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Abstract: The aim of this work is to analyse the dependence of carbon dioxide (CO2) emissions
on total energy consumption, the energy produced from renewable sources, the energy produced
in nuclear power plants and the gross domestic product (GDP) in 22 European countries, over
the period 1992–2019. The fully modified ordinary least squares model (FMOLS) and dynamic
OLS (DOLS) were used to estimate the long-term cointegration relationship between the variables.
First differenced (FD) general moments methods (GMM) were used in the estimation of short-run
relationship dynamics. The results suggest that energy produced from renewable sources causes
a reduction in CO2 emissions per capita. On the other hand, total energy consumption increases
CO2 emissions in the long run. Although the mitigation effect of nuclear power was not found to
be significant across the entire block of countries studied, a closer look at countries utilising nuclear
energy reveals that nuclear energy positively affects the reduction in CO2 emissions. Economic
growth also has a positive effect on the reduction in CO2 emissions, which confirms the decoupling
of economic development from environmental impacts. These findings are crucial for understanding
the causality between these variables and the adoption of new or revision of existing policies and
strategies promoting the carbon-neutral and green economy at the EU and national level.

Keywords: energy consumption; economic growth; renewables; nuclear; CO2 emissions

1. Introduction

Energy has been an integral part of the European Union since the earliest stages
of its creation, starting with the European Coal and Steel Community (1951) and later
EURATOM (in 1957) through the Single European Act and the Single Market Program.
The main priorities in this area have evolved and shifted over time, from ensuring energy
security and reducing energy dependency through forming the internal energy market, to
the present day, where energy-related issues are closely linked to the climate agenda [1].
Linking the energy and climate agendas is based on the evidence of a number of studies as
well as comprehensive research by the Intergovernmental Panel on Climate Change (IPCC)
climatologists, who warn that if CO2 emissions do not peak in 2025 and halve in the next
decade, achieving a temperature rise of 1.5 ◦C (compared to pre-industrial levels) by the
end of the millennium we will be in jeopardy. If no mitigating action is taken, the effects of
warming will be further aggravated, some of which will be irreversible [2–4].

Concerns about the negative impacts of climate change have been reflected in interna-
tional strategic documents such as the Kyoto Protocol and the current Paris Agreement,
which have been accepted by a majority of world leaders as an expression of commitment
to a global initiative to reduce CO2 emissions. It was the adoption of the Paris Agreement
that encouraged the EU to rethink its goals of decarbonising the economy and energy
transition [5]. The European Green Deal, adopted in 2019, presented the Union’s ambition
to become the first carbon-neutral continent by 2050 and declared climate action as the top
priority. In June 2021, the EU adopted the European Climate Law. The document makes

Energies 2022, 15, 9563. https://doi.org/10.3390/en15249563 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15249563
https://doi.org/10.3390/en15249563
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-5323-4359
https://orcid.org/0000-0002-6699-1244
https://doi.org/10.3390/en15249563
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15249563?type=check_update&version=1


Energies 2022, 15, 9563 2 of 23

both the new targets and the goal of reaching climate neutrality by 2050 binding for all
member states. In addition, a month later, the European Commission presented “Fit for
55”—a package of legislative proposals which aims to modernise climate and energy policy
and introduce new measures to enhance transformational changes in society, economy and
industry aimed at achieving climate neutrality targets.

Although overall greenhouse gas emissions in Europe have been declining over the
last three decades [6], energy production and consumption remain the leading producers
of carbon emissions. They are therefore seen as cornerstones of climate change mitigation
and achieving the ambitious net carbon neutrality targets that the EU has committed to
reaching by the middle of the century.

Reducing the carbon intensity of the energy sector is possible through a combination
of measures, focused on increasing energy efficiency and boosting the use of renewable
and low-carbon energy sources. To capture the untapped potential of energy efficiency,
the European Commission has taken a number of measures, in particular in the residential
sector [7]. Another strand of measures aims at increasing the share of renewables such as
wind, water, solar and geothermal energy. It consists of investments in new and existing
technologies as well as the creation of an efficient energy system ensuring the supply of
large shares of renewable energy to the final consumer [8]. However, efforts to decarbonise
economies are also associated with the possibility of higher use of so-called low-carbon
sources, including nuclear energy. Here, however, the views of the professional community
differ significantly. Some authors consider this resource as sustainable and inevitable
for achieving decarbonization targets [9,10], while others point to the limitations of the
technology [11] and the need to perceive technology throughout the life cycle lenses [12],
pointing to the carbon footprint associated with power plant construction, as well as the
problem of nuclear waste and the risks of its proliferation [13,14].

In light of decarbonisation efforts and the fulfilment of ambitious EU goals in the
area of carbon neutrality, it is therefore very important to understand the role of RES
and nuclear energy in reducing greenhouse gas emissions. This study analyses the long-
term and short-term relationship between economic growth, energy consumption, energy
consumption from low-carbon sources and CO2 emissions. Even though nuclear energy is
among the controversial energy sources and the views of the public, politicians and experts
on nuclear energy are largely critical, the position of this energy source plays an important
role in achieving the goals of carbon neutrality and energy security of many European
countries. This study therefore also focuses on the importance of this energy source and its
contribution to the decarbonisation of the energy sector within individual countries and
the EU as a whole.

The paper is organised as follows: an overview of the related literature is presented
in Section 2. The materials and methods are described in the Section 3, followed by a
presentation of the results and their discussion. The last part concludes the paper.

2. Literature Review

The challenges of climate change, energy resource limitations and sustainable eco-
nomic development have sparked the interest of the professional community in exploring
the nexus between economic growth, energy consumption and greenhouse gas emissions.
The relationship between economic, energy and environmental variables is well-known
and extensively documented in the literature [15–19]. Some studies use single-country
cases to assess the relationships between these variables. For example, Ang [20] explores
the dynamic relationship between energy consumption, economic output and CO2 emis-
sions in France. Empirical results over the period 1960–2000 suggest a positive impact
of economic growth on CO2 and energy consumption in the long run and the short-run
causality running from growth of energy use to economic growth.

Zhang and Cheng focus their scientific interest on the economy–energy–emissions
nexus in China. Analysis of data from 1960–2007 suggests a unidirectional Granger causality
running from economic output to energy consumption, and a long-run unidirectional
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causality running from energy use to CO2 [21]. A more recent study concerning China
confirms the existence of long-term equilibrium between the examined variables. The
findings indicate that energy consumption positively impacts economic growth. However,
CO2 emissions are positively related to economic slowdown. The author of the study
highlights the importance of environmental regulation, and how it boosts the economy,
although the results are visible only in the long run [22]. However, in another study
examining the relationship between economic growth, energy consumption and CO2
emissions in China, the variables urbanisation and international trade are included in the
model. The results indicated that economic growth, energy consumption and international
trade significantly contribute to the increase in CO2 emissions, while urbanisation reduces
CO2 emissions in the long run [23].

Many studies addressing the energy–economy–environment nexus provide a multi-
country or regional perspective. The Middle East and North Africa (MENA) countries
were investigated by Farhani and Shahbaz [24]. The results of their analysis confirm the
environmental Kuznets curve hypothesis in the relationship between economic growth
and CO2 emissions. Panel data analysis revealed short-run causality running from elec-
tricity consumption (both renewable and non-renewable) and output to CO2 emissions.
Bidirectional causality between electricity consumption and CO2 emissions is present in the
long run. Similarly, Gorus and Aydin [25] found a unidirectional relationship running from
energy consumption to CO2 in the short-run in the MENA region. However, the study
does not confirm the nexus between economic growth and carbon emissions, implying that
conservation energy policies do not negatively impact the economy of the MENA countries,
both in the long and short run.

More recently, Mensah et al. [26] analysed 22 African countries, both oil and non-oil
exporters. They found bidirectional causality between energy consumption and economic
growth and energy consumption and carbon emissions. The results differ for both groups:
in the case of oil-exporting countries, the relationship between economic growth and
emissions is confirmed in the long run. However, the unidirectional relationship running
from energy consumption to economic growth has been confirmed in the case of non-oil
exporters in a long- and short-term perspective.

The factors influencing carbon emissions were investigated in a study by Ahmed
et al. [27]. The results of a panel data analysis of five South Asian economies suggested
that energy consumption, trade openness and population growth have a positive effect on
carbon emissions, which means that they cause an increase in CO2 emissions.

Many studies employ the environmental Kuznets curve (EKC) to explore the relation-
ship between economic growth, energy consumption and environmental impacts. E.g., Pao
and Tsai [28] focused on the trio nexus in BRIC (Brazil, Russia, India and China) countries.
The study indicates the long-run bidirectional causality between energy consumption
and CO2 emissions as well as energy consumption and economic output. Similarly, three
regions consisting of 48 countries were analysed in a study by Kais and Sami [29]. The
positive impact of energy use on CO2 emissions was confirmed for all the panels. In both
studies, the relationship between GDP per capita and CO2 emissions confirms the validity
of the EKC hypothesis.

Empirical evidence supports the positive impact of renewables at the energy–economy–
environment nexus. Economic growth contributes to environmental pollution and renew-
able energy use. Renewables are, in turn, considered a mitigating factor in reducing
greenhouse gas emissions [30–32] and also contribute to economic growth [33,34]. For
example, Cheng and Liu [35] analysed the effect of energy consumption from different
sources on economic growth in China. Their findings indicate that in terms of multiplying
effect, clean energy (i.e., hydro, nuclear, wind and solar) has the highest contribution rate
to economic growth.

The effect of non-renewable and renewable energy use on CO2 emissions was also
investigated for OECD countries [36]. The study in question provides evidence of the
boosting effect of non-renewable resources and the mitigating effect of renewables on
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CO2 emission levels. Mixed results were obtained in the study by Anwar et al. [37], who
employed data from 59 countries divided into different income groups. The results vary
among the studied panel countries. However, they conclude that a higher share of nuclear
energy leads to a reduction in CO2 emissions, except for the panel of upper–middle-income
countries.

However, Charfeddine and Kahia [38] scrutinised the role of renewable energy con-
sumption in MENA countries. The results of the panel data analysis suggest only a slight
influence of renewables consumption and financial development on CO2 emissions and
economic growth. Based on the outputs of the analysis, the authors present policy recom-
mendations for enhancing economic development and improving environmental quality in
the region.

Several studies also focus on the energy–economy–emissions nexus in EU countries [39–42].
For example, the study by Menegaki [43] of 27 EU countries confirmed the neutrality hy-
pothesis, suggesting that renewables do not play a significant role in GDP growth in
Europe over the period 1997–2007. However, short-term causality was found between
renewables, greenhouse gas emissions and employment. More recently, Radmehr et al. [44]
have analysed the nexus between renewable energy consumption, CO2 emissions and
economic growth in the EU countries in the period 1995–2014. They found a feedback rela-
tion between economic growth and carbon emissions, and between economic growth and
renewable energy consumption. The findings also provide evidence of the unidirectional
relationship between renewable energy and CO2 emissions, implying that a higher share of
renewables in the energy mix is associated with a decrease in CO2 emissions.

Similarly, Petruška et al. [18] analysed the dependence of CO2 emissions on primary
energy consumption at different GDP levels in 28 EU countries, including Great Britain. The
study revealed that with increasing GDP levels, the regression coefficient of the dependence
of CO2 emissions on energy consumption decreases.

Several studies scrutinising the role of nuclear energy in the energy–economy–emissions
nexus can be found in the literature. Nuclear energy–economic growth in 13 OECD coun-
tries was examined by Ozcan and Ari [45]. Their findings support the feedback hypothesis,
i.e., nuclear energy consumption and economic growth influence and complement each
other, both in the short run and long run. Moreover, in 6 out of 13 countries, nuclear energy
positively and significantly impacted the real GDP in the long run. This analysis was
complemented by Gozgor et al. [46], who provided evidence that both non-renewable and
renewable energy consumption in OECD countries is positively associated with a higher
rate of economic growth. Al-Mulali et al. [47] performed an analysis of disaggregated
renewable electricity production by the source of CO2 emissions in 23 EU member states.
According to the results of the analysis, combustible renewables and waste, hydro energy
and nuclear energy have a negative effect on CO2 emissions, while the effect of solar and
wind power is insignificant in the long run. Taking into account the other variables, the
study suggests that GDP growth, urbanisation and financial development contribute to
CO2 increase, while trade openness reduces it in the long run.

Despite the plethora of studies examining the energy–economy–environment nexus,
this study has a clear rationale and novelty: (1) the inclusion of the variables nuclear
and renewable energy sources is especially vital as EU countries need to address both
the problem of decarbonising the economy and at the same time reducing their energy
dependence on fossil fuels imported from third countries. (2) The analysis employs current
and robust estimation techniques, including fully modified OLS (FMOLS) and dynamic
OLS (DOLS) to estimate long-run cointegration relationships; the panel VAR model and
general moment model (GMM) were deployed for short-run dynamics estimation and
finally, impulse response function was used to trace the reaction of a model’s variables
to a shock in one or more variables. (3) The study fills a knowledge gap on the role of
renewables and nuclear energy in climate change mitigation and decarbonisation of energy
systems. Given the changing conditions of an exogenous nature, such as the COVID-19
pandemic and the war in Ukraine, an analysis of the evolution of these factors is essential
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when deciding on a modification or thorough revision of energy and climate policies. The
study also reflects the 2030 Agenda and its Sustainable Development Goals, in particular
SDG 7 on affordable and clean energy, SDG 12 on responsible production and consumption
and SDG 13 on climate action.

3. Materials and Methods
3.1. Data Sources and Description of Variables

This study analyses the effect of energy consumption, renewable energy consumption,
nuclear energy consumption and gross domestic product on CO2 emissions. Renewable
energy sources include wind energy, solar energy, hydro energy, geothermal energy and
biomass. Data from 22 European countries from 1992 to 2019 were used for the analysis. The
countries are as follows: Austria (AUT), Belgium (BEL), Bulgaria (BGR), Czech Republic
(CZE), Denmark (DNK), Finland (FIN), France (FRA), Germany (DEU), Greece (GRC),
Hungary (HUN), Ireland (IRL), Italy (ITA), Luxembourg (LUX), Netherlands (NLD), Poland
(POL), Slovenia (SVN), Slovak Republic (SVK), Spain (ESP), Romania (ROU), Portugal
(PRT), Sweden (SWE) and United Kingdom (GBR). The relationships between the five
variables were examined. The list of investigated variables along with their abbreviated
names used in the analyses is as follows:

• Carbon dioxide (CO2) emissions per capita (tons)—CO2;
• Gross domestic product (GDP) per capita (thousands USD)—GDP;
• Total energy consumption per capita (MWh)—TEC;
• Energy produced from renewable sources per capita (MWh)—RES;
• Energy produced in nuclear power plants per capita (MWh)—Nuclear.

3.2. Descriptive Statistics

The main focus of the study was analysing the effect of economic variables (GDP per
capita) and energy variables (total energy consumption per capita, renewable energy per
capita and nuclear energy per capita) on the carbon dioxide (CO2) emissions per capita.
The dependence of carbon dioxide (CO2) emissions per capita on other variables was
investigated in a multidimensional context. Summarised descriptive statistics are presented
in Table 1.

Table 1. Descriptive statistics of investigated variables.

Variable Unit Mean Std. Dev Min Max

CO2 tons 8.784 3.721 3.818 31.253

GDP thousands
USD 30.406 17.058 4.504 124.591

TEC MWh 44.345 17.233 17.920 114.632
RES MWh 4.259 5.394 0.055 26.539

Nuclear MWh 4.637 5.726 0 23.385

3.3. Empirical Methodology

Data that are repeated T times at regular time intervals from N statistical units (indi-
viduals, regions, countries, etc.) are well-known as panel data. Panel data properties are a
combination of properties of cross-sectional data and time series. Their values are often
denoted Yit, where the i subscript, i = 1, 2, . . . , N, denotes the cross-section dimension,
whereas the t subscript, t = 1, 2, . . . , T denotes the time-series dimension [48].

In this study, we use panel cointegration analysis and longitudinal dynamic estimation
to analyse the relationship between CO2 emissions, gross domestic product, energy con-
sumption, renewable energy consumption and nuclear energy consumption on panel data
of 22 countries for 28 years. In the short run, we use panel vector autoregression (PVAR)
and the subsequent Granger causality test estimation. We used the impulse response
function (IRF) and forecast error variance decomposition (FEVD) methods to evaluate the
VAR output.
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For better clarity, the methodological apparatus is captured in the process flowchart in
Figure 1.
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As a first step, before applying these methods, it is necessary to check whether the
series in all panels are covariance stationary or whether their autoregressive representation
contains one or more unit roots. The order of integration of the series under consideration is
determined using panel root tests. The first such tests were used in the 1990s. Currently, we
distinguish between first- and second-generation panel unit root tests. The main difference
between the generations of unit root tests is that the first generation assumes that the
individual time series in the panel were cross-sectionally independent, while the second
generation finds ways to account for cross-sectional dependence [49]. Different norm
definitions for different types of cross-sectional dependence were proposed by [50]. As for
the tests of first-generation roots, we apply Harris and Tzavalis [51], Breitung [52]; Breitung
and Das [53], Levin et al. [54], Im et al. [55] and Fisher type [56] tests, which have as null
hypothesis that all panels contain a unit root, and Hadri’s [57] test, which in turn has as
null hypothesis that all panels are stationary. Almost all of these tests assume strongly
balanced panel data, and several of them have the limitation of assuming that all panels
have the same autoregressive parameter in the autoregressive model being tested. In this
study, we used one of the second-generation tests, namely Pesaran’s CIPS test [49,58], with
tabulated critical values following Pesaran [49].

The second step is to establish the existence of a cointegrating relationship between
the variables under analysis. The evolution of economic time series, whose correlation is
justified by some economic theories, does not diverge over time. After short-term fluctu-
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ations, the system returns to equilibrium. Statisticians refer to this state as cointegration.
Cointegration tests are used to determine whether there is a long-run stable relationship be-
tween variables. In the second step, we used Kao [59], Pedroni [60,61] and Westerlund [62]
cointegration tests on a panel data set.

After demonstrating the existence of cointegration, a long-term dynamic estimate
was made in the panels using two consistent estimates, FMOLS (fully modified ordinary
least squares) [63] and DOLS (dynamic ordinary least squares) [64,65], proposed in the
panel data by Phillips and Moon [66], Kao and Chiang [67] and Pedroni [68]. According to
Pedroni [69], the FMOLS estimator has the ability to consider heterogeneity between panel
units and can control for the bias induced by the potential endogeneity of regressors, and
the serial correlation and heteroskedasticity of residuals [58].

In the third step, we used the panel vector autoregression (PVAR) model [70] fol-
lowing [71] and the Granger causality test [72] to analyse the relationship between CO2
emissions, gross domestic product, energy consumption, renewable energy consumption
and nuclear energy consumption in the short run. The coefficients of the PVAR model were
estimated using general moment methods (GMMs) within a first difference (FD) model.

The k-variate homogeneous panel VAR of order p with panel-specific fixed effects
takes the following form of a system of linear equations:

Yit =
p
∑

j=1
Yit−jAj + XitB + ui + eit

i ∈ {1, 2, . . . , N}, t ∈ {1, 2, . . . , T}
(1)

where Yit = (Log_CO2 it, Log_GDPit, Log_TECit, Log_RESit, Nuclearit) is a vector of k = 5
endogenous dependent variables, Xit is a (1 × l) vector of l exogenous covariates and the
terms ui and eit are (1 × k) vectors of dependent variable-specific panel fixed effects and
idiosyncratic errors. The (k × k) matrices Aj for j = 1, 2, . . . , p and the (l × k) matrix B are
parameters to be estimated, and eit are mutually independent with zero mean and constant
variance. PVAR combines features of panel models and VAR models while systematic
cross-sectional heterogeneity is modelled as panel-specific fixed effects.

For the same reasons, we use the PVAR model as described in [38], including: (I) the
possibility of evaluating the reaction of our investigated variable, i.e., CO2 emissions, to a
one standard deviation shock on all the explanatory variables; (II) the ability to evaluate
the contribution of all the variables of the system to the variability in CO2 emissions by
using forecast error variance decomposition (FEVD); and (III) the PVAR model allows the
analysis of the causality direction between all the models under the study framework.

To solve Equation (1), we use the general moment model (GMM) in the first difference
(FD). The GMM estimator of the above equation proposed by Hansen [73] is consistent
when its two assumptions are met. This estimator includes the weighting matrix assumed to
be non-singular, symmetric and positive semidefinite, which may be selected to maximise
efficiency [71]. The order of the PVAR model was estimated using the [73] J statistic
of over-identifying restriction and commonly used maximum likelihood-based model-
selection criteria, the Akaike information criteria (AIC) [74], the Bayesian information
criteria (BIC) [75–77] and the Hannan–Quinn information criteria (HQIC) [78]. The optimal
lag order p and moment condition q are chosen through MMSC [79] for the GMM estimator
based on Hansen’s J statistic of over-identifying restriction [73]. This is a selection of a pair
of model and moment selection vectors (p, q) that minimise:

MMSCBIC,n (k, p, q) = Jn (k2p, k2q) − (|q| − |p|) k2 ln n

MMSCAIC,n (k, p, q) = Jn (k2p, k2q) − 2k2 (|q| − |p|)

MMSCHQIC,n (k, p, q) = Jn (k2p, k2q) − Rk (|q| − |p|) ln ln n R > 2

where Jn (k, p, q) is Hansen’s statistic of over-identifying restriction for a k-variate panel VAR
model of order p and moment conditions based on q lags of the dependent variable with
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sample size n. The overall coefficient of determination CD can be used as an alternative
criterion [71].

In the last, fourth step, the analysis of the results was performed using the impulse
response functions (IRF) and forecast error variance decomposition (FEVD) methods.

An important prerequisite for the implementation of the PVAR model is the eigenvalue
stability condition. Lütkepohl [80] shows that a VAR model is stable if all moduli of
eigenvalues of companion matrix A (type k × p) are strictly less than 1.

A =



A1 A2
Ik Ok

A3 . . .
Ok . . .

Ap−1 Ap
Ok Ok

Ok Ik
...

...

Ok . . .
...

. . .

Ok Ok
...

...
Ok Ok
Ok Ok

Ok · · ·
Ok Ok

Ok Ok
Ik Ok


Stability implies that the panel VAR is invertible and has an infinite order vector mov-

ing average (VMA) representation, providing known interpretation to estimated impulse
response functions (IRFs) and forecast error variance decompositions (FEVDs) [71].

As regards the IRF, if the solution of (1) is stable, it can be written in the form:

yt = ∑∞
i=0 θiwt−i (2)

where the components of wt = (w1t, w2t, . . . , wKt)′ are uncorrelated and have unit variance,
∑
u
= Ik. Representation (2) is obtained by decomposing ∑

u
as ∑

u
= P P′ where P is a lower tri-

angular matrix, and defining θi = ϕiP a ωt = P−1ut [80]. Meanwhile, ut = (u1t, u2t, . . . , ukt)′

is a k-dimensional white noise or innovation process and ϕi are computed recursively:

ϕ0 = Ik and ϕi= ∑i
j=1 ϕi−j Aj i = 1, 2, . . . (3)

The jk-th element of θi is assumed to represent the effect on variable j of a unit innova-
tion in the k-th variable that has occurred i periods ago [80]. IRF confidence intervals may
be derived analytically based on the asymptotic distribution of the panel VAR parameters
and the cross-equation error variance–covariance matrix. Alternatively, the confidence
interval may likewise be estimated using Monte Carlo simulation and bootstrap resampling
methods.

Forecast error variance decompositions (FEVDs) determine how much of the variance
of the forecast errors of each variable can be explained by exogenous shocks to the other
variables. The FEVD is part of a structural analysis that “decomposes” the forecast error
variance into the benefits of specific exogenous shocks. According to Abrigo and Love [71],
the h-step ahead forecast error can be expressed as follows:

Yit+h − E(Yit+h) = ∑h−1
i=0 ei(t+h−i)ϕi, (4)

where Yit+h is the observed vector at time t + h and E(Yit+h) is h-step ahead predicted vector
made at time t. The contribution of a variable m to the h-step ahead forecast error variance
of variable n may be calculated as

∑h−1
i=0 θ2

mn= ∑h−1
i=1 (i

′
nP ϕ′iim)

2 (5)

where im is m-th column of Ik.
FEVD shows how important shock is in explaining the variation in the variables in the

model. It shows how this importance changes over time. For example, some shocks may
not be responsible for variation in the short run but may cause longer-term fluctuations.

The economic software Stata 15.1 was used to test the variables and to estimate the
models.
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4. Results and Discussion
4.1. Panel Unit Root Tests

Panel unit root tests are used to determine the type of a random variable, i.e., whether
the variable is a non-stationary process of type I (1) [51,56,81]. We report the results of
the logarithmic (except the variable nuclear) variables in levels and first differences. The
following tests were used to test the unit root:

• Fisher (augmented Dickey–Fuller test)—Time trend, Lagged difference 1;
• Fisher (Phillips–Perron unit root test)—Time trend, Lagged difference 1;
• Im–Pesaran–Shin [55]—Time trend, Lagged specification 1;
• Levin–Lin–Chu [54]—Time trend, Lagged specification 1;
• Breitung [52]—Time trend, Lagged difference 1;
• Hadri [57]—Time trend;
• Second-generation unit root test, CIPS and CIPS* test [49]—Time trend.

Rejection of the null hypothesis in all tests except the Hadri test means stationarity.
In the case of the Hadri test, acceptance of the null hypothesis means stationarity in all
panels. The test results are shown in Table 2. The table shows that the variables on the level
(except Log_RES) have a unit root, but their difference is already stationary. This means that
the variables are first order integrated I(1). In the case of the variable Log_RES, tests that
consider the variable Log_RES to be stationary predominate. The only test that considers
Log_RES as I(1) is the Hadri test. Results that deviate from most tests are shown in grey
in the table. The Levin–Lin–Chu (LLC) test and Breitung test assume that all panels have
the same autoregressive parameter. The Breitung test also has power in the heterogeneous
case, where each panel has its own autoregressive parameter. However, the Im–Pesaran–
Shin (IPS) test does not have this restrictive presumption and allows each panel to have
its own autoregressive parameter. The IPS test result and Breitung test result are in all
cases consistent with the Fisher augmented Dickey–Fuller (ADF) test results and, with the
exception of the nuclear variable, with a small N = 14, also with the Fisher Phillips–Perron
(PP) test results. In the case of the Log_TEC variable, the result of the second-generation
CIPS test in accordance with the result of the LLC test differs from all other first-generation
tests. Regarding the second-generation CIPS test with test statistics in Table 2, rejection
of the null hypothesis means stationarity. The critical values for the rejection of the null
hypothesis of CIPS test are −2.58 for 10%, −2.66 for 5% and −2.81 for 1% significance level,
in our case for N = 22 and T = 28 [49].

Table 2. Panel unit root tests.

Variable

Panel Unit Root Tests

1st-Generation (p-Value) 2nd-Gener.

Fisher
(ADF) Fisher (PP) IPS LLC Breitung Hadri CIPS

Log_GDP P 0.8839 0.9977 0.5506 0.010 0.0783 0.000 −2.035

Z 0.5765 0.9883

L* 0.5878 0.9827

Pm 0.8761 0.9905
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Table 2. Cont.

Variable

Panel Unit Root Tests

1st-Generation (p-Value) 2nd-Gener.

Fisher
(ADF) Fisher (PP) IPS LLC Breitung Hadri CIPS

D.Log_GDP P 0.000 0.000 0.000 0.000 0.000 0.000 −3.798 ***

Z 0.000 0.000

L* 0.000 0.000

Pm 0.000 0.000

Log_CO2 P 0.9171 0.9339 0.8553 0.0202 0.9543 0.000 −2.454

Z 0.9002 0.9398

L* 0.8967 0.9391

Pm 0.9052 0.9113

D.Log_CO2 P 0.000 0.000 0.000 0.000 0.000 0.4880 −5.229 ***

Z 0.000 0.000

L* 0.000 0.000

Pm 0.000 0.000

Log_TEC P 0.7400 0.5265 0.5297 0.0009 0.7906 0.000 −2.722 **

Z 0.5714 0.7502

L* 0.5537 0.6720

Pm 0.7516 0.5543

D.Log_TEC P 0.000 0.000 0.000 0.000 0.000 0.1404 −5.008 ***

Z 0.000 0.000

L* 0.000 0.000

Pm 0.000 0.000

Log_RES P 0.0001 0.000 0.003 0.0329 0.003 0.000 −3.670 ***

Z 0.0013 0.000

L* 0.0005 0.000

Pm 0.000 0.000

D.Log_RES P 0.000 0.000 0.000 0.000 0.000 0.9453 −5.642 ***

Z 0.000 0.000

L* 0.000 0.000

Pm 0.000 0.000

Nuclear P 0.8234 0.0996 * 0.9138 0.2019 0.000 −1.574

Z 0.2295 0.0133

L* 0.1999 0.004

Pm 0.8240 0.0932

D.Nuclear P 0.000 0.000 * 0.0002 0.000 0.9977 −2.815 ***

Z 0.000 0.000

L* 0.000 0.000

Pm 0.000 0.000

* Insufficient number of time periods to compute W-t bar statistics. In CIPS test superscript *, ** and *** means
10%, 5% and 1% significance level.
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4.2. Panel Cointegration Test

In the analysis of time series, we distinguish between a long-run relationship and a
short-run relationship. A short-run relationship only exists for a short period of time, and
then it vanishes. A long-run relationship has a much longer duration and does not change
over time. We can determine the existence of a long-run relationship by a cointegration test.
Table 3 shows the results of three types of cointegration tests:

• KAO test—Lags(1);
• Pedroni test—AR parameter is panel-specific, includes panel-specific time trend,

Lags(1);
• Westerlund tests—include panel-specific time trend; the Bartlett kernel with Newey–

West lags [82] was used to estimate long-run variance.

Table 3. Panel cointegration tests; H0: no cointegration; default H1: all panels are cointegrated.

Panel Cointegration Test p-Value

H0: No cointegration H1: All panels are cointegrated

Kao test

1 Modified Dickey–Fuller 0.0658
2 Dickey–Fuller 0.0659
3 Augmented Dickey–Fuller 0.4550
4 Unadjusted modified Dickey–Fuller 0.000
5 Unadjusted Dickey–Fuller 0.0019

Pedroni test
1 Modified Philips–Perron 0.0010
2 Philips–Perron 0.0880
3 Augmented Dickey–Fuller 0.0399

Westerlund test
1 Group-mean variance-ratio variance,

H1: all panels are cointegrated 0.0115

2 Group-mean variance-ratio variance,
H1: some panels are cointegrated 0.0414

One of the ten tests does not reject the null hypothesis of no cointegration (Kao-
augmented Dickey–Fuller). Thus, we can proceed to the estimation of the cointegration
relationship between the variables analysed.

4.3. Long-Run Dynamics Estimation

Since least squares estimation is not consistent in the panel data, fully modified
OLS (FMOLS) and dynamic OLS (DOLS) are used to estimate long-run cointegration
relationships. They were proposed by Kao and Chiang [67] and Pedroni [68]. DOLS uses
past (lags) and future values of the differences in the variables (leads) and thus takes
into account the presence of autocorrelation and endogeneity of variables. Estimates of
cointegration coefficients using FMOLS and DOLS [83] are presented in Table 4.

The coefficient estimates for the EU22 can be obtained as the average of the estimated
coefficients for the individual countries (so-called mean group). The coefficients are strongly
significant in almost all cases except for the variable nuclear. Even so, the coefficient on the
nuclear variable is significant for most of the countries analysed. In terms of the FMOLS
model, we obtain significant coefficients for 13 countries where nuclear power plants are
operated: BEL, BGR, CZ, FIN, FRA, DEU, HUN, SVN, SVK, ESP, ROU, SWE and GBR,
of which 12 countries have a negative coefficient. In the DOLS model, the coefficients for
nuclear are significant for 10 countries, all of which are negative, i.e., as the share of nuclear
power in the energy mix increases, the per capita CO2 emissions decrease. In all these cases,
the coefficient for nuclear is negative, i.e., nuclear power generation causes a reduction in
CO2 emissions per capita.
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Table 4. FMOLS and DOLS estimation results in the long run (by country).

Panel FMOLS Panel DOLS

Log_GDP Log_RES Log_TEC Nuclear Log_GDP Log_RES Log_TEC Nuclear

AUT 0.000 −0.49 *** 1.40 *** 0.000 0.01 * −0.65 *** 1.35 ** 0.000
BEL −0.25 *** −0.03 1.18 *** −0.01 *** 0.15 *** −0.15 *** 0.64 ** −0.01
BGR 0.05 *** −0.06 *** 0.99 *** −0.01 *** 0.11 *** −0.11 *** 0.79 ** −0.01 *
CZ −0.07 *** −0.05 *** 1.04 *** −0.01*** −0.09 *** 0.01 *** 1.40 *** −0.01 ***

DNK −0.29 *** 0.03 1.42 0000 −0.22 *** 0.02 *** 1.53 *** 0000
FIN 0000 −0.32 *** 1.83 *** 0.01 *** 0.10 *** −0.78 *** 1.49 *** −0.01
FRA −0.08 *** −0.12 *** 1.59 *** −0.01 *** −0.14 *** −0.08 *** 1.26 *** −0.01 ***
DEU −0.53 *** 0.13 *** 1.27 *** −0.01 *** −0.53 *** 0.12 *** 0.83 *** −0.01 ***
GRC −0.26 *** −0.01 1.60 *** 0.000 −0.35 *** 0.03 ** 1.79 *** 0.000
HUN −0.09 *** −0.02 *** 1.11 ** −0.02 *** 0.10 *** −0.08 *** 1.53 *** 0.000
IRL −0.07 *** −0.06 *** 1.10 *** 0.000 −0.02 −0.09 *** 1.02 *** 0000
ITA −0.11 *** −0.09 *** 1.19 *** 0.000 −0.07 *** −0.15 *** 1.06 *** 0.000
LUX −0.19 *** −0.01 1.00 *** 0.000 −0.36 *** 0.17 *** 0.98 *** 0.00
NLD −0.06 *** −0.03 *** 0.58 *** 0.000 0.13 * −0.11 *** 0.63 *** −0.13 ***
POL −0.10 *** 0.000 1.02 *** 0.000 −0.14 *** 0.02 *** 0.96 *** 0.000
SVN −0.06 *** −0.22 *** 1.39 *** −0.002 *** 0.04 ** −0.49 *** 1.29 *** −0.02 ***
SVK −0.03 *** −0.14 *** 1.04 *** −0.01 *** −0.02 *** −0.23 *** 0.76 *** −0.01 ***
ESP −0.12 *** −0.19 *** 1.26 *** −0.01 ** −0.05 −0.22 *** 1.16 *** −0.02 *
ROU −0.05 *** −0.17 *** 1.25 *** −0.02 *** 0.000 −0.25 *** 0.75 *** −0.01
PRT −0.14 *** −0.24 *** 1.25 *** 0.000 −0.10 *** −0.29 *** 1.36 *** 0.000
SWE −0.18 *** −0.70 *** 2.17 *** −0.01 *** −0.14 *** −0.98 *** 2.86 *** −0.02 ***
GBR −0.18 *** −0.03 * 1.39 *** −0.03 *** −0.08 −0.10 ** 1.25 *** −0.03 ***

EU22 −0.13 *** −0.13 *** 1.27 *** −0.01 −0.08 *** −0.20 *** 1.21 *** −0.01

Note: ***, ** and * stand for significance level at 1%, 5% and 10%.

Results of the analysis also confirm long-run causality running from GDP to CO2
emissions. It implies that since the economy grows, CO2 emissions decrease. On the other
hand, total energy consumption has a significant positive impact on CO2, i.e., an increase
in energy consumption causes an increase in CO2 emissions.

The comparison of the FMOLS and DOLS outputs shows the predominant consistency
of the coefficients and the proximity of their numerical values.

In the case of Slovakia, all coefficients are significant. GDP per capita, energy produced
from renewable sources per capita, and energy produced in nuclear power plants per capita
cause a reduction of carbon dioxide emissions per capita. On the contrary, total energy
consumption per capita causes an increase in CO2 emissions per capita. The same comment
can be used for almost all countries studied and for the EU as a whole if the variable nuclear
is not taken into account. The impact of the nuclear variable is not significant from the
overall perspective of the block of 22 European countries.

4.4. Short-Run Dynamics Estimation

After estimating long-run cointegration vectors we examine short-run and causal
relationships. Since the analysed variables are cointegrated and their first difference is
stationary, it makes sense to deal with the estimation of the short-run relationship. For
this purpose, the panel VAR model [70] Equation (1) was estimated. The general moment
model (GMM) [84,85] in first difference (FD) was used to solve Equation (1) [79,84].

Regarding VAR model selection, the optimal moments and model lag order were
determined based on the criteria of Andrews and Lu [79]. To ensure that the number of
instrumental variables is greater than the number of endogenous variables (GMM model
is overidentified), lag2, lag3, lag 4 and lag 5 of endogenous variables were selected as
instrumental variables. The moment and model selection criteria (MMSC) are shown in
Table 5.
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Table 5. Order selection table.

lag CD J J p-Value MMSCBIC MMSCAIC MMSCQIC

1 1 77.98326 0.3841055 −389.007 −72.01674 −196.3398
2 1 37.47426 0.9044813 −273.8526 −62.52574 −145.4078
3 1 11.19275 0.9919546 −144.4707 −38.80725 −80.24826
4 0.999 - - - - -

Note: CD—coefficient of determination, J—Hansen’s J statistics, MMSC—moment and model selection criteria:
Akaike information criteria (AIC), the Bayesian information criteria (BIC), and the Hannan–Quinn information
criteria (HQIC).

The lowest value of the MBIC, MAIC and MQIC criteria is for lag 1. We used this
parameter (lag 1) to estimate the PVAR model using GMM FD and the instrumental
variables lag2, lag3, lag4 and lag5.

4.5. Panel VAR Estimation Results and Granger Causality

In the FD specification we used the second lags of untransformed variables as the
earliest lag used as an instrument. The results of estimating the first-order panel VAR
model in the GMM pattern and in the first difference (FD) are displayed in Table 6.

Table 6. Result of first-order panel VAR model estimation in the GMM FD framework.

Equation Log_CO2 Log_GDP Log_RES

Coef p-Val Coef p-Val Coef p-Val

L1Log_CO2 0.6831 0.032 0.2957 0.134 2.4302 0.038
L1Log_GDP −0.1117 0.102 0.9424 0.000 0.3801 0.224
L1Log_RES −0.1584 0.754 0.0370 0.270 0.8944 0.000
L1Log_TEC 0.0335 0.944 −0.9147 0.006 −4.0431 0.038
L1Nuclear −0.0038 0.418 0.0031 0.433 0.0064 0.749

Equation Log_TEC Nuclear

Coef p-Val Coef p-Val

L1Log_CO2 0.51997 0.095 35.609 0.360
L1Log_GDP 0.0413 0.510 4.9377 0.546
L1Log_RES −0.1616 0.720 −0.8652 0.876
L1Log_TEC −0.0827 0.857 −33.2113 0.587
L1Nuclear −0.0031 0.471 0.4592 0.452

Unlike the long-run relationship, in the case of the short-run, this relationship is not
so strong. We can say that, with the exception of three cases, it does not exist at all. The
coefficients are significant in the case of log_TEC and log_GDP, log_TEC and log_RES,
as well as log_CO2 and log_RES. We can interpret them as a decrease in total energy
consumption in year t-1; then it will be reflected as an increase in GDP and also as an
increase in renewable energy production in year t, and the increase in CO2 emissions in
year t-1 will be reflected as an increase in the utilisation of renewable resources in year t.

The result of the postestimation of the Granger causality test is shown in Table 7, but
the results are the same as in Table 6, because according to the MMSC, a first-order VAR
model was recommended and used. However, we can say that total energy consumption
Granger causes energy produced from renewable sources; carbon dioxide (CO2) emissions
Granger cause energy produced from renewable sources; and the total energy consumption
Granger causes gross domestic product.

An important prerequisite for implementing the PVAR model is the eigenvalue sta-
bility condition. We calculated the eigenvalues of the accompanying matrix according to
Lütkepohl [80] and plotted their absolute values. All eigenvalues lie inside the unit circle
(Figure 2). The estimated panel VAR model satisfies the stability condition.



Energies 2022, 15, 9563 14 of 23

Table 7. Panel VAR Granger causality Wald test.

Variables p-Value

Log_CO2 Log_GDP Log_RES

Log_GDP 0.102 Log_CO2 0.134 Log_CO2 0.038
Log_RES 0.754 Log_RES 0.270 Log_GDP 0.224
Log_TEC 0.944 Log_TEC 0.006 Log_TEC 0.038
Nuclear 0.418 Nuclear 0.443 Nuclear 0.749

All 0.149 All 0.014 All 0.109

Log_TEC Nuclear

Log_CO2 0.095 Log_CO2 0.360

Log_GDP 0.510 Log_GDP 0.546
Log_RES 0.720 Log_RES 0.876
Nuclear 0.471 Log_TEC 0.587

All 0.036 All 0.668
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Another informative post-estimation statistic besides the Granger causality test is the
impulse response function (IRF). Impulse responses are most often interpreted through
network plots of the individual responses of each variable to an implemented shock at
a particular time horizon. The Cholesky decomposition of the covariance matrix of the
error terms into the product of the lower triangular matrix P and its transpose P’ leads to
different matrices for different arrangements of the variables. Therefore, the ordering of the
variables is important. The order of the variables for the impulse response was determined
as nuclear, Log_RES, Log_TEC, Log_CO2, Log_GDP. The non-zero impulse responses are
shown in Figure 3.

If we display the confidence interval using a Monte Carlo simulation, we get the
following images (Figure 4). The impulse responses of the variable nuclear to the impulses
of other variables is assumed to be zero.
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Forecast error variance decomposition (FEVD) is another post-estimation statistic. This
is a breakdown of the prediction error variability into the benefits of specific exogenous
shocks. FEVD shows both the importance of shock and the change in its importance over
time, explaining its variability.

Forecast error in response variable Log_CO2 is reported in Table 8. The proportion
of forecast error variance h periods ahead accounted for by changes in nuclear, Log_RES,
Log_TEC, Log_CO2 and Log_GDP. For instance, about 32% of the two-step forecast error
variance of Log_CO2 is accounted for (clarified) by its own innovations, while 3.3% is
accounted for by nuclear innovations and 3.1% is clarified by Log_RES innovations. Most
of the error variance of the Log_CO2 variable is for Log_TEC innovations (61%). The least
is the error variance clarified by Log_GDP innovations (0.5%). For the long-term forecast,
55.5% is accounted for by Log_TEC.
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Table 8. Forecast error in response variable Log_CO2.

Forecast Horizon Nuclear Log_RES Log_TEC Log_CO2 Log_GDP

0 0.000000 0.000000 0.000000 0.000000 0.000000
1 0.008880 0.017959 0.650928 0.322234 0.000000
2 0.033737 0.030996 0.611791 0.318511 0.004966
3 0.037700 0.032663 0.613452 0.297096 0.019090
4 0.037558 0.033654 0.611291 0.279795 0.037702
5 0.036244 0.034782 0.604205 0.267851 0.056918
6 0.034857 0.036351 0.594312 0.260128 0.074352
7 0.033689 0.038483 0.583476 0.255299 0.089054
8 0.032752 0.041160 0.572784 0.252387 0.100918
9 0.031988 0.044279 0.562751 0.250764 0.110218
10 0.031346 0.047701 0.553564 0.250042 0.117347

As with the impulse response functions, the decompositions of the variance of the
forecast variance are usually graphically presented as a bar graph or area plots. In each
time period, the graph plots the composition of the error variance between shocks for all
variables. For the Log_CO2 variable, the plot is shown in Figure 5.
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Figure 5. Forecast error variance decomposition Log_CO2.

As can be seen in Figure 4, the initial stage contribution of Log_TEC and Log_CO2
itself grows very fast. In the second half of the time horizon, the contributions of all
variables are stable. For the other variables, the variables themselves contribute most to the
variance decomposition. In the long run, their contribution is as follows: nuclear 53.5%,
Log_RES 54%, Log_TEC 67.8% and Log_GDP 57.1%.

5. Discussion

The results of the analysis confirmed the cointegration between examined variables.
From the long run perspective, FMOLS in almost all countries, except Austria, Bulgaria
and Finland, have shown a significant negative impact of GDP on CO2 in the long run.
Thus, economic growth in these countries causes a decrease in CO2 emissions per capita.
In Finland and Austria, the significance has not been demonstrated. Bulgaria is the only
country where an increase in CO2 with GDP growth has been demonstrated in the long
run. The result of the DOLS model is consistent with the FMOLS for Czechia, Denmark,
France, Germany, Greece, Italy, Luxembourg, Poland, Slovakia, Portugal and Sweden.
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Both models confirm that growth in energy consumption significantly affects increase
in CO2 emissions.

The growing share of RES in the energy mix causes a decrease in CO2 emissions. The
mitigation effect of renewables and nuclear power on CO2 emissions is well known and
is confirmed by a number of studies, including [30,32,46,86–92]. Moreover, many of these
studies also confirm the positive effect of renewables on economic growth [35]. In addition
to economic benefits and reducing greenhouse gas emissions, and thus mitigating climate
change, the wider use of renewable energy sources is associated with a number of other
social, economic and societal benefits, such as new job opportunities [93,94], alleviation
of energy poverty [95], reduction in the consumption of non-renewable resources and
preserving them for future generations, as well as increasing energy security and reducing
energy dependence on imports of energy raw materials from third countries [96,97].

In case of 22 EU countries, both FMOLS and DOLS models showed that in the long run,
in most countries (16 for FMOLS and 15 for DOSL), CO2 emissions decrease significantly
with an increase in RES utilisation. The exception is Germany, where the coefficient is
positively significant according to both models. The reason for this result can be further
investigated.

The study also looked at the role of nuclear and RES in relation to CO2 emissions. In
many countries, the share of nuclear energy in the energy mix is of strategic importance in
terms of energy security as it reduces the dependence on fossil fuels exporting countries
and is less vulnerable to changes in energy prices than fossil fuels [98].

Nuclear energy is used in 14 countries in the studied panel of 22 EU countries. We
expect CO2 emissions to decrease as nuclear power increases. The FMOLS model has
confirmed the negative impact on CO2 emission in 12 countries. An interesting situation
appears in case of Finland, where there was a significant positive coefficient in the FMOLS
model.

Based on the results of the analysis, several paths of future research can be outlined.
The COVID-19 pandemic undoubtedly significantly impacted lives of people as well as
national economies and energy systems [99]. The restrictive measures of limiting travel to
essential purposes only, the transition to distance learning and home office work, and the
restriction in some operations have affected energy demand and the temporal reduction
in greenhouse gas emissions. For example, Hoang et al. [100] provided evidence that the
consumption of fossil fuels and nuclear power dropped during the pandemic, particularly
in China, Europe and the US. However, despite the overall decline in energy demand,
there has been an increased demand for renewable energy [101]. Further research could
investigate whether the energy consumption shock caused by the COVID-19 pandemic had
an impact on other variables in the energy–economy–emissions model. The war in Ukraine
is another exogenous factor that may affect the energy situation in the EU. The inclusion of
the energy dependency variable could reveal interesting relationships between economic,
energy and environmental variables and provide input for modifying the energy policy of
EU countries towards energy self-sufficiency.

Another important variable worth examining, is investment in research, development
and innovation, as it can significantly influence the economy–energy–emission nexus.
According to several studies, the research and development of new technologies can
accelerate the energy transition, increase the share of renewable energy sources and increase
the efficiency of their use [102,103].

Several studies have pointed to the impact of urbanisation on the energy–economy–
environment nexus. In this area, the results of empirical studies vary. For example,
according to Liang and Yang [104], urbanisation significantly decreased CO2 emissions
in China in the long run. However, for a panel of 170 countries, bidirectional Granger
causality between CO2 emissions and urbanisation, both long-run and short-run, has been
confirmed [47]. EU countries are heavily urbanised and the percentage of people living
in cities ranges from 49% to 98%. The impact of urbanisation on energy consumption,
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economic growth as well as climate impacts can be an important basis for adopting suitable
development policies promoting smart and climate-neutral cities.

6. Conclusions

This article examines the dependence of carbon dioxide (CO2) emissions on total
energy consumption, the energy produced from renewable sources, energy produced in
nuclear power plants and gross domestic product (GDP) in 22 European countries for the
period 1992–2019. It has been shown that the variables carbon dioxide (CO2) emissions per
capita, total energy consumption per capita, energy produced from renewable sources per
capita, energy produced in nuclear power plants per capita and gross domestic product
per capita are integrated (first order). Cointegration has been demonstrated as out of the
ten tests of cointegration, only one test accepted the null hypothesis of no cointegration
relationship between the variables. The fully modified ordinary least squares model
(FMOLS) and dynamic OLS (DOLS) were used to estimate the long-run cointegration
relationship between the variables. The coefficients are significant in almost all countries
and variables except for the variable nuclear. The results suggest that energy produced
from renewable sources causes a reduction in CO2 emissions per capita. The countries
of the European Union should therefore develop and support the implementation of
policies, strategies and projects that increase the use of renewable energy sources. These
benefits could also be used as a counterargument to advocate for the need to decarbonise
the European economy and meet the objectives of the European Green Deal, which are
threatened by the economic losses caused by the COVID-19 pandemic and the conflict in
Ukraine.

A closer look at the countries using nuclear power shows that the coefficients for the
variable nuclear are significant. The FMOLS model confirms the significance for all (13)
countries in which nuclear power plants are operated: BEL, BGR, CZ, FIN, FRA, DEU,
HUN, SVN, SVK, ESP, ROU, SWE and GBR. In the DOLS model, the coefficients for nuclear
are significant for eight countries. In all these cases, the coefficient for nuclear is negative,
i.e., electricity production in nuclear power plants has a mitigation effect on CO2 emissions
per capita.

On the other hand, total energy consumption per capita has the effect of increasing
carbon dioxide (CO2) emissions per capita. In the context of this finding, it is essential to
implement policies aimed at increasing energy efficiency in different areas of economic
activity.

First differenced (FD) general moments methods (GMM) were used in the estimation of
short-run relationship dynamics. If we look at the dependence of CO2 on the other variables
from a short-run perspective (VAR) all coefficients in the model are non-significant except
for three cases. We obtained the same results for the Granger causality test. In terms of the
remaining variables, we obtained only three significant results: TEC→ GDP, CO2 → RES
and TEC→ RES.

Given the complexity of this issue and the multitude of factors influencing the link
between economic growth, energy consumption and GHG emissions, it is possible to
suggest avenues for further research, e.g., in the form of including other variables such as
urbanisation and the use of other advanced econometric methods.
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Nomenclature

ADF Fisher augmented Dickey–Fuller test
AIC Akaike information criteria
BIC Bayesian information criteria
BRIC Brazil, Russia, India and China
CIPS cross-sectionally augmented Im–Pesaran–Shin test
CO2 carbon dioxide
DOLS dynamic ordinary least squares
EKC environmental Kuznets curve
EU European Union
FD first differenced
FEVD forecast error variance decomposition
FMOLS fully modified ordinary least squares model
GDP gross domestic product
GMM general moments methods
HQIC Hannan–Quinn information criteria
IPCC Intergovernmental Panel on Climate Change
IPS Im–Pesaran–Shin test
IRF impulse response function
LLC Levin–Lin–Chu test
MENA Middle East and North Africa
MMSC moment and model selection criteria
MWh megawatt hours
OECD Organisation for Economic Co-operation and Development
PP Fisher Phillips–Perron test
PVAR panel vector autoregression
RES renewable energy sources
TEC total energy consumption
USD United States dollar
VAR vector autoregression
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