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Abstract: This article discusses magnetic vibrations in squirrel-cage induction motor stators and
provides a mathematical description of the process of their excitation. A model of a 30 kW squirrel-
cage induction motor was developed in finite element software. This model considers the motor
geometry, material properties and stator winding. The electromagnetic and mechanical processes in
the motor during the rotation of the rotor were considered. In the course of this study, currents of
various harmonic compositions and amplitudes were applied to the motor windings, which caused
magnetic noise, vibration and pulsations of the electromagnetic torque. Magnetic noises, vibrations
and pulsations of the electromagnetic torque were investigated in the case of imbalance and harmonic
distortions of the supply voltage.

Keywords: squirrel-cage induction motor; magnetic vibrations; radial magnetic forces; Maxwell forces;
finite element method; voltage distortion; voltage unbalance; stator deformations

1. Introduction

Magnetic vibration is a problem for almost all medium- and high-power electric
motors [1–5]. It causes adverse events: a change in the harmonic composition of the
supply current [6,7], bearing wear [8], acoustic noise [9,10], an increase in power consump-
tion [11,12] and the destruction of electric motors [13,14]. This problem occurs in the electric
drive [15,16] and generators, including wind turbines [17,18].

The most strongly magnetic vibration is manifested in asynchronous squirrel-cage
induction motors (SCIM), characterized by a rotating magnetic field relative to the stationary
stator of the machine. Waves of radial magnetic force cause periodic deformations of the
stators of motors, which manifests primarily in the form of acoustic noise.

Much research from has been devoted to the study of magnetic vibration and the
development of methods to suppress it. In the 1970–1980s, research provided a fundamental
base for the mathematical description of magnetic vibrations of electrical machines and
the structural methods for their reduction [19,20]. In the 1990–2000s, researched methods
focused on actively reducing the magnetic vibration occurring in the SCIM stator. These
methods are based on adding a compensation harmonic to the supply voltage [4,21–23].
Completely different approaches were offered by the methods proposed in the works of
the last decade [1,24,25]. In these works, the control of magnetic vibration is achieved by a
given change in angles of voltages in the vector control system of an SCIM-based electric
drive.

Almost all known methods of reducing magnetic vibrations in SCIM are based on the
same theoretical base, within which magnetic fields, radial magnetic forces (Maxwell forces)
and stator deformations are waves of a certain frequency, spatial order (mode number)
and amplitude. At the same time, the reduction in magnetic vibration is achieved through
effective control of the parameters of the motor supply voltage, for which it is necessary to
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know the relationship of these physical quantities. The task of analytical representation of
this relationship is complicated by numerous irregularities and assumptions that cannot
be taken into account due to the complex and time-varying geometry of an investigated
motor. Therefore, it is advisable to carry out interconnected mechanical, acoustic, and
electromagnetic calculations of processes occurring in a motor under operation with finite-
element multiphysics design software.

The study is applicable to alternating current motors of medium and high power, from
15 to 150 kW, and with a speed of 1500–3000 rpm. These machines do not have a bevel
groove in the rotor, and the air gap reaches 0.5–0.8 mm. Magnetic vibrations are much
weaker in low-power motors due to the bevel groove and lower magnetic flux density.
Bearing vibration and rotor eccentricity exceed magnetic vibration in such motors. In high-
power alternating-current motors, magnetic vibrations are also a serious problem. They are
a powerful source of noise. In any alternating current motors, the magnetic vibration is
5–10 times greater than in direct-current machines.

This article is a logical continuation of the work [26,27] devoted to the development of
an FEM model of the AIR180M4U3 motor and the study of electromagnetic and mechano-
acoustic processes. The method of active reduction of magnetic noise is described in [26].
The method is based on the injection of an additional compensation current of the electric
motor to reduce the harmonics of the magnetic field. The developed method reduces
the radial magnetic force by 20%, the harmonics of the magnetic force by 70%, and the
amplitude of the stator displacement oscillations by 30%. The article [27] describes magnetic
forces, mechanical stress fields, sound pressure and stator oscillation modes at sinusoidal
voltage.

The purpose of this article is to study the mechano-acoustic processes in this motor
when the shape of the supply voltage is distorted due to voltage imbalance and high
harmonic distortion.

2. Magnetic Vibration Excitation in SCIM Stator

Waves of radial magnetic forces in defect-free SCIMs, which are the main sources of
their vibration [20,26], are caused by the action of the magnetic field B in the air gap on the
stator steel [20]:

Fr(x, t) =
B2(x, t)

2·µ0
, (1)

where µ0—vacuum permeability, t—time, and x—angular coordinate of air gap (rad.).
One of the ways to reduce the vibrations of SCIM is to control the spectral composi-

tion of the magnetic field in the air gap [28]. The most common method involves active
reduction of SCIM vibrations based on stator voltage control. In this case, an additional
compensation harmonic or several harmonics generated by PWM are added to the funda-
mental supply voltage component. The task of the compensation harmonic is to suppress
one of the harmonics of the magnetic field generated by the supply voltage, which causes
the most intense vibrations of the SCIM stator. A detailed description of the essence and
implementation of this method is described in [21,22].

The radial magnetic force generated by the magnetic field in the air gap of the SCIM is
powered by the PWM inverter:

Fr(x, t) =
1

2µ0

(
B1(x, t) + Bi(x, t) +

∞

∑
g=2

Bg(x, t)

)2

, (2)

where g—magnetic field harmonic number, B1(x,t)—first magnetic field harmonic, Bi(x,t)—
ith magnetic field harmonic caused by injected current, and Bg(x,t)—higher-order harmonic
of the magnetic field due to stator and rotor slots, air gap unevenness, etc.

The injected current should have small amplitude values (no more than 15% of the
supply current amplitude for the 3rd harmonic and even less for the others [21]). In this
case, the amplitudes of the radial magnetic forces, determined by the values of the magnetic
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field in the air gap with the values (Bm
i)2/4µ0 and Bm

i · ΣBmg/2·µ0, will be negligible (the
“m” index means the peak value). THDF in this case will change by no more than 19.3% (in
the case of injection of 3, 5, 7, 11 and 13 harmonics with amplitudes of 0.15%, 0.9%, 0.7%
0.4% and 0.3% of the amplitude of the main harmonic of the supply voltage, respectively).
Only two harmonics of the radial magnetic force generated by the interaction of the first
magnetic field harmonic and the compensatory harmonic have a significant effect. These
harmonics are described by the following equation:

Fi
r(x, t) =

Bi
m·Bm1

2µ0
·
(

cos
[
2·Zp·x− (ωi +ω1)·t− (ϕi +ϕ1)

]
+ cos

[
−(ωi −ω1)·t− (ϕi −ϕ1)

])
, (3)

where Bm1—first magnetic flux density harmonic amplitude, Bmg—gth magnetic flux
density harmonic amplitude, Bi

m—compensating harmonic amplitude, Zp—pair of poles
number, ω1—magnetic field angular frequency, ϕ1—phase shift of first magnetic field
harmonic, ωi—magnetic field angular frequency of injected harmonic, and ϕi—phase shift
of injected harmonic.

These harmonics of radial magnetic force have a mode number of 2·Zp and 0.
It is necessary to know the basic parameters (angular frequency, amplitude and phase

shift) in order to determine the most pronounced harmonics of the magnetic force:

Fr(x, t) = Fm· cos(r·x−ω·t−ϕ), (4)

where Fm—radial magnetic force amplitude, r—mode number,ω—angular frequency of
magnetic force (ω ≈ 2ω1), and ϕ—phase shift of magnetic force.

The harmonic with the mode number r = 0 according to [20] remains and will cause
vibrations; however, its amplitude will be much smaller compared to the force Equation (4).

The mode number r = 0 causes uniform radial deformation of the stator along the
entire air gap, radial magnetic forces of the second mode number (r = 2) and higher cause
bending deformations of the stator, as shown in Figure 1 [20].
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3. Calculation of Magnetic Vibration Occurring in SCIM Stator

The radial magnetic forces of one harmonic composition cause vibrations in the
SCIM stator of another harmonic composition. This is due to the fact that the SCIM
stator is characterized by its own frequency response with one or several eigenfrequencies.
Consequently, due to the resonant amplification, the spectral composition of the radial
magnetic forces will be strikingly different from the harmonic composition of the stator
vibrations.

With a mode number of r = 2 and above, the stator undergoes deformations of a
complex spatial shape of an r-gon with an eigen angular frequency equal to [20].

ωr =
r(r2 − 1)√

r2 + 1

√
E·h3

12·m·R4
st

, (5)

where E—the elastic modulus of the stator, h is the height of the stator back, Rst—the stator
radius, and m—the reduced mass of the stator yoke determined by

m =
mst

2πRstlst
, (6)

where mst—the mass of the stator core and lst—the length of the stator.



Energies 2022, 15, 9600 4 of 11

Analysis of Equation (5) allows us to conclude that vibrations with the mode number
of r = 2 are characterized by the highest intensity, since their frequency is lower than that
of other ones [20]. At the same time, vibrations also have a significant effect on the stator
magnetic noise in the case of the SCIM power supply from the PWM inverter. The mode
number of these vibrations is r = 2·Zp = 4.

The mechanical impedance zω of the SCIM stator at the angular frequencyω of the
radial magnetic force is determined as follows:

zω = ωm− 1
ωλst

= ωm− Eh
R2

stω
, (7)

where λst—mechanical flexibility.
Vibrations arise due to the interaction of the first and higher harmonics of the magnetic

field in the air gap of the SCIM. Waves of radial magnetic forces can be expressed on
condition as follows (on conditionω0→ω1):

Fr(x, t) =
∞

∑
g=1

Frgm cos
(
(Zp ± Zp)x− 2(1± g)ω1t− (ϕ12 ±ϕ12g)

)
, (8)

where Frgm—amplitude value of magnetic force harmonic:

Frgm =
B2
δRI12g

2µ0Rst I12
, (9)

where Bδ—root mean square amplitude of magnetic flux density in the air gap, R—inner
radius of the stator, I12g and ϕ12g—amplitude and phase shift of the gth harmonic of
magnetizing current, I12 and ϕ12—amplitude and phase shift of the first harmonic of
magnetizing current.

4. Multiphysics FEM model of SCIM

The theory presented in the previous section allows us to accurately describe the
processes of magnetic vibration excitation in the SCIM stators. However, it contains a
large number of assumptions and restrictions regarding the shape of the air gap, changes
in the geometry of the engine due to rotation of the rotor and deformation of the stator,
and the shape and harmonic composition of the supply voltage on the stator windings.
Accounting for each of these factors leads to a significant complication of mathematical
expressions describing the processes of magnetic vibration excitation and often requires
the introduction of additional restrictions, for example, taking into account only two or
three harmonics of the supply current when describing magnetic induction waves or taking
into account stator and rotor slots [20]. If magnetic induction waves are described using
the harmonic conductivities method, then an assumption appears in the equation that
the width of the air gap is constant in time when calculating the magnetic conductivity
function [24].

In [26], a model of SCIM of an investigated motor with a power of 30 kW and syn-
chronous rotation speed of 1500 rpm, developed in the multiphysics FEM design software,
was presented. The motor under investigation was classified as medium power (20–250 kW).
Therefore, the waves of radial magnetic force acting on the stator have a mode number of
r = 4. Some geometric and technical characteristics of the motor are given in Table 1.

The number of rotor slots was reduced from 39 to 36 to simplify the model and increase
the convergence of calculations. The stator winding in each slot is represented by a separate
homogeneous multiturn coil. The other end of this coil closes outside the stator. The rotor
winding is represented by a solid copper conductor, which is a squirrel cage. The geometry
of the SCIM model of the investigated motor and the mesh are shown in Figure 2a,b.
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Table 1. Type 30 kW induction motor parameters.

Parameter Value Unit

Rated voltage 380 V
Rated current 57 A
Rated power 30 kW

Frequency 50 Hz
Number of pole pairs 2 –

Stator core outer diameter 0.313 m
Stator core inner diameter 0.211 m
Length of stator and rotor

cores 0.185 m

Air gap width 0.0006 m
Stator back height 0.01 m
Stator slot height 0.041 m
Rotor slot height 0.025 m

Stator slot width (inner/outer) 3.2/9 mm
Rotor slot width (inner/outer) 11/8 mm

Number of stator slots 48 –
Number of rotor slots 36 –

Number of conductors in one
winding 17 –

Motor efficiency 91.5 %
Power factor 0.87 -

Nomber of phases 3 -
Winding connection star -
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Figure 2. A computational model of investigated motor: (a) geometry; (b) mesh.

The mesh has the “swept” distribution type at the outer boundary of the model and in
the air gap region (Figure 2a). This is necessary for calculations at the boundary between
the moving and stationary parts of the model, which describes the processes in the rotor
and stator. A special grid was applied manually to the side boundaries of the model sector
in order to ensure its symmetry. Thus, continuity conditions act on the side boundaries,
which simulate a “full rendering” of the motor geometry. The features of the simulation
model of investigated motor are described in more detail in [26].

5. Modeling of Mechano-Acoustic Processes in the Motor Powered by Voltage with
Harmonic Distortion

As noted earlier, the main source of SCIM vibration is waves of radial magnetic forces
caused by the interaction of the first harmonic of the magnetic field with harmonics of a
higher order. Obviously, the vibrations are caused harmonics, which are characterized by a
large amplitude and low frequency. The harmonics g = 3, 5, 7, 11, 13 caused vibrations with
frequencies f = 400, 600, 800, 1200, 1400 Hz according to Equation (8). These harmonics can
be caused by the operation of the inverter and other consumers connected to the network.
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It was found in [26] that in the range of 0–2500 Hz, the investigated motor has four
modes of natural frequencies: f 1 = 165 Hz; f 2 = 571 Hz; f 3 = 1556 Hz; f 4 = 1764 Hz.
According to Equation (8), the first two oscillation modes can be enhanced by the interaction
of the first harmonic of the magnetic field with the harmonic g3 = 3 at r = 0 and with the
harmonic g5 = 5 at r = 4.

Using the simulation model, studies of the variables characterizing the magnetic noise
and vibration of the SCIM stator and torque were carried out. The results of simulation of
mechanical stresses in the SCIM stator are shown in Figure 3.
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An analysis of the mechanical stresses of the stator showed that the amplitude of
mechanical stresses in the stator steel decreases when added with high harmonics. Figure 3d
shows a graph of the mechanical stresses of the stator when the shape of the supply voltage
is distorted by both higher harmonics and amplitude imbalance (the effect of the phase
shift of the supply voltage wave was not considered). A similar situation is observed
when considering the graphs of acoustic pressure radiated by the motor stator, as shown
in Figure 4. The load torque is 10 Nm (5% of the nominal 195 Nm). The coefficients of the
negative and positive sequence components k0u = k2u = 0% for case Ig3 = Ig5 = 0 A; k0u = 7%,
k2u = 8% for case Ig3 = 8.8 A, Ig5 = 3.3 A and k0u = 23%, k2u = 18% for case Ig3 = 15.4 A,
Ig5 = 7.7 A.
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According to Figure 4, the acoustic pressure p radiated by the SCIM reaches an
amplitude of 2 Pa, which corresponds to a noise level Lp = 100 dB (relative to the reference
value of 20 µPa). The expression [29,30] was used in the following calculation:

Lp = 20lg
p

20× 10−6 (10)

At the same time, at the stage of frequency analysis, an increase in mechanical defor-
mations caused by the influence of harmonics g3 and g5 was revealed. These graphs are
shown in Figure 5.
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According to Figure 5, the vibration displacement of the stator with the square form
of the supply increased two-fold at frequencies f 1 = 165 Hz and f 3 = 1556 Hz and 1.5-fold
at f 4 = 1764 Hz. Presumably, the sum of the interacted first harmonic of the supply current
with the harmonic g = 3 has a lower peak value than the first harmonic itself, which
contributed to the reduction in mechanical stress. According to Equation (1), in this case,
significantly lower values of radial magnetic forces arise, which act for longer periods and
cause greater stator deformations.

Figure 6 shows the time-dependance diagrams of the electromagnetic torque of the
investigated motor.
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Figure 6 shows curves of the electromagnetic torque for the investigated motor at no
load. At the same time, a slight increase in torque ripples can be observed in the case of
harmonic distortions of the supply voltage: the range of peak ripple values at Ig3 = Ig5 = 0 A
was Mem = –30 ÷ 9.5 N·m (Figure 6, a), at Ig3 = 8.8 A, Ig5 = 3.3 A: Mem = –34 ÷ 15.5 N·m
(Figure 6, b), at Ig3 = 15.4 A, Ig5 = 7.7 A: Mem = –31.5 ÷ 14.5 N·m (Figure 6c). This mode can
be explained by the interaction of tooth pulsations of the magnetic field with pulsations
caused by harmonic distortions.
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6. Modeling of Mechano-Acoustic Processes in the Motor Powered by Voltage with
Amplitude Unbalance

The harmonic composition of the magnetic field waves can be changed in the motor
air gap. This may be caused by the supply voltage imbalance. Voltage imbalance studied at
the three phase voltages differs only in amplitude. The phase relationship is normal–2π/3.
The results of the simulation of stator mechanical stresses in the case of voltage imbalance
are shown in Figure 7.
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Figure 7. Von Mises stress in the stator core of the investigated motor with supply voltage imbal-
ance: (a) IA = IB = IC; (b) IA = 1.1·IB = 0.9·IC; (c) IA = 1.4·IB = 0.8·IC; (d) Ig3 = 15.4 A, Ig5 = 7.7 A,
IA = 1.4·IB = 0.8·IC.

Unlike in the case of harmonic distortions of supply voltages, their amplitude imbal-
ance practically does not affect the value of mechanical stresses caused by the action of
radial magnetic forces on the steel core of the stator. A similar situation is observed when
analyzing the acoustic pressure graphs shown in Figure 8. The sound pressure at a current
asymmetry of ±40% (voltage asymmetry of ±5–8%) is reduced by no more than 20%.
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Figure 9 shows the frequency responses of the stator vibration displacements caused
by the action of radial magnetic forces in the case of amplitude imbalance of the supply voltage.
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Figure 9. Frequency responses of displacement of the stator of the investigated motor with supply
voltage imbalance: (a) IA = IB = IC; (b) IA = 1.1·IB = 0.9·IC; (c) IA = 1.4·IB = 0.8·IC; (d) Ig3 = 15.4 A,
Ig5 = 7.7 A, IA = 1.4·IB = 0.8·IC.

The graphs (Figure 9) show multiple decreases in the amplitude of vibration displace-
ment harmonics with frequencies f 3 = 1556 Hz and f 4 = 1764 Hz, which correspond to the
15th and 17th harmonics of the magnetic field (and supply voltage). Presumably, these
harmonics were caused by the interaction of the first harmonic of the magnetic field with
the slot harmonics, which explains their sufficient decrease (by 75% for the harmonics with
a frequency f 3 = 1556 Hz; by 50% for the harmonics with a frequency of f 4 = 1764 Hz), with
a slight decrease (no more than 15%) of the first harmonic of vibration displacement.

Figure 10 shows the diagrams of the electromagnetic torque of the investigated motor
in the case of supply voltage imbalance.
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It follows from Figure 10 that at currents IA = 1.1 IB = 0.9 IC the torque ripples increased
to Mem = –30.5 ÷ 13.5 N·m; however, at IA = 1.4 IB = 0.8 IC, the torque ripples decreased
(Mem = −28.5 ÷ 10.5 N·m), which may have been caused by a decrease in the sum of
effective current values in the stator windings from 171.0 A to 162.5 A.

7. Conclusions

In a multiphysics finite element design software environment, a model allowing study
of the electromagnetic, mechano-acoustic and energy processes in a squirrel-cage induction
motor was developed. The calculations take into account the interconnectedness and
mutual influence of processes occurring at different branches of physics.

It was found that the third and fifth harmonics of the supply voltage have a significant
effect on these physical variables, even in the absence of a phase mismatch with the
first harmonic of the voltage. In the case of a signal close to the meander (Ig1 = 57 A,
Ig3 = 15.4 A, Ig5 = 7.7 A), a decrease in the mechanical stresses of the stator and sound
pressure is observed. However, the amplitude of the stator vibration displacements more
than doubled. This mechano-acoustic mode is explained by a decrease in the peak value of
the supply current due to the superposition of the first and third harmonics and an increase
in the duration of the half-wave of the radial magnetic force, which reaches its maximum
value faster due to the rectangular shape of the supply voltage.

In the case of the supply voltage imbalance, a significant decrease (by 2–4 times) in the
stator vibration disturbances in modes with frequencies f 3 = 1556 Hz and f 4 = 1764 Hz was
observed, presumably caused by the interaction of the first harmonic of the magnetic field
with the slot harmonics. In addition, this decrease is aggravated by a decrease in the sum
of the effective values of the currents in the SCIM stator windings from 171.0 A to 162.5 A.

The displacements of the stator of the investigated motor were 0.016 mm at the fre-
quency of the fundamental harmonic of the radial magnetic force of 100 Hz. Displacements
increased to 0.022 mm (at Ig3 = 8.8 A, Ig5 = 3.3 A) and up to 0.027 mm (at Ig3 = 15.4 A,
Ig5 = 7.7 A) when the supply voltage was distorted by higher harmonics. Voltage imbalance
had practically no effect on the motor vibration.

In the future, we plan to use the developed simulation model to further study the effect
of the harmonic composition of the supply current and the parameters of its imbalance
(phase and amplitude) on the processes of magnetic vibration excitation in the SCIM stators.
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