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Abstract: Studies of storage and production of hydrogen, which is an alternative to fossil fuels, have
been intensified. Hydrogen production from metal borohydrides via catalyst is very attractive because
of its advantages, such as controlled production, high hydrogen content, nontoxicity, etc. In this study,
the catalytic performances of nanoporous nickel–chromium alloy and nickel–vanadium alloy catalysts
prepared with magnetron sputtering in hydrolysis of potassium borohydride, which is a hydrogen
storage material, were investigated. Parameters that affected the hydrolysis reaction rate, such as
the temperature, the amount of catalyst, and the volume of 0.5 M HCl solution were investigated
using response surface methodology. In addition, the prepared catalysts were characterized with
XRD and FE-SEM analysis, and the remaining solutions after the reactions were characterized with
FE-SEM/EDS analysis. Using response surface methodology, optimum conditions for the maximum
hydrogen production rate were determined to be 1.65 g of catalyst, 6% KBH4, 3% NaOH, and 7 mL
of 0.5 M HCl at 333 K. Under these conditions, the hydrogen production rates were calculated as
68.9 L·min−1·gcat

−1 and 76.5 L·min−1·gcat
−1 for NiCr and NiV, respectively.

Keywords: nickel–chromium; nickel–vanadium; potassium borohydride; hydrogen production;
response surface methodology

1. Introduction

Energy demand is increasing day by day due to various factors, such as population
growth, increasing quality of life, and rapid development of technology [1]. Most energy
needs are met by petroleum, coal, or natural gas from fossil resources. However, since
fossil resources are limited and cause various environmental problems during energy
production, searches for alternative clean energy sources and renewable energy technology
have increased [2,3]. The most suitable energy, which stands out as a sustainable, efficient,
environmentally friendly, reliable, and high-quality energy source, is hydrogen [4,5]. It
can be produced from many sources, such as fossil fuels, nuclear, biomass, solar, water,
and wind. In addition, it is thought that dependence on fossil fuels will decrease as
hydrogen production processes become more efficient, innovative, flexible, economical,
and environmentally friendly [6,7]. Hydrogen can be stored in the solid, liquid, and gas
phases. It can be preserved in chemical compounds or nanomaterials in the solid phase,
in cryogenic tanks in the liquid phase, and in high-pressure tanks in the gas phase [8,9].
Though there are a lot of hydrogen storage technologies, when they are evaluated in terms
of safety and economy, the storage of hydrogen in chemical compounds such as LiBH4,
KBH4, NaBH4, NH3BH3, etc., comes to the fore [10–17]. KBH4 is a reliable and suitable
source of hydrogen storage (containing 7.5 wt% hydrogen) because of its nontoxicity, safety,
and controllable hydrolysis reaction [18]. Its structure resembles that of NaBH4. In addition,
KBH4 has good hygroscopic properties and dissipates less heat during its hydrolysis. This
situation is important for reactor design and catalyst durability [10].

The rate of hydrogen production from KBH4 hydrolysis increases as the pH decreases
and decreases as the pH increases. Therefore, catalysts play an important role in reducing
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the activation energy in hydrolysis reactions in alkaline medium. The hydrolysis reaction
of KBH4 is given in Equation (1). Considering the chemical formula of KBH4, it is feasible
to form 2 mol of hydrogen from 1 mol of KBH4. According to Equation (1), the significant
advantage of the hydrolysis process is that it can generate 4 mol of hydrogen per mol of
KBH4: 2 from the KBH4 itself and 2 from H2O.

In addition, in order to extend the shelf life of metal borohydride solutions and to
prevent hydrogen from being released when kept waiting, basic solutions such as sodium
hydroxide (NaOH) or potassium hydroxide (KOH) can be added to the solution and stored
in an alkaline medium [19,20].

KBH4 + 2H2O
Catalyst→ KBO2 + 4H2 (1)

Alloys are formed through addition of suitable elements to increase strength and
improve physical and/or chemical properties [21]. Lately, intense efforts have been car-
ried out on various non-noble metals and alloys [22–26]. Nickel–chromium (NiCr) and
nickel–vanadium (NiV) alloy catalysts are useful options for hydrolysis of KBH4 solu-
tions due to their high activity and relatively low cost. In the literature, the studies in
which nickel and its alloys are used as catalysts in hydrolysis of KBH4 are limited. In
the first study, ISOBAM-104-preserved Rh/Ni bimetallic nanoparticle (BNP) alloys were
synthesized through a coreduction method with a KBH4 solution. The catalytic activities
of the prepared catalyst for hydrogen production from the hydrolysis of a basic KBH4
solution were evaluated. Rh10Ni90 BNPs showed the highest catalytic activity, with a
value of 11,580 molH2·h−1·molcat

−1) [15]. Xu et al. investigated the catalytic performance
of activated-carbon-supported Ni–B, Co–B, and Co–Ni–B catalysts in KBH4 hydrolysis.
Co–B/the activated carbon catalyst exhibited the best catalytic activity. Changes in the
reaction rate of parameters such as KBH4 concentration, NaOH concentration, and the tem-
perature were also examined in that study [27]. In another study, the hydrogen-production
performance of TiO2 that supported a Ni-Mo-Ru-B catalyst from the hydrolysis of a KBH4
solution was investigated. In those hydrolysis experiments, the effects of parameters such
as KOH concentration, the catalyst amount, the metal/TiO2 ratio, and the temperature
on hydrogen production rate were also investigated. As a result of that study, the opti-
mum metal/TiO2 ratio was chosen to be 10% and the hydrogen generation rate of the was
calculated to be 2410.28 mL·min−1·gcat

−1 at 30 ◦C [10].
Catalysts can be prepared through application of different techniques according to

the structure of the material to be coated on a support material, the characteristics of the
substrate material, and the process applied. Coating can be carried out using physical
vapor deposition (PVD) techniques, which are an alternative to the chemical synthesis
method. PVD is a coating process in which thin films under a vacuum are deposited
onto a layer through evaporation of a desired film material [28]. The advantages of PVD
techniques are that they are environmentally friendly and require no hazardous liquids or
toxic precursors. In addition, no side products or dangerous waste is produced during the
process. The coating process is reproducible and scalable to industrial production. It is also
realized in a desired thickness in one step [29,30]. It includes different techniques such as
cathode arc deposition, electron beam–physical vapor deposition, evaporative deposition,
ion plating, and magnetron sputtering [31]. The magnetron sputtering technique is carried
out via coating a desired surface in the form of a homogeneous thin film with low loading
amounts. The coating mechanism of this technique is firstly ionized with the help of the
electric field created by the potential applied between the target material and the substrate
material; high-purity noble gas is sent to the system under a high vacuum. Then, coating is
carried out via directing ions that have become plasma to the substrate with inert gas. Thus,
the coating is carried out via moving atoms, one by one, from the target to the substrate.
The thickness of the coating varies according to the applied pressure and application
time [32–34].
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There are many factors that affect the hydrogen production rate in the hydrolysis
reaction of KBH4, such as the temperature, the amount of catalyst, and so on. It is firstly
necessary to determine the effectiveness of these factors on the hydrogen production rate
and then to define the optimum conditions. In multivariate systems, the values of the
parameters and their relations with each other directly affect test results. Using one of
the design of experiment (DoE) methods ensures that an experiment is set up correctly
in a short time and at a low cost, with different perspectives [35]. Using DoE statistical
methods such as full factorial design (FFD) and response surface methodology (RSM), it
is possible to procure sweeping data that are valid for the whole designed experimental
system [36]. RSM not only determines the optimum conditions for a designed experimental
system but also gives the necessary information to design a process [37]. According to
the characteristics of the experimental system or process, an RSM such as Taguchi, central
composite, or Box–Behnken can be selected.

To the best of our knowledge, no study that has used slide-supported nickel–vanadium
or nickel–chromium alloy catalysts and the magnetron-sputtering method for KBH4 hydrol-
ysis has been reported so far. In this study, the catalytic hydrolysis performances of thin-film
NiCr and NiV catalysts prepared with the magnetron-sputtering method in an alkaline
KBH4 solution were investigated. In addition, the effects of the temperature, the catalyst
amount, and the volume of the HCl parameters on the hydrogen generation rate (HGR)
were investigated using RSM in order to maximize hydrogen production. Experimental
studies were carried out using the central composite experimental design model. The
individual effects of the independent parameters and their dyadic interactions with each
other were examined with analysis of variance (ANOVA). Afterward, optimum conditions
were determined for the maximum HGR value of this designed system.

2. Experimental Section
2.1. Catalyst Preparation

A microscope slide, which is easy to cut and coat in desired sizes, was chosen as the
catalyst support material. In order to achieve a successful homogeneous thin-film coating,
the surface to be coated must be clean. As a typical cleaning procedure, the slides were held
in an ultrasonic bath at 323 K for 10 min in acetone (Isolab, Eschau, Germany; 99.5% purity),
isopropyl alcohol (Isolab; 99.5% purity), and ethanol (Sigma-Aldrich, St. Louis, MO, USA;
99.5% purity), respectively. Then, the slides were washed with deionized water and dried
in an oven at 353 K. Lastly, the cleaned slides were cut in 1 cm × 2 cm dimensions. The cut
slides were ready for coating.

The brand of the targets used is Nanografi (Ankara, Turkey); each target’s diameter
was 5.08 cm, with a thickness of 0.3175 cm. The purities of nickel–chromium and nickel–
vanadium were 99.99% and 99.95%, respectively. The alloy ratio of nickel–chromium was
80:20 by weight, while that of nickel–vanadium was 93:7 by weight. Working conditions of
coatings with the RF magnetron-sputtering method: sputtering power was chosen to be
150 W; coating time was chosen to be 30 min. The ambient pressure was 0.07 mbar under a
pure argon atmosphere.

2.2. Catalyst Characterization

The structure of the prepared catalyst was investigated with a Rigaku Miniflex 600
Tabletop Powder X-ray diffractometer (Tokyo, Japan; Cu Kα radiation at λ = 0.1546 nm,
in the range of 40–100◦). The morphologies and structures of the catalysts were evaluated
using scanning electron microscopy (Hitachi, Tokyo, Japan; high-vacuum FE-SEM SU5000).
SEM/EDS analysis of the reaction products was carried out to elucidate the reaction in
an acidic medium. In order to make the surfaces of the catalysts more visible in SEM, the
materials were gold-plated with the Leica Ace 200 coating device (Wetzlar, Germany).
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2.3. Hydrogen Generation Tests

The amount of prepared catalyst (1.65–0.8 g) was placed in a four-necked 200 mL glass
reactor in the experimental plan. Two mL each of 6% (by weight) KBH4 (Sigma-Aldrich;
99% purity) and 3% NaOH (Isolab; 99% purity) solution were fed from one neck of the
reactor, while 0.5 M of HCl (Merck, Rahway, NJ, USA; 37% purity) solution (1–7 mL) was
fed from the second neck. A gas burette was connected to measure the hydrogen produced
from the third neck. A thermometer was inserted into the last neck port to monitor the
temperature of the solution. In addition, the reaction was carried out in a water bath so that
the temperature was homogeneous in the reactor. The hydrolysis experiment schematic
display is shown in Figure 1.
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Figure 1. Schematic representation of the experimental setup: (1) alkaline KBH4 solution feeding,
(2) thermometer, (3) HCl solution feeding, (4) catalyst, (5) water bath, (6) hot plate, (7) gas burette
system.

According to the experimental plan, the hydrolysis experiments were carried out from
293 K to 333 K. These experiments were repeated twice. The hydrogen generation rate
(HGR) was calculated from the ratio of the slope of the graph of the volume of hydrogen
produced against time at a linear regime rate to the amount of catalyst coated [20,38,39].

The DoE is a process-analysis methodology in which, after analysis of experimental
results, some of the independent parameters that influence an experiment are selected and
modified in a controlled manner to detect their effect on a targeted response [40]. Using
this methodology, desired optimal conditions are achieved faster, more economically, and
with more reliable results than with the traditional method [37]. RSM is a collection of
mathematical and statistical techniques based on the properties of a polynomial math
equation of experimental data. The aim is to optimize levels of independent variables to
reach the best system performance at the same time [41]. In this study, an experimental
plan was made using the central composite model from the RSM. The temperature, the
amount of catalyst, and the volume of 0.5 M HCl were chosen as independent variables.
The HGR values selected in response were calculated for each experimental condition.
Then, the individual and two-way interaction contributions of each independent variable
that affected the HGR value were examined simultaneously. Their effects on the response
were evaluated using analysis of variance (ANOVA).
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3. Results and Discussion
3.1. Characterization

Depending on the working conditions of the coating process, the material to be used
as a target can be coated on any surface via the magnetron-sputtering process. Coatings
made via the magnetron-sputtering technique are columnar and porous [34,42]. Section
and surface images of the prepared thin-film catalysts under FE-SEM are shown in Figure 2.
The coating thicknesses were seen to be 600 nm for NiCr and 500 nm for NiV. According to
the SEM figures, the NiCr and NiV catalysts were thin-film, homogenous, and columnar.
In addition, the porous structures can be seen clearly in the surface images. In solid
solutions, chromium and vanadium atoms intrude between nickel atoms, reducing the
column diameters of catalyst surfaces [43,44]. Thus, catalysts with porosity are obtained [45].
Moreover, no difference was observed in the FE-SEM images of the NiCr and NiV coatings
except for in the film thickness.
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Figure 2. The scanning electron microscopy images of the prepared thin-film catalysts. For the NiCr
coating catalyst: (a) cross-section SEM images and (b) close-up planar SEM images. For the NiV
coating catalyst: (c) cross-section SEM images and (d) close-up planar SEM images.

The characteristic peaks of the catalysts according to X-ray diffraction (XRD) measure-
ment are shown in Figure 3. The XRD curves have been smoothed. It was seen that the
metal alloys were coated in a nanocrystalline structure. The NiCr peaks were 44.3◦, 51.96◦,
76.1◦, and 92.44◦, and the NiV peaks were 44.1◦, 48.26◦, 51.94◦, 76.4◦, and 93◦. The crystal
sequences of these peaks were taken in the XRD library.

When the SEM images and XRD measurements were evaluated together, porous and
nanocrystalline catalysts were seen to be prepared. The Scherrer formula, which is widely
used in the literature, gives crystal-size information from XRD data. This formula is given
in Equation (2). In this equation, Dhkl is the crystallinity size, K is the particle-shape factor,
λ is the X-ray wavelength, βhkl is half of the width of the peak reflection, and θ is the Bragg
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angle [46]. Using the Scherrer formula, the crystal dimensions of NiCr and NiV were found
to be about 9 nm and 7 nm, respectively.

Dhkl =
Kλ

βhkl cosθ
(2)
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the red line is the XRD curve of the NiV catalyst.

In addition, SEM/EDS analysis was carried out on the remaining solutions after the
reaction. EDS data and SEM images are given in Figure 4. The oxygen percentage was
found to be higher than calculated based on Equation (1). It was thought that the KBH4
given in Equation (3) reacted with hydrochloric acid, in a side reaction, to form boric
acid [47].

KBH4 + 3H2O + HCl→ 4H2 + H3BO3 + KCl (3)

Energies 2022, 15, x FOR PEER REVIEW 6 of 15 
 

 

angle [46]. Using the Scherrer formula, the crystal dimensions of NiCr and NiV were 
found to be about 9 nm and 7 nm, respectively. 𝐷  =  ĸ   (2)

 
Figure 3. XRD patterns of thin-film catalysts. The blue line is the XRD curve of the NiCr catalyst, 
and the red line is the XRD curve of the NiV catalyst. 

In addition, SEM/EDS analysis was carried out on the remaining solutions after the 
reaction. EDS data and SEM images are given in Figure 4. The oxygen percentage was 
found to be higher than calculated based on Equation (1). It was thought that the KBH4 
given in Equation (3) reacted with hydrochloric acid, in a side reaction, to form boric acid 
[47]. 

KBH4 + 3H2O + HCl → 4H2 + H3BO3 + KCl  (3)

 

  
(a) (b) 

Figure 4. SEM/EDS analysis of KBH4 hydrolysis products in an acidic medium: (a) EDS data and (b) 
SEM images of the remaining solutions after the reaction. 

In addition, as shown in Figure 4, SEM/EDS analyses of the remaining solution de-
tected no nickel, chromium, or vanadium. In this case, the prepared catalysts were under-
stood to be stable under the reaction conditions and adhered well to the slide.  

Figure 4. SEM/EDS analysis of KBH4 hydrolysis products in an acidic medium: (a) EDS data and
(b) SEM images of the remaining solutions after the reaction.

In addition, as shown in Figure 4, SEM/EDS analyses of the remaining solution
detected no nickel, chromium, or vanadium. In this case, the prepared catalysts were
understood to be stable under the reaction conditions and adhered well to the slide.
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3.2. Experiment Design and HGR Value of Each Experiment

The experiment plan was designed according to the central composite design; the HGR
value of each experiment is given in Table 1. Using the central composite experimental
design model in optimization, the regression models for the response surface method
within the determined operating conditions were obtained. Mathematical Equation (4)
was given for the NiCr experimental system and Equation (5) was given for the NiV
experimental system.

Table 1. Experimental plan and HGR values.

Experiment
No.

Temperature
(K)

Amt of Cat
(g)

Volume of
0.5 M HCI (mL)

HGR for NiCr
(mL·g−1·min−1)

HGR for NiV
(mL·g−1·min−1)

1 308 1.25 3 37,850 41,150
2 323 1 5 50,922 49,582
3 308 0.8 3 30,369 33,407
4 293 1 1 17,082 19,855
5 323 1.5 1 47,100 49,250
6 308 1.65 3 49,000 52,699
7 358 1.25 3 37,850 41,150
8 358 1.25 3 37,850 41,150
9 295 1 5 42,518 45,020
10 308 1.25 3 38,474 40,624
11 323 1.5 5 57,200 61,985
12 368 1 1 26,155 20,970
13 308 1.25 3 37,850 41,150
14 308 1.25 7 55,100 63,555
15 293 1.5 5 40,957 42,128
16 333 1.25 3 44,955 44,698
17 308 1.25 3 36,398 37,548
18 293 1.5 1 27,099 30,503

HGRNiCr = -329,502 + (2370 × Temperature) − (177,524 × Amt of cat) + (17,355 × Volume of HCI) −
(4.19 × Temperature × Temperature) + (16,337 × Amt of cat × Amt of cat) + (54 × Volume of HCI × Volume of HCI)
+ (567 × Temperature × Amt of cat) − (18.5 × Temperature × Volume of HCI) − (6078 × Amt of cat × Volume of HCI)

(4)

HGRNiV = -547,478 − (4574 × Temperature) − (329,845 × Amt of cat) + (5774 × Volume of HCI) − (9.14 × Temperature ×
Temperature + (16,052 × Amt of cat × Amt of cat) + (170 × Volume of HCI × Volume of HCI) + (1092 × Temperature
× Amt of cat) + (23.9 × Temperature × Volume of HCI) − (7363 × Amt of cat × Volume of HCI)

(5)

3.3. Statistical Results and Optimum Conditions

A mathematical expression was derived using RSM to determine the HGR under
optimum operating conditions. Minitab 21 statistical software was used to analyze the
data. The correlation coefficient (R2) and adjusted correlation coefficient (Adj-R2) of the
selected response were indicators of mathematical-model acceptance. While the R2 value
of the experimental system that used the nickel–chromium catalyst was 99.09 and the
respective Adj-R2 value was 98.08, the R2 value of the experimental system that used the
nickel–vanadium catalyst was 99.34, and the respective Adj-R2 value was 98.59.

Analysis-of-variance tables for the NiCr and NiV experiment systems are given in
Table 2 and Table 3, respectively. In this ANOVA, the F values of the regression model
developed for the NiCr and NiV experimental systems were found to be 97.3 and 132.8,
respectively. These results show that regression models are important for responses. For
both catalyst systems, the independent variable that most affected the HGR value, according
to the F value, was the volume of 0.5 M HCl. In addition, another indicator that showed
the effectiveness of the independent parameters on the response was the P value, which
showed that the effect of the parameters that were less than 0.05 on the response was
significant; if it were higher than 0.05, the effect would not be much. When the p values
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in Tables 2 and 3 are examined, it can be seen that the individual, square, and two-way
interaction expressions of the independent parameters in the mathematical model are
important. However, the two-way interactions of the temperature with the volume of 0.5 M
HCl, the square of the temperature, and the square of the volume of 0.5 M HCl were less
effective for the response of NiCr catalyst-system. The two-way interaction of temperature
with the volume of 0.5 M HCl and the square of volume of 0.5 M HCl for the NiV catalyst
system components were less effective in the mathematical model.

Table 2. Analysis of variance for NiCr experiment system.

Source DF Adj SS Adj MS F-Value p-Value

Model 9 1798294746 199810527 97.33 0.000
Linear 3 948683546 316227849 154.03 0.000

Temperature 1 207392072 207392072 101.02 0.000
Amt of Cat 1 130182365 130182365 63.41 0.000
Volume of HCl 1 687390305 687390305 334.83 0.000

Square 3 20997625 6999208 3.41 0.073
Temperature × Temperature 1 6545009 6545009 3.19 0.112
Amt of cat × Amt of cat 1 14497993 14497993 7.06 0.029
Volume of HCl × Volume of HCl 1 545980 545980 0.27 0.620

Two-Way Interaction 3 102970332 34323444 16.72 0.001
Temperature × Amt of cat 1 31832141 31832141 15.51 0.004
Temperature × Volume of HCl 1 2179954 2179954 1.06 0.333
Amt of Cat × Volume of HCl 1 73229399 73229399 35.67 0.000

Error 8 16423803 2052975
Lack-of-Fit 3 14040387 4680129 9.82 0.015
Pure Error 5 2383416 476683

Total 17 1814718549

Table 3. Analysis of variance for NiV experiment system.

Source DF Adj SS Adj MS F-Value p-Value

Model 9 2253155418 250350602 132.87 0.000
Linear 3 1367564403 455854801 241.95 0.000

Temperature 1 122627325 122627325 65.08 0.000
Amt of Cat 1 246420693 246420693 130.79 0.000
Volume of HCI 1 1046306380 1046306380 555.33 0.000

Square 3 46835358 15611786 8.29 0.008
Temperature × Temperature 1 31179394 31179394 16.55 0.004
Amt of cat × Amt of cat 1 13996612 13996612 7.43 0.026
Volume of HCI × Volume of HCI 1 5423022 5423022 2.88 0.128

Two-Way Interaction 3 211920524 70640175 37.49 0.000
Temperature × Amt of cat 1 117844018 117844018 62.55 0.000
Temperature × Volume of HCI 1 3637928 3637928 1.93 0.202
Amt of cat × Volume of HCI 1 107477295 107477295 57.04 0.000

Error 8 15072920 1884115
Lack-of-Fit 3 4661904 1553968 0.75 0.569
Pure Error 5 10411016 2082203

Total 17 2268228338

The surface plot models given in Figure 5 show the changes of the selected variables
with those of the HGR in three dimensions according to the experimental design prepared
using RSM. Figure 6 shows contour plots of the HGR values of the NiCr system and the
NiV system. When Figures 5 and 6 are examined, it can be seen that the HGR value was
positively affected by the volume of 0.5 M HCI, the temperature, and the amount of catalyst.
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When the amount of a catalyst is increased, the reaction time decreases. Therefore, the
HGR value increases. During a reaction, the catalyst is coated with potassium metaborate,
which is a by-product, on active sites. Moreover, this causes slow mass transfer of KBH4,
which causes a decrease in catalytic activity. Hence, the amount of catalyst is important [19].
It is possible to obtain faster hydrogen production in a shorter time via increasing the tem-
perature in hydrolysis reactions because temperature is directly related to reaction kinetics.
Similar results have been seen in the literature [12,48]. Hydroxide-ion concentration greatly
slows down the hydrolysis reaction of KBH4 because KBH4 is stable in alkaline media [48].
HCl reduces the pH of environments by reacting with NaOH. Therefore, it accelerates
the hydrolysis reaction by reducing OH activity. It also cleans the catalyst surface [49].
The ambient pH value has been seen to be quite effective on the HGR. It is possible to
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realize faster hydrogen production in a shorter time by increasing the ambient temperature
because the temperature is one of the parameters that directly affects reaction kinetics.
Information on acceleration of the hydrogen production process via increasing the ambient
temperature in the hydrolysis reaction of potassium borohydride is also included in the
literature [19,20].

3.4. Optimization Process and Reusability of Catalysts

In order to verify the results obtained from the regression model obtained as a result
of RSM, experiments were carried out under predicted conditions. In order to verify
the optimized results, the case where the hydrogen production rate was maximum was
chosen. The recommended optimum conditions were 1.65 g of catalyst, 6% KBH4, 3%
NaOH, and 7 mL of 0.5 M HCl solution added at 333 K. The confidence interval of the
regression model was chosen to be 95%. A comparison of the estimated and experimental
HGR values is given in Table 4. When the experiments were carried out under optimum
conditions, the HGR values for NiCr and NiV were calculated as 68.9 L·min−1·gcat

−1 and
76.5 L·min−1·gcat

−1, respectively. These results were found to be compatible with the
relevant regression model and were within the confidence interval. Figure 7 shows the
generated hydrogen volume versus the time of the validation experiment.

Table 4. Comparison of estimated and experimental HGR values.

Catalyst
Sample Response Predicted HGR Value

(mL·min−1·g−1) 95% PI Experimental
HGR Value (mL·min−1·g−1)

NiCr HGR 69,307 60,827; 77,788 68,900
NiV HGR 78,711 72,420; 88,668 76,520
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and 7 mL of 0.5 M HCl at 333 K).

Some of the KBH4 hydrolysis conditions and their HGR values from the literature
are displayed in Table 5. As can be seen in the table, the experimental conditions in the
literature were different. Consequently, the HGR value for each system also changed. The
HGR values in this study are quite notable. In this study, the preparation of nanoporous
thin films of each catalyst and the addition of HCl solution to each reaction medium were
seen to have a positive effect on the reaction rate. In addition, in the catalysts prepared in
this study, only the effect of the coating was seen. HGR values were expected to increase if
a material with a catalytic effect were used instead of a slide as a catalyst support material.
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Table 5. Some catalysts for KBH4 hydrolysis.

Catalyst Initial Reaction Conditions HGR
(mL·min−1·g−1) Reference

TiO2-Supported
Ni-Mo-Ru–B

10% metal/TiO2 ratio, 0.2 g of
catalyst, and 0.2 g of KBH4 at 303 K 2410 [10]

Phosphoric Acid 2.5% KBH4 and 1 M of phosphoric
acid at 303 K 4296 [50]

Ru-Imine Complex 10 mg of catalyst and 2% KBH4 at
303 K 323 K

45,466 and
76,815 [39]

CoCr Catalyst 25 mg of catalyst, 10% KOH and
2% KBH4 at 303 K 2448 [51]

Co(II)-Schiff Base
Complex

2% KBH4, 10% KOH, and 15 mg of
catalyst at 303 K and 323 K

61,220 and
99,746 [20]

TiO2-Supported Ru 2% KBH4, 1% NaOH, and 60 mg of
catalyst at 303 K 137,423 [52]

NiCr Thin-Film
1.65 g of catalyst, 6% KBH4, 3%

NaOH, and 7 mL of 0.5 M HCl at
333 K

68,900 In this study

NiV Thin-Film
1.65 g of catalyst, 6% KBH4, 3%

NaOH, and 7 mL of 0.5 M HCl at
333 K

76,520 In this study

Although high HGR values were achieved in the hydrolysis experiments conducted
under optimum conditions, the reusability tests of the catalysts used were not carried out
under these conditions. The KBH4 hydrolysis reaction is an exothermic reaction [53]. In
addition, an increase in temperature and low-pH environment would have negatively
affected the thin-film catalysts. Therefore, in order to understand the reusability of catalysts
in KBH4, hydrolysis experiments were carried out with 1.5 g of catalyst, 6% KBH4, 3%
NaOH, and 3.1 mL of 0.5 M HCl at 323 K.

In the reusability tests of the catalyst experiments, after each hydrolysis experiment
was completed, the catalyst was washed with deionized water, dried, and then used as a
catalyst in the experiment again. In the first round of hydrolysis experiments carried out
under these conditions, the HGR value for NiCr was calculated to be 52,347 mL·min−1·g−1,
and the HGR value for NiV was calculated to be 55,630 mL·min−1·g−1. A graph of the
reusability of the thin-film catalysts for KBH4 hydrolysis is given in Figure 8. As can
be seen from the graph, the catalysts’ very stable and catalytic activities, especially in
the first three cycles, make them suitable for reuse. Since the prepared catalysts had a
heteroatomic structure, their stability and catalytic activities were good [54]. The catalytic
performances of the NiCr and NiV catalysts in KBH4 hydrolysis were seen to be quite
similar. The hydrolysis characteristic could be said to be generally nickel-based. However,
NiCr produced hydrogen more slowly than NiV produced hydrogen. The reason for this
is that vanadium exhibited a very good catalytic performance despite its small amount
because it is a good reducing agent [55]. However, when these catalysts were examined in
terms of reuse, NiCr was seen to be more durable.

In addition, potassium metaborate, which is a KBH4 hydrolysis byproduct, first
dispersed on the catalyst surface in a simple way, then agglomerated and formed a complex
microstructure. Metaborate oligomers with weak intermolecular reactions, especially seen
in hydrolysis of concentrations greater than 5% KBH4, are thought to directly affect the
catalyst cycle [18].

3.5. The Proposed Mechanism of Catalyzed Potassium-Borohydride Hydrolysis

The added acid solution first undergoes a neutralization reaction with the base in the
feed solution. As a result of the neutralization reaction, the reaction medium becomes acidic,
basic, or neutral. The reaction mechanism of the catalyzed hydrolysis of potassium borohy-
dride is suggested to occur in a neutral or basic medium similar to References [18,26,56,57],
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following these reaction mechanism steps: Firstly, BH4
− ions and water molecule are

chemisorbed on the catalyst. Afterward, H− is transferred from the BH4
− to an unoccupied

adjoining catalyst. Then, the hydrogen atom receives an electron from the catalyst and
leaves the catalyst site in hydridic form (H−). The hydridic hydrogen reacts with a water
molecule to produce H2 and OH−. Finally, this hydroxide anion reacts with boron in BH3
to generate BH3(OH)−. Consequently, the H− is transferred from each BH3(OH)− ion
to the unoccupied adjoining catalyst. The cycle of hydrogen absorption on metal sites
continues until BH3(OH)− forms B(OH)4

− during each cycle. Since the reaction product in
this last step is not supported by the catalyst, it reduces the rate of the hydrolysis reaction.
The proposed KBH4 hydrolysis mechanisms are given in Figure 9. However, the surfaces
of the catalysts used for the reaction mechanism recommended in this study were not
analyzed. In KBH4 hydrolysis reaction in an acidic medium, unlike the reaction in the basic
medium, the BH4

− ion reacts with both water and HCI [53]. Since there is more H+ in the
environment, H2 is thought to be produced more easily with the electrons from BH4

− ions.
This situation reflects the hydrogen production rate positively.
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4. Conclusions

Using response surface methodology, the experimental system could be easily modeled
in a short time with a small number of experiments, and the individual and bidirectional
interactions of the variables that affected the response of the system could be examined
simultaneously. In this study, thin-film NiCr and NiV catalysts prepared with the mag-
netron sputtering method were used for hydrolysis of KBH4. Experimental studies were
planned using the central composite design, and the efficiency of the parameters was deter-
mined with analysis of variance. The optimum parameters for the maximum hydrogen
production rate in hydrolysis of KBH4 were 1.65 g of catalyst, 6% KBH4, 3% NaOH, and 7
mL of 0.5 M HCl at 333 K. The maximum HGR values for NiCr and NiV were calculated
to be 68.9 L·min−1·gcat

−1 and 76.5 L·min−1·gcat
−1, respectively. This study shows that

NiCr- and NiV-catalyzed KBH4 hydrolysis reaction systems for hydrogen generation can
be alternating hydrogen production processes.

Funding: This research was funded by Ankara Yıldırım Beyazıt University Scientific Research Unit
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