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Abstract: The existing motor fault classification methods mostly use sensors to detect a single fault
feature, which makes it difficult to ensure high diagnostic accuracy. In this paper, a motor fault
classification method based on multi-source information fusion Naive Bayes classification algorithm
is proposed. Firstly, this paper introduces the concept and advantages of multi-source information
fusion, as well as its problems of miscellaneous information and inconsistent data magnitude. For
example, as this paper classifies the fault of generators, there are many physical quantities, such
as voltage, current and temperature, which are not in the same dimension, therefore it is difficult
to fuse. Then, aiming at the corresponding problems, this paper uses a PCA dimension reduction
method to remove redundant information and reduce the dimension of multi-dimensional complex
information. Aiming at the problem of unequal data magnitude, the interval mapping method is
adopted to effectively solve the misjudgment caused by unequal data magnitude. After the initial
multi-source information processing, the classical Naive Bayes classification algorithm is used for
fault classification, and the algorithm diagnosis and verification are carried out according to the
statistical fault data. Use of the algorithm increases accuracy to more than 97%.

Keywords: multi-source information fusion; finite element analysis; Naive Bayes classification
algorithm; fault classification

1. Introduction

For the power systems of offshore platforms, large generators are the core component,
and their reliability is of great significance to the whole system. The failure of the generator
will not only affect the platform, but also affect the stability of the entire power system,
which often leads to greater losses, and even threatens the safety of personnel in severe
cases. Therefore, the importance and necessity of motor fault detection is obvious. At
the initial stage of faults, fast and accurate fault diagnosis prevents deterioration of faults,
which has a significant impact on reliability. Fault diagnosis technology is increasingly
important nowadays [1,2].

Large generators usually use a rotor winding synchronous motor, which has the
advantages of adjustable excitation and stable frequency. However, the environment of the
offshore platform has great influence on the generator. An offshore platform power system
belongs to an isolated network system, and a single load accounts for a large proportion of
the total power generation. At the same time, the sea salt, fog and humid air can also affect
the motor insulation, resulting in a generator prone to short-circuit fault. Due to the heavy
rotor of large motors, eccentric fault is inevitable during installation and operation.

Most of the existing fault diagnosis algorithms use a single physical quantity for iden-
tification. In [3], a diagnosis technology based on the time-varying frequency component
of the stator current was developed when a rotor dynamic eccentricity fault occurs. In [4],
different faults were judged by the characteristics of the dq axis component of the stator
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current. In [5], faults were diagnosed by detecting steady-state signals and analyzing
frequency components with fast Fourier transform. In [6], the stator current of PMSM was
studied by wavelet and wavelet packet transform to analyze the influence of a demagneti-
zation fault. In fact, by establishing an accurate motor model, the parameters of normal
generators can be obtained to compare and diagnose the fault. In [7], a highly accurate
mathematical model and ‘fault observer’ were established by calculating the theoretical
current and the actual current residual as fault features to achieve real-time monitoring of
inter-turn faults.

Both signal processing and analytical models require a lot of calculations and com-
plex algorithms, which is suitable for an artificial intelligence algorithm. The artificial
intelligence algorithm is an important development direction of fault diagnosis technolo-
gies [8–10]. The commonly used methods are support vector machine (SVM), neural
network, fuzzy control, genetic algorithm, etc. In [11], a BP neural network trained by
error back propagation algorithm was created. In [12], a method based on three-layer
feedforward ANN and L-M Algorithm was developed to realize a PMSM stator inter-turn
short circuit fault. In [13], a negative sequence current and impedance were used as input
vectors of fuzzy logic, a stator winding fault of PMSM was diagnosed by the established
fuzzy relation matrix, and the severity of the fault was qualitatively analyzed. In [14], the
parameters of PMSM were identified based on particle swarm optimization, and stator
winding resistance and torque variables achieved good identification results. Naive Bayes
is a mature and fast algorithm, which is widely used in fault diagnosis. In [15], a method
was stated that used the Naive Bayes classification theorem (NBC) for diagnosis of an
abnormal vibration by analysis of the stator current under load.

In the early stage of motor fault, many physical characteristics do not obviously
change, and it is difficult to ensure the accuracy and reliability of the sensor in the actual
scene, which means using a single physical quantity to classify the fault cannot result
in high accuracy. About 70% of generator failures on an offshore platform result from
sensor failure. From another point of view, the motor is nonlinear and has strong coupling.
When the motor works in an abnormal or fault state, it will lead to a variety of physical
quantities changing at the same time. The single physical characteristic information such
as electromagnetism, temperature and force, is not linearly related to a specific fault.
Therefore, it is necessary to use the method of multi-source information fusion, which
considers multiple feature signals at the same time, to accurately diagnose the fault. It is
generally realized by feature extraction of data acquisition, motor current, vibration, rotor
speed, axial flux and radial flux [16–18]. However, multi-source information will bring
bulk calculation, which seriously influences the efficiency of diagnosing.

The accuracy and calculation speed of the Naive Bayes algorithm are very suitable
for real-time fault detection and diagnosis of a generator. This paper proposes a generator
fault classification method based on multi-source information fusion Naive Bayes, which
can accurately and quickly identify a variety of fault types, so as to improve the reliability
of the generator and even the whole power system.

2. Materials and Methods
2.1. Multi-Source Information Fusion Process

The process of multi-source information fusion can be compared to the process of the
human brain comprehensively dealing with complex problems. Its essence is a multi-level
and multifaceted processing, including detection, correlation, combination and estimation
of multi-source data, so as to improve the accuracy of state and identity estimation. The
multi-source information fusion process makes full use of the characteristics of each signal,
reasonably dominates and optimizes the complementary and redundant information, and
produces a consistent interpretation and description of the monitoring state. Figure 1 is the
flow chart of multi-source information fusion.
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Figure 1. Multi-source information fusion process.

The voltage, current, vibration and temperature signals measured by multiple sensors
contain a large amount of characteristic information, resulting in the following problems in
the information fusion process:

(1) In addition to the fault diagnosis process, many state and type evaluation processes of-
ten need to use thousands or even millions of features in order to improve the accuracy
of classification and evaluation, which will not only slow the training, but also make
it difficult to find the optimal solution. This problem is called dimensional disaster;

(2) Data processing takes up a lot of memory. The dimension of data is too high, and
the space for storing data is very large, which makes the data processing process
very slow;

(3) Unable to visualize decision results.

2.1.1. Characteristic Signals

In order to obtain an ideal treatment effect, the selection of signals should be prioritized.
For different generator faults, there are often different combinations of characteristic signals.
This paper mainly studies three common faults of generator, which are stator turn to
turn short circuit, rotor turn to turn short circuit and air gap static eccentricity. For large
generators, there is almost no comprehensive fault characteristic information or signal
record. In this study, the fault was simulated by multi physical field FEA. The generator
model was based on AMS900LH produced by ABB, which is a rotor winding synchronous
motor with 4 poles and 48 slots. The model has high accuracy that has less than 5% error
when compared to the real one under the rated condition. Figure 2 shows the FEA model
of the generator, and Table 1 provides additional information about the generator.
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Figure 2. FEA model of the generator.

Firstly, the characteristic signals that could be detected were selected. On this basis,
the health state was compared with the fault state, mainly including voltage, current,
temperature, vibration, etc., and then the characteristic signals that could distinguish three
kinds of faults were selected. It is necessary to extract the running signals of motor health
and fault status to measure the collected signals. Figure 3 shows the component of the
vibration spectrum. Table 2 concludes the differences of the voltage THD and its effective
value, winding temperature of stators and rotors, and the average of the radial unbalance
force and variation period of radial unbalance force direction.
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Table 1. Parameters of the generator.

Physical Quality Value

Rated capacity 15.539 MVA
Rated voltage 6300 V
Rated current 1424 A

Rated rpm 1500 rpm
Rated frequency 50 Hz

Rated power factor 0.8
Poles 4

Slot number 48
Effective length 850 mm

Stator outer diameter 3400 mm
Stator inner diameter 2410 mm

Gap length 24 mm
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Table 2. Signals of different statuses.

Status
Voltage

RMS
Voltage

THD
Max Stator

Temperature
Max Rotor

Temperature
Vibration of
Shaft (25 Hz)

Unbalanced
Force Direction

Period

Average
Unbalance

Force

Normal
A:3.73 kV
B:3.73 kV
C:3.73 kV

2.8% 78.7 ◦C 94.7 ◦C 0 10 ms 4.8 kN

Stator turn to
turn short

circuit

A:3.68 kV
B:3.76 kV
C:3.76 kV

3.3% 360 ◦C 95.0 ◦C 0 10 ms 33 kN

Rotor turn to
turn short

circuit

A:3.73 kV
B:3.73 kV
C:3.73 kV

2.9% 78.8 ◦C 110.6 ◦C 0.06 mm/s 40 ms 314 kN

Rotor static
eccentricity

A:3.74 kV
B:3.74 kV
C:3.74 kV

2.8% 78.7 ◦C 94.7 ◦C 0.007 mm/s 40 ms 455 kN

There are some unconventional treatments for fault simulating, which lead to different
results in real-world experience. For example, when simulating a rotor turn to turn short
circuit fault, the generator is under a control system that keeps output voltage against the
reduction of the air gap magnetic field caused by the fault by raising the excitation current,
which raises the rotor temperature at the same time.

The results indicate that each combination of all these signals matches a status of a
motor. The difficulty is their relationship and the accuracy of diagnosis if not every sensor
works well.
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2.1.2. Fuzzy Process

Due to the inconsistent magnitude of voltage, current, temperature and other signals,
some characteristic signals with large changes tend to become dominant in the process of
multi-source information fusion and discrimination, which affects the accuracy of diagnosis.
In order to make every characteristic signal work, it is necessary to perform a fuzzy
process on the original information. The trapezoidal membership function is proposed as
Equation (1) by setting a proper range and relationship to obtain the best classification effect.

µA(x)


0 x < X1

x−X1
X2−X1 X1 ≤ x < X2

1 X2 ≤ x < X3
1 + x−X3

X4−X3 X3 ≤ x < X4
2 x ≥ X4

(1)

where µA(x) is the fuzzy value of the original information, x is the original information and
X1, X2, X3 and X4 are the segmentation points of the trapezoidal membership function.

For example, a normal stator temperature changes from 40 ◦C to 60 ◦C, a slightly
abnormal temperature changes from 30 ◦C to 40 ◦C and 60 ◦C to 70 ◦C, and an absolute
fault temperature falls below 30 ◦C or exceeds 70 ◦C; therefore, X1, X2, X3 and X4 are 30 ◦C,
40 ◦C, 60 ◦C and 70 ◦C, respectively. The advantages of the fuzzy process are explained in
the next section.

2.1.3. Dimensionality Reduction Process of Characteristic Signal Using PCA

In order to solve the dimension disaster of multi-source information, it is necessary to
reduce the dimension of multi-source information. Principal component analysis (PCA)
is a general dimensionality reduction method. The PCA method is used to map the
high-dimensional original information into the low-dimensional space by a set of low-
dimensional orthogonal bases, so as to reduce the dimension of the original information.
In order to maintain the accuracy of the diagnosis, it is necessary to scatter the mapped
projection values as much as possible because some samples will not work if there is
overlap. Therefore, in the process of dimension reduction, it is also necessary to ensure
that the signal variance is the largest, and there is no linear relationship between different
signals, that is, the covariance between signals is 0.

It is assumed that the initial multi-source information X contains n samples x1, x2,
. . . ,xn, which is:

X =


x1

T

x2
T

. . .
xn

T

 (2)

For each sample Xi, the dimension reduction of the sample can be obtained by a matrix
transformation of Equation (3).

Yi = WXi (3)

where Yi is the low dimension signals and W is dimensionality-reducing matrix. The only
thing to do then is to find W.

In order to derive matrix W, the variable is now defined: mean x, mean value after
sample mapping µ, covariance matrix cov (X) of X, w is the eigenvector of W.

x =
1
n

n

∑
i

xi (4)

µ =
1
n

n

∑
i

wTxi (5)
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cov(X) =
1
n

n

∑
i
(xi − x)(xi − x)T (6)

Variance σ2 can be expressed by:

σ2 = 1
n

n
∑
i
(wTxi − µ)

2
= 1

n

n
∑
i
(wTxi − 1

n

n
∑
i

wTxi)
2

= 1
n

n
∑
i
(wTxi − wT( 1

n

n
∑
i

xi))
2
= 1

n

n
∑
i
(wT(xi − x))2

= 1
n

n
∑
i
(wT(xi − x))(wT(xi − x))T

= 1
n

n
∑
i

wT(xi − x)(xi − x)Tw

= wT
[

1
n

n
∑
i
(xi − x)(xi − x)T

]
w = wTΣw

(7)

Therefore, the following conditions require W to be:

ŵ = argmax
w

wTΣw (8)

Combined with the constraints on W, the Lagrange method is utilized to construct the
objective function:

L(w, λ) = wTΣw + λ(1 − wTw) (9)

If the partial derivative of Equation (9) is equal to 0, then:

Σw = λw (10)

where λ is the eigenvalue of W.
PCA dimensionality reduction is used to sort the eigenvalues and select the eigenvector

corresponding to the maximum eigenvalue to obtain the transformation matrix W.

2.2. Bernoulli Naive Bayes Classification Method

The Naive Bayesian algorithm is a classification method based on the Bayesian theorem
and the assumption of characteristic condition independence, which has the advantages of
simple, fast and efficient data prediction. It is suitable for multivariable classification tasks.
The characteristic of the Naive Bayesian algorithm is to combine a priori probability and a
posteriori probability, which avoids the subjective bias and the over fitting phenomenon. It
shows high accuracy when the data set is large, and has three stages:

The preparation stage, which needs to pave the way for the later classification work;
The training stage, which needs to calculate the probability of each category in the

training sample and the conditional probability of occurrence according to the Bayes
theorem. In this stage, 1000 couples of data calculated by the FEA method have been
studied to train the classification;

The automatic classification application stage, which completes the classification by
the classifier. Figure 4 describes the flow of the Bayes algorithm.
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3. Results

By using the FEA method, 1000 different types and degrees of faults were generated.
Each datapoint corresponded to only one type, which can reduce the rank of the matrix
composed of data, thus greatly reducing the data dimension. Table 2 shows four data
from all signals. The test was divided into two parts: one part was 1000 groups of fault
data that were not analyzed by fuzzy processing; the other part was fuzzy processing and
application of the PCA method for dimension reduction transformation. A total of 800 data
obtained by the dimension reduction transformation were put into the classifier for training,
and another 200 were used to verify the classification effect. In order to observe the effect
of classification more intuitively, the multi-dimensional data of all sample points were
reduced to two dimensions and were placed in the rectangular coordinate system. Different
quadrants represented different fault types. The horizontal and vertical coordinate values
had no significance, only as the result of the PCA dimension reduction. The closer the
sample points were to the coordinate axis, the less accurate the classification was, so the
sample points on the coordinate axis are regarded as the wrong classification.

3.1. Result without the Fuzzy Process

There were 200 groups of fault data in total, and the motor state was divided into four
categories: healthy state, stator turn to turn short circuit, rotor turn to turn short circuit and
rotor eccentricity fault. Each type had 50 groups of data for testing. The final classification
result is shown in Figure 5, and its classification accuracy is 92%.
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The fault classification is determined by multiple characteristic signals, and the mag-
nitude of different signals and the impact on fault classification are different. After using
the dimensionality reduction of PCA mentioned above, the eigenvalues will be affected by
some dominant signals, resulting in low fault tolerance of the classifier.

After removing the change period of the unbalanced force direction, the classifica-
tion result is shown in Figure 6. It can be seen that the classifier could not distinguish
between the healthy state and the air gap eccentricity fault at this time. After removing
the average unbalanced force, the classification result is shown in Figure 7. It can be seen
that the classifier had difficulty distinguishing between the healthy state and the stator
inter-turn short-circuit fault. The classification accuracy varied greatly when different
signals were removed.

3.2. Result with the Fuzzy Process

After fuzzifying various multi-source information features, the classification test was
carried out again. The test results are shown in Figure 8. It can be seen that the accuracy of
classification results is significantly higher than that before fuzzy process. After 200 groups
of data testing, the accuracy of the results reached 99.5%, which is significantly higher
than before.
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After removing the variation period of the radial unbalanced force direction and average
value of the radial unbalanced force, the classification results are shown in Figures 9 and 10.
The classification accuracy is 98% and 97.5% respectively, which is high and stable.
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4. Discussion

Due to the fuzzy process on multi-source information, various feature quantities are
relatively equal. For example, the temperature change of the rotor before and after the
fault changed from 90 ◦C to 150 ◦C, while the rotor unbalanced force increased from 1 kN
to 30 kN. There is a great difference between the change amplitude and change value,
resulting in the unsatisfactory classification result of the classifier. After the fuzzy process,
each characteristic signal is between 0–2, and the value range is summarized from a large
number of fault data. The final classification accuracy is greatly improved and has good
robustness, which means a high reliability of the fault detection system, even at a time
when some of sensors do not work well.

Compared with the traditional fault detection method based on a single signal, the
method mentioned in this paper has no obvious improvement in fault accuracy, but it can
avoid the failure of the whole fault diagnosis system caused by a sensor failure. When one
sensor fails, it can still provide high accurate fault diagnosis, so as to avoid the occurrence
of false alarms, thereby greatly improving the reliability of the generator and its system.

5. Conclusions

In this paper, the fault classification method was discussed, and a multi-source in-
formation fusion Naive Bayes classification algorithm was proposed. Before classifying
the fault, the characteristic signal should be fuzzified first, and then the PCA dimension
reduction method is used to reduce the dimension of the eigenvalue, so that the algorithm
can handle the problem efficiently and accurately. Finally, it is brought into the Naive
Bayes classifier for classification. The classification method proposed in this paper has the
advantages of high accuracy and strong fault tolerance, which is very consistent with the
requirements of generator fault classification.
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