant improvement in NTL detection models at the
same time that it can reduce the probability of the misclassification of NTL consumers by
using temperature only as a support variable.

Therefore, this work proposes the use of exogenous data in a model of the identifi-
cation of NTL. The exogenous database used in this study is of climate data; specifically,
the monthly average temperature is the support input variable of the problem. There is
also a real database of an electricity distribution company in southern Brazil, Electrical
Energy State Company—Companhia Estadual de Energia Elétrica (CEEE) and Equatorial
Group—Grupo Equatorial. In order to use the exogenous variable, Pearson correlation
and Euclidean distance were calculated, these variables being inputs to the classification
model in addition to the endogenous data from the energy company. Data processing
was performed, such as undersampling and temporal matching of endogenous and exo-
geneous data. The classification model used was the MLP, in which hyperparameters were
optimized to improve the architecture’s performance. The results were compared with the
model without exogenous data, where a significant improvement in the robustness of the
model with exogenous data could be observed.

The main contributions of this research are:

• The development of an innovative framework for the identification of NTL on distri-
bution networks based on the introduction of exogeneous data (temperature);
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• The introduction of the temporal matching of endogenous and exogeneous databases
in order to establish correlation between consumption behavior and temperature
variation based on the same set point (last inspection);

• The introduction of Pearson correlation and Euclidian distance as inputs of the ANN
MPL, applying temperature as a support variable, then reducing the probability of the
misclassification of NTL consumers;

• The analysis of the impact of using temperature to identify NTL consumers.

The paper is organized as follows: Section 2 presents the metrics and adjustments for
the development of this paper and the definitions for implementing the model. In Section 3,
the results and discussion are shown, and the classification model developed. Finally, in
Section 4, the paper concludes.

2. Methods

This work proposed a NTL detection framework based on endogenous and exoge-
nous data to identify CUs with NTLs. For this, a supervised classification approach was
used, which characterizes it as a data-oriented method, developed from the optimized
MLP model.

The methodology described in this work was developed in Python programming
language using the ANACONDA package in the Spyder Integrated Development Environ-
ment. The libraries used were: Pandas, NumPy, MatPlotLib, Sk-Learn, Imbalanced-Learn,
Keras, TensorFlow and Keras-Tuner. The developed model was implemented on a worksta-
tion with Intel(R) Xeon(R) Silvar 4108 CPU @1.8 GHz (2 Processors), 64 GB of RAM, and a
Microsoft Windows Server 2016 operating system.

The general flowchart of this work can be seen in Figure 1, which explains in a
simplified way the model developed, which can be subdivided into 4 modules called:
extraction, mining, AI, and evaluation.

The first module has the function of extracting raw data from the concessionaire’s
database, as well as from the National Institute of Meteorology (INMET) [32]. It also
performs temporal standardization for monthly basis of temperature data. Thus, the
temperature data, which are available at hourly intervals, are standardized on a monthly
basis, through the calculation of the monthly average, adapting them to the same temporal
granularity as the consumption data.

The second module is essential for properly modeling the problem. Initially, the
CUs were labeled as NTL (1) or regular (0). Then, manipulating the results of inspections
previously carried out by the distribution company, the unit was labeled, and the date
of the inspection was logged. This was necessary to match the starting time of the time
series and the exogeneous data. After that, temporal data mining was performed with
the objective of temporally adjusting the CU data from the previously saved inspection
date. In addition, missing and/or null data (DB error) in the consumption database were
identified, and a new record was attributed through the average of the existing data in
the time series. As a result, all consumption and temperature records were adjusted for
the 36 months prior to the inspection date. Subsequently, Pearson’s correlation, Euclidean
distance, the standard deviation, the probability distribution function (PDF), the median,
and the amount of zero consumption were obtained. Finally, the training, validation, and
test databases were separated.

Then, in the third module, the training and validation of the ML model was carried
out together with the optimization of the architecture and hyperparameters. For the
optimization of the MLP, the values within a search range were optimized to identify the
best architectures. Regarding the model’s hyperparameters, the number of hidden layers,
number of neurons per layer, and dropout rate were optimized.
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50 training iterations.

Finally, the fourth module evaluated the results obtained by the models of the previous
stage, through the error matrix, accuracy calculation, error rate (recall) and precision of
the results of the model’s test base, in addition to the graphical analysis of the ROC curve
(receiver operating characteristic), from the PR (precision–recall) curve, and from the AUC
(area under the curve) of the ROC and PR curves. The processes of the developed model
are described in detail below. As the extraction module has already been fully described,
the extraction details will not be covered.

2.1. Data Mining

The data mining stage for this study comprised labeling the CUs, treating the metrics
that would serve as input for the proposed classification model, making adjustments, and
dividing the database into training, validation, and testing sets. The procedures for mining
the DB are explained in the next sections.

2.1.1. Inputs Adjustments for Neural Networks Models

In general, inputs must be preprocessed for correct entry into the intelligent system,
as ML algorithms learn through experience. For this, it is essential that the input data
used for learning be as faithful as possible, expressing in fact the consumption patterns of
consumers with NTL and regulars.
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This work proposes a temporal adequacy for consumers inspected in the field. As the
main objective was to identify different consumption patterns and the changes in consumers’
behaviors influenced by an inspection, adjusting the time series was necessary to meet the
same starting time. The last time the consumer was inspected by the distribution company
was taken as the reference. It means that the date on which the inspection was carried out
is identified in order to match the starting time of the consumption and temperature time
series. From that, the time series size is set to 3 years (36 months) prior to the inspection
date, as shown in Figure 2.
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This temporal matching of consumption and temperature inputs, taking as reference
the last inspection, had the objective of properly defining the behavior of a CU with NTLs in
the period before the inspection is carried out, that is, the behavior of the consumer during
the period in which the irregularity was committed. This manipulation is highlighted
because as exemplified in Figure 3, the behavior of a CU with NTLs can change soon after
the irregularity is identified and rectified. Therefore, the algorithm must be trained with
data that clearly show the behavior of the CUs during the period of irregularity in order
to identify the NTL consumption patterns. It is noteworthy that the units were labeled
through the results of field inspections previously carried out by the energy company.
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2.1.2. Summary, Similarities, and Distribution Metrics

To analyze the consumption of CUs, a series of summary metrics are used to synthesize
the information contained in a time series and thereby summarize the information contained
on the DB. The first one is the arithmetic mean (x), exemplified in Equation (1):

x =
1
n ∑n

i=1 xi, (1)

where xi are the monthly consumption samples of the CU and n the total of samples
contained in the series.

The next metric is the median x̃, which depicts the central value of the CU consumption
samples (xn). For the calculation of this metric, if the total of the samples is even, x̃ is
calculated by Equation (4), as the average of the two central values xn1 e xn2; otherwise it is
calculated by the second function:

x̃ =
xn1 + xn2

2
or x̃ = xn, (2)

Then there is the standard deviation (s) of the CU consumption samples, denoted by
Equation (3). This is the most important measure of dispersion as it provides a measure
related to the mean. It is also important to note that the standard deviation is strongly
affected by the presence of anomalies:

s(x) =
√

1
n − 1 ∑n

i=1(xi − x)2, (3)

To use the PDF, an adaptation was made in the way in which the indexes obtained
were treated. For this, the maximum (Cmax) and minimum consumption (Cmin) were
identified within the consumption history of each CU under analysis. Subsequently, it was
necessary to sort the data history into intervals of the same amplitude, followed by C0 − C1,
C1 − C2, . . . , Cn−1 − Cn, with C0 equal to Cmin, and Cn equal to Cmax. After delimiting
the intervals, the number of samples that fell within each interval were counted, thereby
identifying the interval with the largest number of samples. For this interval, the average
of the consumption samples that fit there was calculated by Equation (1), being called xPDF.
From this, it was possible to more faithfully portray the consumption profile of this CU,
making it its identity.

To assess the similarity of temperature and consumption, this work employs two
similarity metrics: Euclidean distance and Pearson correlation. To determine the collinearity
between monthly temperature and monthly consumption of the CUs, it is assumed that
the greater the collinearity of these two variables, the lower the probability of NTLs in the
CU under analysis. In fact, the introduction of these metrics makes the temperature itself
work as a support. Both Pearson correlation and Euclidian distance are the temperature-
related inputs for the ANN MPL. That assures the establishment of features correlated
to consumption and temperature, then reduces the probability of any misclassification of
NTL consumers.

The Euclidean distance represents the physical distance between points in a space;
it also consists of the shortest distance between the points in the dataset. Therefore, it is
manifested by a continuous line between the samples of the consumption dataset, that is, it
can demonstrate similarity between two independent vectors. This metric is suitable for
applications that do not necessarily present a correlation between different measures, as
soon as it compares variables of the same temporal location, expressed by Equation (4):

d(x, y) =
√

∑n
i,j=1

(
xi − yj

)2, (4)

where d is the Euclidean distance, xi is the first vector under analysis (consumption) and yj
the second vector (monthly average temperature data).
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It can be noted that the Euclidean distance is invariant when dealing with changes in
the order of time; this means that it does not capture vector correlation, for which other
similarity measures are used such as Pearson’s correlation [33]. Pearson’s correlation (r)
corresponds to an absolute value situated between +1 and −1 that reflects the intensity
of the relationship between two data vectors, which can be classified as positive (with
an interval of 0 < r ≤ 1) or negative (with an interval of −1 ≥ r > 0). A positive corre-
lation expresses that the data are directly proportional, and a negative correlation also
expresses that the variables are correlated but inversely proportional. If the Pearson cor-
relation is 0, there is no relationship between the datasets [34,35]. Pearson’s correlation is
described by Equation (5), which results in the degree of relationship between consumption
and temperature:

r(x, y) =
∑n

i,j=1(xi − x)
(
yj − y

)√
∑n

i=1(xi − x)2· ∑n
j=1
(
yj − y

)2
, (5)

where r is the absolute Pearson correlation, xi the CU consumption data, x the arithmetic
mean of the CU consumption samples, yj the monthly average temperature data, and y the
historical average temperature.

Finally, the normal distribution of each metric listed as input data of the model is
made, demonstrated by Equation (8), which was used to standardize the inputs, scaling to
a unitary variation:

z(xi) =
xi − x
s(xi)

, (6)

where z is the normal distributed value of the standardized metric, xi is the individual
reference sample, x the arithmetic mean of this same metric, and s the standard deviation
of the values of vector xi.

2.1.3. Data Adjustments

The number of CUs with NTLs and their proportion to regular consumers are im-
portant values for detecting outliers in a supervised approach. In order to improve the
robustness of the classification, it is necessary for the model to be able to capture patterns
from CUs with NTLs and regular consumers. Additionally, the temporal adequacy in-
creases the number of CUs labeled as irregular as the time interval corresponding to field
inspections can be defined; that is, old inspections can be used with minimal addition of
noise in the outlier detection model. This allows the model to learn from the consump-
tion profiles of CUs with older irregularities and even increase the database with more
CUs labeled as NTLs. It is noteworthy that these adjustments were used in the training,
validation, and testing databases of the model.

As a result of the temporal adequacy of the time series described, and with the use of
the results of field inspections dated from January 2020 to May 2022, CUs with NTLs varied
from January 2017 to April 2022, depending on the month in which the inspection was
carried out. For consumption time series, it is still necessary to treat null data and missing
records. For this, within the necessary period of 3 years, if the record of a given month did
not exist or was null, the record was inserted as the average of the existing records.

Then, the parameters related to the consumption database were calculated, with the
median (2), standard deviation (3), PDF, and the amount of zero consumption. Parameters
involving the exogenous temperature variable and consumption data were also obtained
with Euclidean distance (4) and Pearson correlation (5). It is noteworthy that these parame-
ters were obtained from data previously adjusted in time. Similarly, inspections that took
place between January 2020 to May 2022 were used for the CUs.

After the aforementioned procedures, and according to the mining module in Figure 1,
the database was divided between training, validation, and test sets, defined respectively
with the percentages of 80%, 10%, and 10%, as established in [7]. Then, the data were
undersampled in the training base, in which the undersampling equaled the number of
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CUs labeled as NTLs or regular, taking into account that NTL consumers are found in
much lower numbers than regular ones, as indicated in Figure 4.
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In addition, it was necessary to make adjustments to the categorical and numerical
variables in the entire database. Table 3 presents numerically the size of each of the entries
in the ANN model. Each of the categorical inputs went through a coding process, where
the categorical variables were replaced by numeric variables with values between zero and
the number of classes of the variables minus one, using the label encoder algorithm.

Table 3. Model inputs size.

Input Size

Consumption 36
Correlation and Euclidian Distance 2

Standard deviation, PDF and median 3
Quantity of zero consumption 1

City 1
Neighborhood 1

Main class description 1
Connection Type 1

Perimeter 1
Contracted Voltage Level 1

Street type 1

2.2. Multilayer Perceptron Neural Networks

To implement the ML model, the MLP algorithm was used through the TensorFlow
library [36]. It is important to mention that due to its extension, the theoretical aspects
of MLP are not presented. If necessary, more detailed information about MLP can be
found in [24].

All categorical and time series variables need to go through a normalization process
according to Equation (6) and are later used as inputs in the ANN according to Figure 5. It
is noteworthy that the time-series normalization process was carried out aiming to remove
imperfections from the time series and attenuate the differences in scales that were obtained
from the monthly consumption measurements.

Then it was necessary to define the activation functions ( f ) of the hidden and output
layers. In this work, the linear function (Relu) was used in the hidden layers, and the
sigmoid function was used in the output layer, where the functions are shown in Figure 6,
this choice being defined with the objective of reducing the error of the MLP. Furthermore,
the sigmoid function has limits between 0 and 1, so the output of the ANN varies between
these limits, being thus described as the probability that the CUs will be evaluated as
consumers with NTLs.
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The MLP training error calculation optimization method used in this work was
proposed by [37] and widely used in the literature for optimization in binary classifi-
cation ANN. The algorithm losses were calculated through the binary entropy function of
Equation (7), which calculates the cross-entropy loss between true labels and predicted la-
bels. This method of calculating the cross-entropy loss is mostly used in binary classification
algorithms (0 or 1):

Lp = − 1
N

N

∑
i=1

yi ∗ log(pred(yi)) + (1 − yi) ∗ (log(1 − pred(yi)) (7)

Optimization

Hyperparameter optimization is one of the most important steps in the MLP learning
process, in which it was possible to optimize the number of hidden layers along with
the number of neurons in each layer of the neural network and also the dropout rates of
neurons from each MLP layer. The batch size was defined as the number of samples (CUs)
that propagate through the MLP before the weights are updated. Finally, dropout rates
were defined as the function to eliminate neurons from the layers randomly, aiming to
reduce the severity of overfitting.

For the optimization of the model, 50 combinations of hyperparameters of the MLP
were trained, observing the parameters of Table 4 and aiming at the ROC-AUC metric,
which was optimized during 50 training iterations. The model was trained with a batch size
of 1, configuring an online training and with a number of 50 Epochs. The ANN training
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ended when the maximum number of iterations of the model was reached, aiming at the
lowest loss value (7) of the validation base. Then, the model with the best performance was
used for the evaluation module, where the classification of the data from the previously
separated test base was performed.

Table 4. Hyperparameter optimization–Search space.

Parameters Search Space

Number of hidden layers [1–5]
Number of neurons [12–64]

Dropout [0.1–0.5]

2.3. Model Evaluation

To evaluate the robustness of the classification model, one can have 4 evaluations of
the output, portrayed by the error matrix or confusion matrix, that evaluate the outputs of
the model, namely: false positives (FP), originally false with positive outputs; true positives
(TP), originally positive with positive outputs; false negatives (FN), originally negatives
with negative outputs; and true negatives (TN), originally negatives with positive outputs,
as in [11]. It is noteworthy that the evaluations of TP and TN should be maximized and FP
and FN minimized. Next, in the error matrix of Table 5, 1 is portrayed as CUs with NTLs
and 0 as regular CUs:

Accuracy =
TP + TN

TP + FP + TN + FN
(8)

However, for an unbalanced DB, the accuracy metric should not be used alone, as
one can find predominant negative true values given that for an unbalanced DB, the
negative values of the bank are the vast majority. Therefore, accuracy alone does not clearly
demonstrate how the classifier is behaving for the anomalous class (CUs with NTL). In view
of this, the robustness of this data class has little impact on the metric [38]. Therefore, other
metrics are needed that, associated with accuracy, will support a more reliable evaluation
of the model, as observed in [8,21].

Table 5. Error Matrix.

Predicted Class
0 1

True Class
0 TN FP
1 FN TP

Thus, other evaluation parameters for an unbalanced DB and quantified by the error
matrix are the hit rate over the real data obtained by Equation (9), also known as recall,
and the accuracy of the classification model in the prediction of 0 and 1, expressed by
Equation (10). In addition, the ROC curve, the ROC-AUC, PR curve, and the PR-AUC are
used to analyze the results of classification, and it is necessary to compute the metrics,
in addition to the Recall (9) and Precision (10), False Positive Rates (11), and True Positive
Rates (12).

Recall =
TN

TN + FP
or

TP
TP + FN

(9)

Precision =
TN

TN + FN
or

TP
TP + FP

(10)

False Positive Rates =
FP

FP + TN
(11)

True Positive Rates =
TP

TP + FN
(12)
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Additionally, the ROC is a curve obtained through the threshold variation of evaluation
of the ML model results, changing the false positive and true positive rates. Thus, a classifier
that produces continuous outputs such as the MLP can vary according to the output limit
between its extremes from 0 to 1, resulting in the ROC curve as shown in [39], which
illustrates the classifier’s inability to avoid false positives and ability to detect the positive
class correctly [40].

Therefore, from the ROC curve, the ROC-AUC metric can be obtained, which is one of
the most appropriate metrics for evaluating ML results in unbalanced DBs and detecting
outliers. This metric ranges from 0.5 to 1, where 0.5 is a bad classification value and 1 is an
ideal classifier value. Several studies use this metric for evaluation, as observed in [7,38,41],
and based on this, it was used to evaluate the performance of the developed model.

The PR curve was also used, which evaluates the results of precision and recall,
respectively, in Equations (11) and (12). Therefore, by the graphical analysis of the PR
curve, it was possible to evaluate the performance of the model, observing the elevation of
the curve, because the performance increased together with the PR curve [7]. Therefore,
as the ROC curve was obtained from the ROC-AUC, the PR-AUC was obtained from the
PR curve, which aims to evaluate the average precision of the rates of predicted positive
values and the rate of true positives. Thus, with the graphic analysis and the ROC-AUC
and PR-AUC metrics, greater reliability is given to the model proposed in this study.

It is important to notice that classification models based on ML techniques are built
from a specific database. Therefore, the origin, quality, and size of the database are influ-
enced by the problem being analyzed. The same happens to the time-series granularity
or the sampling strategy adopted. It makes the comparison among classification models
a difficult task because depending on the availability of data, different strategies can be
considered to evaluate the performance of the classifier over unseen data [42]. Therefore,
these metrics are commonly used as reference for the evaluation of the model [7,20].

In addition, the main focus of this research was not the model itself but the innovative
framework that is based on the employment of exogeneous and endogenous data, being
either categorical or continuous, in order to identify NTL consumers. The MLP is recognized
and widely used in classification models due to its easy comprehension, configuration and
reproduction, especially in cases of the employment of qualitative and quantitative data [7].

3. Results and Discussion

For the validation and testing of the methodology, it was determined to use a database
provided by CEEE and Equatorial Group, which exclusively counts previously inspected
CUs. In this way, greater reliability was obtained in the results since all CUs were labeled
according to the real field results, where it was possible to accurately label whether or not
there was an incidence of NTL.

Then, the steps of the methodology up to the mining module of Figure 1 were applied,
with the adjustments previously defined, and null and nonexistent consumption time-series
data were replaced. Subsequently, the remaining missing data from the DB were filtered,
resulting in 111,500 CUs that were then used in the training, validation, and testing phases
of the model.

3.1. Database Characterization

In order to describe the CUs of the DB used in this study, it is appropriate to analyze
the number of unique values described in all CUs. With this, it is highlighted that CUs
from 13 cities were used, totaling 2275 neighborhoods, which are classified by the type
of connection (single-phase, two-phase, or three-phase connection) and by the voltage
level the energy is provided (four different groups). Table 6 shows the overall information
of database.
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Table 6. General Inspected Consumer Units.

Inputs Unique Values

City 13
Neighborhood 2275

Connection Type 3
Contracted Voltage Level 4

It is important to notice that all cities, neighborhoods, connection types, and contracted
voltage levels must be introduced to the model as samples of regular or NTL CUs. As
presented, the ML model obtains knowledge through experience, where it is necessary to
have representation of the most varied NTL patterns to map such patterns and accurately
identify irregularities. To obtain that, the database was split in two groups labeled “Regular”
for CUs that did not present NTLs or “NTL” if NTLs had been previously identified. Then,
both groups were sized considering unique values for each input. The dimensions of the
labels of the CUs of the DB used in this study are shown in Tables 7 and 8. This information
was essential to further sampling.

Table 7. Inspected Consumer Units Labeled Regular.

Inputs Unique Values

Cities 13
Neighborhoods 1675

Connection Type 3
Contracted Voltage Level 4

Table 8. Inspected Consumer Units Labeled as NTL.

Inputs Unique Values

Cities 13
Neighborhoods 2076

Connection Type 3
Contracted Voltage Level 4

For the analysis of the complete CU DB, CUs were grouped by the average through the
previously defined 0 or 1 labels. In this way, mean (1), median (2), standard deviation (3),
PDF, Euclidean distance (4), and Pearson’s Correlation (5) were grouped, thus making
it possible to analyze the distinction between regular CUs and NTLs. As can be seen in
Table 9, the CUs labeled as NTLs have lower average consumption, a higher standard
deviation, a lower median of consumption, and a lower PDF compared with CUs labeled
as regular.

Table 9. Description of CUs Consumption Labeled as NTL and Regular.

Variables Regular (0) NTL (1)

Average consumption (kWh) 197.14 159.44
Consumption standard deviation 67.65 69.60

Consumption median 187.55 149.78
Consumption PDF 178.12 139.47
Euclidian distance 1175.95 986.04
Pearson correlation 0.1606 0.0787

The graphical analysis of the frequency distribution of the normalized units in relation
to Pearson’s correlation is expressed in Figure 7. The observed trend depicts the clustering
of more regular CUs with higher correlations when compared with irregular CUs. In
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an analogous way, analyzing the histogram of Figure 7, the frequency distribution of
irregular units is concentrated in greater proportion for negative correlations and differs
from regular units. Therefore, it is possible to affirm that the behavior of regular CUs differs
from the behavior of irregular CUs, this being explicit when we include the temperature as
a comparison bias and energy consumption through Pearson’s correlation.
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Now, the histogram has been produced, and it is expected to obtain improvement in
the robustness of the NTL identification model, in which the temperature is inserted as an
input variable, through the calculation of Pearson’s correlation between consumption and
temperature. The same can be seen in Figure 8, which depicts the frequency distribution of
the normalized units in relation to the Euclidean distance. Although not very expressive,
more information is acquired for the smallest normalized values of this variable, which are
added to the model classification results.
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3.2. ANN Optimized Model

For use in the classification model, the complete DB had 84,682 regular CUs and
26,818 CUs with NTLs. That is, 24.05% of samples had NTLs. After labeling the CUs, the
database was separated into training, testing, and validation datasets, which were taken
from the complete database at random. The training base has 80% of the complete base,
made up of 67,746 regular CUs and 21,454 CUs with NTL. As previously explained, this
base went through a balancing process that resulted in a training base with 21,454 CUs
and 21,454 CUs with NTLs. As for the validation and test sets, both comprised 10% of the
complete DB, which represented 8468 regular CUs and 2682 CUs with NTLs in each set, as
shown in Table 10.

Table 10. Training, validation and testing DB.

Base Regular CU NTL CU %NTL

Train 21.454 21.454 50%
Validation 8.468 2.682 24.05%

Test 8.468 2.682 24.05%

3.3. Results Analysis

For the evaluation of the optimized ANN, the test dataset was used. It is noteworthy
that the test set has a total of 11,150 CUs, with 8468 CUs labeled as regular and 2682 CUs
labeled as irregular CUs or with NTLs.

The output neuron of the ANN has the sigmoid activation function, and the output of
this neuron fluctuates between 0 and 1, thus making it possible to generate thresholds for
the evaluation of the results. This threshold can be adjusted in order to decrease the number
of unfeasible results for further analysis. Therefore, in order to obtain the classification
results of this work, 0.5 was defined as the evaluation threshold, where the CUs with a
model output greater than or equal to 0.5 were classified as CUs with NTLs, and CUs with
output less than 0.5 were classified as regular.

To analyze the results of the classification model focusing on the identification of NTLs,
error matrices were generated with the proposed applications. Table 11 presents the results
of the error matrix for the model with temperature input, which has as a differential the
input variables Pearson’s correlation and Euclidean distance, which reflect the use of the
exogenous temperature variable. In Table 12, the results of the error matrix are presented
for the model without these exogenous data entries, considering only the endogenous data
of the distribution company.

Table 11. Error matrix—Results with temperature.

Predicted Class
0 1

True Class
0 6879 1589
1 1511 1171

Table 12. Error matrix—Results without temperature.

Predicted Class
0 1

True Class
0 7043 1425
1 1679 1003

Making the analysis by pairs, as observed in Tables 10 and 11, there was an improve-
ment in the TP hits, which refers to the CUs with NTL. This improvement went from 1003
to 1171 CUs, a difference of 168 more CUs identified by the classification model, with the
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insertion of the temperature variable through the Pearson correlation and the Euclidean
distance. However, the FP result, which represents the classification result of the regular
CUs, worsened when inserting the exogenous variable, from 7043 to 6879 CUs. This may
be related to the increase in electricity consumption during the winter, since temperatures
are milder and consumption is higher in some CUs, as portrayed in [28]. Additionally, [20]
pointed out similar consumer behaviors regarding the influence of temperature on energy
consumption. Even though in [20], daily consumption data were available, by expanding
the horizon of analysis, it was possible to make this observation.

In this same scenario, taking into account that the assessment for FN and FP should
be minimized, inserting the exogenous variable improved the FN result, with a reduction
from 1679 to 1511 CUs, and worsened the FP results, which went from 1425 to 1589 CUs
classified in the model with the insertion of temperature. This worsening in the FP result,
as in the case of TN, may also be related to thermal comfort issues during the greatest
differences in annual thermal amplitude, evidenced mainly during winter.

Additionally, Table 13 presents the evaluation metrics for the model, considering the
results obtained by evaluating the model with and without the insertion of the exogenous
variable, temperature.

Table 13. Metrics-Results.

Metric With Temperature Without Temperature %Dif

Accuracy 72.20% 72.16% 0.04%
Precision (1) 42.43% 41.31% 1.12%
Precision (0) 81.99% 80.75% 1.24%

Recall (1) 43.66% 37.40% 6.26%
Recall (0) 81.24% 83.17% −1.94%

ROC-AUC 0.6849 0.6636 0.0213
PR-AUC 0.4168 0.3856 0.0312

As shown, the evaluation metrics had a significant improvement with the inclusion of
temperature. There was an evolution of the model’s accuracy, although not very expressive,
accounting for an evolution of 0.04%. However, as mentioned, this metric should not
be evaluated individually in classification models with an unbalanced database. Instead,
looking at precision, precision improved by 1.12% and 1.24%, respectively, for CUs with
NTLs and regular CUs.

Later, recall for identifying CUs with NTLs improved from 37.40% to 43.66%, an
increase of 6.26%. However, this same metric declined for the identification of regular CUs,
the only metric that decreased. Finally, the ROC-AUC and PR-AUC metrics also improved
with the insertion of temperature, with 0.6636 to 0.6849 for the ROC-AUC, and from 0.3856
to 0.4168 for the PR-AUC. It is noteworthy that the identification of CUs with NTLs is one
of the most relevant metrics for this work. Similar metric analyses and considerations are
established by [7], even though in that case, temperature is not employed.

Additionally, in order to measure the developed model, the ROC curves were plotted
in Figure 9, and good behavior of the training, test, and validation datasets can be observed.
The ROC curves had an approximation, that is, the gap between the curves was low, and
the separation of the curves may be a sign of model overfitting. In addition, the difference
in ROC-AUC from 0.6636 to 0.6849 is another indication of the improvement of the model
with the inclusion of temperature.
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The PR curve in Figure 10 summarizes the relationship between precision and recall,
using the variations in the evaluation thresholds, as established in [7]. This result corrob-
orates the difference between the PR-AUC of the model with temperature of 0.4168 and
0.3856 without temperature.
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Rating Model Response Evaluation

After the training of the model was completed and the analysis of the model on a
test basis was performed, the model was put to the test by observing the results of the
models with and without the exogenous temperature variable, represented by Pearson
correlation and Euclidean distance. Thus, from the granular results represented in the error
matrix of Tables 10 and 11, two CUs were selected for the analysis of the consumption
profiles of these units compared with temperature. It is noteworthy that the model acquires
knowledge of the most varied patterns of consumption, and the pattern by which the model
predicts consumers with NTLs and regular usage is difficult to verify. These CUs were
selected following the principle of CU appearance as TP in both models.

Therefore, CU-1 represents a CU that was selected in both models, with the classifica-
tion in the error matrices as TP. On the other hand, CU-2 was chosen because it was a CU
that was identified as TP only in the model that had the exogenous variables with input;
however, in the model without the Pearson correlation and Euclidean distance, this CU was
selected as FN. From these definitions, the consumption profile of the CU-1 is presented in
contrast to the information on the monthly average temperature for the same period, as
shown in Figure 11.
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Figure 11. CU-1 Consumption Profile.

Figure 11 is a characteristic profile of a CU with measurement problems, where it
was recorded in the field inspection as an equipment malfunction. It can be seen that as
of November 2019, the consumption readings are all zero, signaling the beginning of the
irregularity that resulted in the NTLs. However, prior to the start date of the irregularity, the
consumption profile coincided in shape and pattern with the curve of monthly temperature
averages, with similar peaks and valleys. The Pearson correlation and Euclidean distance
for CU-1 were, respectively, 0.263 and 0.429. In terms of Pearson’s correlation, the result
shows a low correlation, which indicates probable outliers. As for the Euclidean distance, it
was low but not located in the region of the greatest information gains for the identification
of NTLs; as seen in Figure 8, it has little representation in the solution.

Then, the graphic result of CU-2 is shown in Figure 12, which represents a CU that
was classified as NTL only in the model that had exogenous variables as additional inputs.



Energies 2022, 15, 8794 20 of 23
Energies 2022, 15, x FOR PEER REVIEW 21 of 24 
 

 

 
Figure 12. CU-2 Consumption Profile. 

As shown in Figure 12, the consumption profiles and the average monthly tempera-
ture represent a certain pattern when evaluating the first half of the information contained 
in the graph, where it is possible to observe some almost coincidental peaks. However, 
the inconsistencies in consumption in the second half were mainly evident in the period 
from October 2019 to May 2020, which comprised the period of higher temperatures when 
there was a parallel reduction in consumption, as shown in the previous study by [31]. 
The Pearson correlation and Euclidean distance for this CU were 0.199 and 0.099, results 
that are close to CU-1, but with the result of the Euclidean distance in the region with the 
highest gain, facts that classify the CU with great chances of be committing a NTL. 

Therefore, according to the result of the field inspection, CU-2 had consumption that 
was not being accounted for by the meter, which is reported as an energy deviation. Since 
this CU was identified as NTL only in the model with exogenous variables, this corrobo-
rated the irregularity of this CU, i.e., the energy deviation, which is often not easy to iden-
tify with models without exogenous information. In this way, it was possible to verify the 
importance of the exogenous temperature variable, which was associated with endoge-
nous information to the energy distribution concessionaire, enabling the improvement of 
outlier classification models, focusing on the identification of CUs that are defrauding or 
stealing electricity. 

Despite the difficulty in identifying consumption and temperature patterns by the 
model, even more so in the case of a deep learning model, in which the model weights for 
each input are difficult to understand, the model obtained good robustness in the field. 
Analyzing the current model, considering the field inspections in the identification of CU 
with NTL, robustness around 30% of the inspected targets was obtained. 

4. Conclusions 
The identification of NTL in energy CU is a challenge with numerous difficulties. It 

has significant technical difficulty that must be mitigated by energy companies, with both 
data-oriented methods and other available resources. It is noteworthy that it requires an 
investment in capital to move technical teams to the places where they can be identified 
and normalized. In view of this, this work proposed a data-oriented method for CU iden-
tification with NTLs. 

Figure 12. CU-2 Consumption Profile.

As shown in Figure 12, the consumption profiles and the average monthly temperature
represent a certain pattern when evaluating the first half of the information contained in
the graph, where it is possible to observe some almost coincidental peaks. However, the
inconsistencies in consumption in the second half were mainly evident in the period from
October 2019 to May 2020, which comprised the period of higher temperatures when there
was a parallel reduction in consumption, as shown in the previous study by [31]. The
Pearson correlation and Euclidean distance for this CU were 0.199 and 0.099, results that are
close to CU-1, but with the result of the Euclidean distance in the region with the highest
gain, facts that classify the CU with great chances of be committing a NTL.

Therefore, according to the result of the field inspection, CU-2 had consumption that
was not being accounted for by the meter, which is reported as an energy deviation. Since
this CU was identified as NTL only in the model with exogenous variables, this corrob-
orated the irregularity of this CU, i.e., the energy deviation, which is often not easy to
identify with models without exogenous information. In this way, it was possible to verify
the importance of the exogenous temperature variable, which was associated with endoge-
nous information to the energy distribution concessionaire, enabling the improvement of
outlier classification models, focusing on the identification of CUs that are defrauding or
stealing electricity.

Despite the difficulty in identifying consumption and temperature patterns by the
model, even more so in the case of a deep learning model, in which the model weights
for each input are difficult to understand, the model obtained good robustness in the field.
Analyzing the current model, considering the field inspections in the identification of CU
with NTL, robustness around 30% of the inspected targets was obtained.

4. Conclusions

The identification of NTL in energy CU is a challenge with numerous difficulties. It
has significant technical difficulty that must be mitigated by energy companies, with both
data-oriented methods and other available resources. It is noteworthy that it requires an
investment in capital to move technical teams to the places where they can be identified
and normalized. In view of this, this work proposed a data-oriented method for CU
identification with NTLs.

The work validated the use of exogenous data from the climate database to improve
the robustness of the ML model of CU classification with NTLs. Furthermore, with the use
of temperature, it was possible to add value to the distribution company data and achieve
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metrics on a test basis with better robustness and with good applicability in the field for
the distribution concessionaire. In particular, robustness increased for the model with the
exogenous data inputs.

In evaluating the results metrics, the ROC-AUC with a result of 0.6845 and the CU
recall (1) with a NTL of 43.66% in the test bench stand out. These metrics presented
the best improvement with the introduction of temperature time series to the model.
That highlights that the framework developed in this research contributed to improving
identifying NTL outliers. Additionally, with the detailed evaluation of CU signaled by
the model with exogenous variables, the importance of this variable in the identification
of NTLs is reaffirmed. Finally, the test of the methodology was started in the field, and
robustness around 30% was obtained in the first tests. As a continuation of this work, the
direction should focus on the aggregation of other exogenous data through web scraping
aiming at making the methodology more robust.
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