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Abstract: Differential protection normally detects short circuits and ground faults in the windings
of a power transformer and its terminals. Inter-turn faults refer to flashovers among the electrodes
that arise only in a similar type of physical winding. Inter-turn faults can be examined when the
adequate sum of turns is served as short-circuited. In electrical protection, it is difficult to detect
inter-turn faults. An inter-turn fault of small magnitude is based on the limited number of turns that
resultantly provide a large quantity of current. Due to this reason, protection that comes from the
differential scenario possesses a higher degree of sensitivity without causing unwanted operations
during external faults. In this paper, a protection-based stability method is proposed whereby
external voltages are applied at the low-voltage (LV) side of the transformer while keeping the high-
voltage (HV) side short-circuited. This was conducted using a three-phase power transformer (rating:
100 MVA, 380 kV/13.8 kV) at SWCC Shoaiba Power Plant, Saudi Arabia. In this work, differential
protection (87T) and high-impedance differential protection for HV-restricted earth faults (REFs)
were verified by creating In-Zone and Out-Zone fault conditions to ensure current transformer (CT)
circuits and tripping logic. All of the IEDs, protection, and control schemes involved were designed
by ABB. This method verifies protection stability for power transformers by implementing differential
protection (87T) and high-impedance restricted earth fault (64HV) schemes through creating In-Zone
and Out-Zone fault conditions.

Keywords: power transformer; protection reliability; power transformer protection sensitivity;
differential protection; external fault; CT saturation

1. Introduction

Electrical power transformers with a rating of more than 5 MVA have differential pro-
tection [1]. Compared with other protection strategies, transformer differential protection
has significant benefits. A Buchholz relay can detect problems in the transformer that are
located inside the insulating oil. However, if a fault develops in the transformer but not in
the oil, it cannot be detected. Buchholz relays fall short of providing adequate protection
against any bushing flash. These kinds of defects can be found using differential relays.
Additionally, transformers have Buchholz relays to detect any internal faults; however,
differential protection systems find these faults more efficiently. A differential relay ana-
lyzes the power transformer primary and secondary currents; if there is any imbalance,
the relay activates and simultaneously trips the primary and secondary circuit breakers.
The secondary windings of the CTs from the transformer’s primary and secondary sides
are connected in the opposite direction to the same-current coil of the differential relay so
that there is no consequential current in that coil when the transformer operates normally.
However, if a significant fault within the transformer disrupts the transformer’s normal
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ratio, the secondary current of both CTs does not remain the same, and a resultant current
flows through the current coil of the differential relay, actuating the relay and tripping
both the primary- and secondary-side circuit breakers. An appropriate examination of the
conditions of a fault caused by the differential protection system must take into account
voltage, current, and phase angle. The differential current remains zero for the normal load
and external faults if the turn ratio and phase compensation are correctly designed. There
are several reasons that cause unwanted differential currents, for instance, alteration in the
tap-changer position, the features of loads, and transformer operating conditions. To make
a differential relay as sensitive and stable as possible, restrained differential protection
is developed for power transformers [2]. The restrained current or bias current provides
restrictions for the differential relay operation. This stabilizes protection under fault condi-
tions while still permitting the system to have good basic sensitivity. One way of defining
the differential current (I0) and bias current (Ib) [3] is by using Equations (1) and (2), where
I1 is the magnitude of the power transformer primary current and I2 is the magnitude of
the power transformer secondary current.

I0 = I1 − I2 (1)

Ib =
I1 + I2

2
(2)

The transformer stability test is performed to ensure that the differential relay does
not operate under normal conditions, even when load currents are high, and only operates
when a fault occurs in its protection zone. The differential protection zone consists of a
transformer and cables between current transformers. The cables are not covered when
bushing current transformers (BCTs) are utilized [3].

2. Literature Review

The phase-locked loop technique developed in [1] gives a solution for converter-based
distributed energy resources that trigger instability in smart transformers. A quartile-based
differential protection method was designed to analyze the fault detection ratio of super-
imposed differential currents and was proved to be efficient in differentiating internal faults
from other abnormal conditions [3]. Algorithms were specifically designed to maintain
and improve the standard of performance of differential protection with the aim to reduce
CT requirements and improve the period of grace in the case of CT saturation internal
faults [4]. In 2013, an approach using the 3D current trajectory of transformer differential
currents was developed for distinguishing between internal faults and in-rush currents [5].
The simulation of a transformer-biased differential protection scheme using MATLAB was
conducted in a laboratory environment; the scheme was found to be efficient and reliable
in solving differential relay issues such as tap changing, inherent phase shifts of currents
in the transformer, CT ratios, and non-identical CTs [6]. An IEC-61850 sampled-values-
based protocol for transformer differential protection was built; it transmits digitized
values of currents and voltages on Ethernet frames and defines the testing procedure to
test fault conditions, pickup, slope characteristics, and harmonic restraints [7]. In [8], the
theoretical point of view associated with the testing of microprocessor-based quantitative
protection relays was examined. However, the authors ignored the numerical testing
of the double-phase pickup test and harmonic restraint as these are the major factors
of differential protection relays [2]. An algorithm depending on the rate of increase in
differential currents was developed in [9] for power transformer protection; it is able to
distinguish between external disturbances (magnetic inrush) and the internal faults of the
transformer. Digital differential protection for solid-state transformers using the ANSI-
87T standard was developed in [10]. The authors employed high-frequency sub-band
phenomena to detect internal faults using phase-let transform. The developed technique
showcased improved performance in terms of accuracy, response time, and reliability
during fault and normal operating conditions. The issue of detecting faults under CT
saturation conditions was discussed in [11]. A stabilizing method was developed by the
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authors using a combination of two signal processing indices to detect CT saturation.
In [12], the authors discussed the issue of operational inaccuracy in substations having
a one-and-a-half circuit breaker scheme. This issue arises when current is supplied to a
transformer winding through a paralleling bay for its protection. The developed strategy
demonstrated that external faults were desirably stabilized by the restraint current. The
effects of integrating renewable energy resources in electrical power systems were discussed
in [13], considering the detailed mathematical model of differential protection. An approach
for detecting transformer faults using the Rogowski-coil-based model was developed
in [14] to reduce the minimum operating point level and expand the protection zone of
differential protection. An optimized hybrid approach was developed in [15] to improve
the efficiency of a power transformer through the identification of suitable protection relays,
and the online monitoring of loading conditions and inrush current of the differential relay.
A space-vector-based technique was formulated in [16] to improve the sensitivity and
accuracy of the differential protection of a power transformer by creating fault conditions
such as over-excitation and inrush behavior. An effective testing method was proposed
in [17] for the differential protection of three-phase power transformers considering zero,
negative, and positive sequence currents. The proposed technique performed efficiently in
stabilizing the symmetrical, asymmetrical, and external fault conditions. An approach for
power transformer differential protection was presented in [18] considering the restrained
and operating current values. The proposed strategy showcased efficient performance in
harmonics and inrush scenarios. A mathematical model of digital differential protection
was formulated using the wave-shape recognition method in [19]. The authors proposed
a neural-network-based optimization algorithm to achieve stability during the internal
and external fault conditions of a power transformer. In [20], a technique was presented,
considering the symmetrical components of current, to detect CT saturation in digital
relays. The effects of CT saturation were analyzed for different test conditions to make the
differential protection of a power transformer more stable, sensitive, and reliable during
normal operating conditions. The magnetizing currents play a crucial role in the operation
of transformer differential protection [21]. To design sensitive differential protection,
the detection of inrush current is very important [22]. A method based on phase angle
variation was proposed in [23] to design effective differential protection. The proposed
strategy can identify stable and fault limits using the waveforms of currents. In [24], the
authors proposed an adaptive method to address the maloperation issue of transformers’
differential protection owing to the magnetic saturation of current transformers (CTs).
The effectiveness of the proposed strategy was demonstrated by comparing the results
with those of conventional techniques. The authors developed an algorithm in [25] by
employing the power–current scale to transform a differential protection. The proposed
algorithm can classify the internal faults related to inrush behavior by analyzing the power
and second harmonic current of a power transformer. A percentage bias differential scheme
was proposed by the authors in [26]. The simulation results exhibit the efficacy of the
proposed method against the internal phase and inter-turn faults of a power transformer.
To minimize the difference in current for power transformer differential protection, a
supervisory control and data acquisition (SCADA) system was developed in [27]. The
simulation results prove the effectiveness of the designed scheme by detecting CT surplus
current and protecting a transformer during fault conditions, in the minimum amount of
time. To avoid CT saturation, the authors proposed an advanced differential protection
methodology in [28] by considering the harmonics, geomagnetic disturbance conditions,
and geomagnetically induced current.

3. Proposed Methodology for Differential Protection (87T)

The negative sequence differential protection (87T) is a very sensitive form of protec-
tion. It is used to identify internal faults such as turn-to-turn faults in a transformer winding.
The protection relay “RET 670” is used in our case study. It has an “external/internal fault
discriminator”. In the case of a two-winding transformer, the external/internal fault dis-
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criminator operation is based on the relative position of two phasors. In order to verify that
a transformer differential protection relay is functioning accurately, and to ensure that all
CTs’ secondary circuits are correctly connected, a transformer stability test is performed [29].
This test is usually performed right before the energization of a power transformer, when
the transformer itself and all the related electrical equipment (switchgear, CTs, PTs, power
cables, relays, etc.) in the circuit are already tested and verified.

3.1. What Is a Stability Test?

The stability test is primarily performed to make sure that the CT selection and the
setting parameters used for fault sensing are accurate. It indicates that sufficient current
must be supplied to the CTs’ primary HV and LV sides of a transformer in order to acquire
a healthy reading on the CTs’ secondary side to check the differential relay operation.

3.2. Different Methods to Perform Stability Test

Transformers place a high burden on a current source. At the site, the transformer
HV-side differential CTs are mostly very far from the transformer LV-side CTs (connected
via the MV/LV switchgear side). The distance between the HV-side and LV-side CTs can
reach up to several miles depending upon the site design. Therefore, a current source
is not feasible at the site. The more economical and safe way is to use an appropriate
voltage source to supply sufficient current on CTs’ primary side by shorting either side of a
transformer winding. The shorting is applied after the CT that is used in the differential
protection scheme. Usually, the voltage source is connected on the transformer HV side,
and the transformer LV side is short-circuited. This method of testing is mainly used
for stability tests. However, this test has some limitations in industries where the HV
side of a transformer is connected to the gas-insulated switchgear (GIS) and applying an
external voltage source to the HV side is not possible [30]. In this case, the voltage source is
connected to the LV side and the HV side is short-circuited.

The proposed procedure to perform the transformer stability test using the differential
protection technique for the 100 MV power transformer at the SWCC Shoaiba Power Plant,
Saudi Arabia, is shown in Figure 1. In this method, external voltages are applied to the
secondary side (LV side) of the power transformer using the generator and the primary
(HV) side is kept short-circuited after differential CT [31]. The RET620 relay is used. This is
a transformer management relay for the protection, control, measurement, and supervision
of the process [32].
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The transformer vector group is YNyn0, with its HV side solidly grounded, and its LV
side is grounded through a neutral grounding resistor (NGR). The HV and LV CTs have
200/1 and 4000/1 ratios, respectively. The HV and LV sides’ neutral CT ratios are 200/1
and 4000/1, respectively. Q0 is an earth switch, Q1 is a primary side circuit breaker, and Q2
is a secondary side switchgear circuit breaker. The power transformer technical details are
mentioned in Table 1.
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Table 1. Technical nameplate details for the power transformer at the Shoaiba site.

Parameter Rating Parameter Rating

Rated Power (Pr) 100 MVA Percentage Impedance (Z) 25.98%
CT Ratio (HV Side) 200/1 A CT Ratio (LV Side) 4000/1 A
HV Rated Current (Ip) 151.9 A LV Rated Current (Is) 4183.7 A
Rated Voltage HV Side (Vp) 380 kV Rated Voltage LV Side (Vs) 13.8 kV

The expected current generated during the stability test is calculated using Equa-
tion (3) [33]. Further calculations are performed as follows:

• Expected LV-side primary current, ILV (Equation (4));
• Expected HV-side primary current, IHV (Equation (5));
• Capacity of required voltage source, i.e., generator, S (Equation (6)).

% Impedance (Z) =
Rated Current× Applied Voltage

Rated Voltage×Measured Current
× 100 (3)

At corresponding tap position of transformer

ILV =
Vext × Is

Z×Vs
× 100 (4)

IHV =
Vs × ILV

Vp
(5)

S =
√

3× ILV ×Vext (6)

Here, Vext is the applied test voltage, Ip is the transformer’s rated primary current, Is
represents the transformer’s rated secondary current, Vp is the transformer’s rated primary
voltage, Vs is the transformer’s rated secondary voltage, Z is the percentage impedance,
and S is the required generator capacity.

3.3. Expected Results and Calculations

The calculations are performed considering a 380 V generator as an external voltage
source for LV winding, by keeping HV winding short-circuited, as described in Figure 1.
I1 and I2 are the currents flowing through the LV- and HV-side CTs. Table 1 provides
the values for Vext = 380 V, Ip = 200 A, Is = 4183.7 A, Z = 25.98%, Vs = 13,800 V, and
Vp = 380,000 V. The results obtained using these values in Equations (1)–(6) are shown in
Figure 2 for both stable and unstable conditions. A correction factor is employed for the
secondary CT considering the primary CT owing to the different turn ratio of both CTs.
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The third parameter is the required generator capacity. It is calculated by using
Equation (6) to perform the test. The generator capacity should be at least 291.51 kVA.
However, practically, most of the generators operate at nearly 70–80% of their capacity.
Therefore, a generator of capacity 450kVA is used to perform the test. The technical details
of the generator are given in Table 2.

Table 2. Technical nameplate details for the generator at the Shoaiba site.

Parameter Rating Parameter Rating

Peak Rating (S) 450 kVA Peak Rating (P) 360 kW
Amperes 650 A Rated Output Voltage 380 V, 3 Phase

Power Factor 0.80 Frequency 60 Hz

4. Proposed Methodology for Single-Phase High-Impedance Restricted Earth Fault
Protection (64HV)

Restricted earth fault (REF) protection is basically a form of differential protection.
The only difference between differential protection and REF protection is that the latter is
more sensitive compared with the former protection scheme. In the case of an internal fault
for a single-phase high-impedance differential protection, the current cannot circulate and,
therefore, is forced to flow through the measuring branch, triggering the relay to operate.
For an internal fault, all involved CTs will try to feed the current through the measuring
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branch. Depending on the fault current, relatively high voltages can be developed across
the series resistor during the fault. To prevent the risk of flashover in the circuit, a voltage
limiter must be included. The voltage limiter is a voltage-dependent resistor and is referred
to as Metrosil (MS). A higher resistance value gives a higher sensitivity and vice versa [15].
The low-impedance restricted ground fault protection HZPDIF (87N) of ABB relay model
RET670 is used at the site. It is a winding protection relay, as shown in Figure 3. It protects
the power transformer winding against faults involving the ground. SR and MS in Figure 3
are the series resistor and Metrosil, respectively. To verify the stable and unstable conditions
for 64HV, the switching operations are carried out as shown in Figure 4. NGR is bypassed
to earth to avoid power dissipation. For Q0, Q1, and Q2, only one phase L1 is closed, and
the current flows through L1 under normal operating conditions.
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4.1. Calculations

The whole scheme, its components, and its wiring must be designed properly to
withstand the abrupt change in voltage during an internal fault. Otherwise, any flashover
in the CT secondary circuits or any other part of the scheme can cause the maloperation
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of the high-impedance differential relay for an actual internal fault. The details of the site
parameters for the calculation of single-phase high-impedance differential protection are
given in Table 3.

Table 3. Parameter details for single-phase high-impedance differential protection.

Parameter Value Parameter Value

CT resistance (RCT) 2 Ω CT knee point (VK) 400 V
CT cable lead resistance per

meter (RL) 0.0054275 Ω/m Maximum CT lead
cable length (N) 420 m

The maximum through fault current (If) is calculated by using Equation (7) based on
the power transformer technical details, which are mentioned in Table 1.

Pr = 25%×
√

3×Vp × I f I f =
100000 kVA

0.25× 1.732× 380 kV
= 608 A (7)

If is the current at the primary side of the HV CT. Therefore, it needs to be referred to
the secondary side of the HV CT:

Expected HV side secondary current = 608× 1
200 A = 3.04 A, where 200/1 is the CT

ratio of HV-side neutral CT.
The setting of the RET670 relay should be such that the relay must be stable for the

maximum through fault current (If). We calculated the voltage developed across the relay
(Vs) when a through fault occurs and one of the CTs goes into complete saturation. The
value is calculated by using Equation (8), considering the data from Table 3.

Vs = I f × (RCT + 2× N × RL) = 3.04× (2 + 2× 420× 0.0054275) = 19.9 V (8)

4.2. Expected Results

The 19.9 V is doubled during a ground fault, owing to the principle of differential
protection. Therefore, the expected results and the protection operation for the stable and
unstable conditions are summarized in Figure 4.

5. Results
5.1. Stability Test Results for Differential Protection (87T)

To perform a stability test for the transformer differential protection based on Figure 1,
switching operations are performed in a sequence, which includes closing the earthing
switch (Q0) first and then the circuit breaker Q1. The Q2 circuit breaker is closed after
verifying the generator voltage (380 V) and shorting all the phases of the HV side. In
the first condition, the fault is between the secondary CT and the circuit breaker Q2, as
shown in Figure 1. This area is not covered by the differential protection. Therefore,
the fault is out of the zone for 87T and there is no tripping operation performed by the
relay, because the current magnitudes and the phase angles are normal, and a phase
difference of approximately 180◦ is noted between the primary and secondary currents.
The measurements taken from the display unit of relay RET670 are shown in Figure 5.
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Here, HV-IR, HV-IY, and HV-IB are the HV-side current measurements, and LV-IR,
LV-IY, and LV IB are the current measurements at the LV side. The current measurements
for both primary and secondary sides are almost equal to the expected current values, as
calculated in Figure 2 for stable conditions.

At this time, the measured values of differential and biased currents by the relay are
shown in Figure 6. It can be seen that the differential currents are almost equal to zero for
all phases, and the measured values of biased and differential currents are the same as
expected in Figure 2.
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Here, IDL1MAG, IDL2MAG, and IDL3MAG are the values of differential currents
for each phase. IBIAS is the value of the biased current. The protection operation is
verified by the relay configuration software PCM 600, and the logic screenshot is shown
in Figure 7. The T3WPDIF represents the differential protection block in the relay; the
parameter T3WPDIF-TRIP output shows that the function is false, and the relay is in stable
condition.
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5.1.1. Sensitivity Test Results for Differential Protection (87T)

To verify the sensitivity, the In-Zone fault is created at the LV side as shown in Figure 1,
between the secondary-side CT and the LV side of the transformer, by swapping CT wires
for LV phases towards the relay. In this condition, a differential current I0 is measured
through the relay for all phases, which is an unstable condition for 87T protection. It is
verified that the differential protection is operated and both circuit breakers, Q1 and Q2, are
tripped. The measurements taken from the display unit of the relay RET670 are shown in
Figure 8.
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These current values are the same as those shown in Figure 2. In Figure 8, it can be
seen that the phase angle difference between the primary and secondary side currents
is zero, which creates an unstable condition for differential protection. At this time, the
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measured values of the differential and biased currents by the relay are shown in Figure 9.
As the fault is In-Zone, it causes differential currents to flow through the relay. In all three
phases, measured differential currents and the values of measured biased currents are the
same as those shown in Figure 2.
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The protection operation is verified by the relay configuration software PCM 600. As
shown in Figure 7, the protection function T3WPDIF is enabled, and the output parameter
T3WPDIF-TRIP is true, which further causes the operation of the relay to trip breakers.

5.1.2. Comparison between Expected and Measured Values for Differential Protection (87T)

A comparison is drawn between the measured and expected results in Tables 4 and 5 to
showcase the efficiency of the proposed method by verifying the sensitivity of transformer
differential protection.

Table 4. Results comparison for the stable condition.

Expected
Differential (A)

Average Measured
Differential (A) Expected Biased (A) Measured Biased (A)

0 0.334 16.104 16.252

Expected Relay Operation Measured Relay Operation

No Trip No Trip
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Table 5. Results comparison for the unstable condition.

Expected
Differential (A)

Average Measured
Differential (A) Expected Biased (A) Measured Biased (A)

32.208 32.427 16.104 16.292

Expected Relay Operation Measured Relay Operation

Trip Trip

5.2. Stability Test for Single-Phase High-Impedance Restricted Earth Fault Protection (64HV)

Based on Figure 3, a single-phase voltage is applied on the L1 phase only and no fault
is created under this condition. The value of measured voltage by relay logic is shown in
Figure 10. It is clear that the relay is in the normal condition, and there is no tripping. The
measured voltage is found to be the same as that shown in Figure 4.
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Figure 10. Measured protection operation and voltage by relay logic software ABB-PCM 600 after the
stability test.

Here, HZPDIF-TRIP-W1 is a protection parameter that shows whether the protection
is enabled or disabled, and HZPDIF_MEASVOLT is an analog parameter that gives the
value of the voltage drop.

5.2.1. Sensitivity Test Results for Single-Phase High-Impedance Restricted Earth Fault
Protection (64HV)

After verifying the stable condition, a fault is created at the L1 phase, between the
HV-side CT and the transformer, by swapping the CT wires for HV-neutral CT, as shown in
Figure 3. The values of measured voltage and relay operation are shown in Figure 11. The
measured voltage is now double due to the unstable condition and the protection function
is operated.
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5.2.2. Comparison between Expected and Measured Values for Differential Protection (87T)

A comparison is drawn between the measured and expected results in Tables 6 and 7
to prove the efficiency of the proposed method by verifying the sensitivity of transformer
differential protection.
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Table 6. Results comparison for the stable condition.

Expected Voltage
Drop (V)

Measured Voltage
Drop (V)

Expected Relay
Operation

Measured Relay
Operation

19.9 20.098 No Trip No Trip

Table 7. Results comparison for the unstable condition.

Expected Voltage
Drop (V)

Measured Voltage
Drop (V)

Expected Relay
Operation

Measured Relay
Operation

39.8 40.01 Trip Trip

6. Site Pictures

Some pictures of the site, such as of the power transformer, testing equipment, and
protection relay while conducting the case study, are shown in Figure 12.
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7. Conclusions

In this paper, a model is designed and practically verified for the stability of a power
transformer using the differential protection principle. An approach is designed to evaluate
the sensitivity of power transformer differential protection. To measure the magnitude of
currents for HV and LV CTs, the external voltages (380 V) were supplied at the LV side of a
power transformer by keeping the HV side ground, because if the voltage is applied to the
HV side, there is a chance that a current of high magnitude will develop at the LV side. To
verify operation, In-Zone and Out-Zone faults are first created according to the differential
protection (87T) anticipated calculations.

Similar calculations and procedures were used to prevent HV REF. To enhance the
sensitivity, the HV REF protection mechanism is voltage-operated. In order to assess the
voltage drop across the resistor during a fault and to provide voltage measurements to the
relay, a series resistor (SR) was utilized before the relay. The Metrosil was connected in
parallel to protect the relay from high-voltage surges and fluctuations. To prevent tripping
for through fault scenarios, the proposed method is effective at determining In-Zone and
Out-Zone boundaries. This procedure can be used to verify the CT healthiness, coordina-
tion, and tripping operations of protection relays. The proposed approach is effective and is
unaffected by the protection settings and CT ratios. The experimental results demonstrate
that the proposed approach is efficient in identifying the external fault and transformer
issues. Therefore, the proposed approach can be applied to applications where transformer
stability is of considerable significance. Moreover, the designed procedure has proved
to be the most effective method to perform transformer stability tests. It addresses the
responsibility of the control engineers who investigate the design phase, testing, and com-
missioning of the pre-engineering activities. In our future work, the proposed approach will
be extended to achieve maximum efficiency control for the protection relays by considering
different loss components.
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Nomenclature
The following acronyms, nomenclature, and constants are used in this manuscript:

REF Restricted earth fault
CT Current transformer
BCT Bushing current transformer
SCADA Supervisory control and data acquisition
PT Potential transformer
LV Low voltage
MV Medium voltage
HV High voltage
GIS Gas-insulated switchgear
SR Series resistor
Constants and Variables
I0 Differential current
Ib Bias current
I1 Primary current of power transformer
I2 Secondary current of power transformer
IHV Current at high voltage side
ILV Current at low voltage side
Vext Applied test voltage
S Generator capacity
Z Percentage impedance
RCT Resistance of CT
Vk Knee point voltage of CT
RL Lead resistance
If Fault current
N CT lead cable length
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