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Abstract: The daily non‑uniform power demand is a serious problem in power industry. In addition,
recent decades show a trend for the transition to renewable power sources, but their power output
depends upon weather and daily conditions. These factors determine the urgency of energy accu‑
mulation technology research and development. The presence of a wide variety of energy storage
mechanisms leads to the need for their classification and comparison as well as a consideration of
possible options for their application in modern power units. This paper presents a comparative
analysis of energy storage methods for energy systems and complexes. Recommendations are made
on the choice of storage technologies for the modern energy industry. The change in the cost of
supplied energy at power plants by integrating various energy storage systems is estimated and the
technologies for their implementation are considered. It is revealed that in the large‑scale power pro‑
duction industry, the most productive accumulation methods for energy systems and complexes are
the following: pumped hydroelectric energy storage systems, thermal and thermochemical accumu‑
lations, and hydrogen systems. These methods have the best technical and economic characteristics.
The resulting recommendations allow for the assessment of the economic and energy effect achieved
by integration of storage systems at the stage of designing new power units.

Keywords: energy storage; hydrogen energy; energy systems; CAES; thermochemical accumulation

1. Introduction
1.1. Relevance of the Development and Introduction of Energy Storage Systems

The rapid increases inworld population and industrialization have caused an increase
in power consumption. The International EnergyAgency data show a power consumption
growth of more than 36% in the last 20 years [1]. This has led to the active development of
thermal and electric power production technology, transport, storage, and consumption.
New renewable sources of technology, experimental power production facilities which
run on traditional hydro‑carbon fuels with zero harmful emissions [2], and R&Dworks on
hydrogen power production [3] are all being developed.

The increase in renewable power sources is part of a global trend in the industry. New
solar, wind, and other facilities are being constructed and entering operation. The portion
of these sources in the world power production balance is 28%, and this will grow in the
near future. The main factors that determine this trend are the number of practically in‑
exhaustible primary energy sources and the prospect of almost zero harmful atmospheric
emissions. On the other hand, the inconstancy in terms of supplied energy and its direct
relationship with weather conditions, i.e., wind or clouds, remarkably limit the direct use
of renewable sources in power supply systems.

Akey feature of power supply systemoperation is power demand timenon‑uniformity.
Uneven electric power consumption during daytime, week, and year periods requires the
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operation of production facilities with similar non‑uniform loads. Modern thermal and
nuclear power plants operating on steam–water energy cycles are by far the most com‑
mon sources of power supply and are characterized by relatively low maneuverability in
terms of the main equipment. Their operation in dynamic and low loads modes causes
faster equipment wear and lower reliability and efficiency, which results in increased en‑
ergy supply costs. In nuclear facilities, dynamic operation of reactor circuits is impossible
because of design‑specific features.

These factors bring about the necessity of creating the conditions for system load
smoothening. Here, one of the prospective directions is the introduction of energy accu‑
mulation systems to stabilize the power consumption and production and to expand the
controllability ranges of low maneuverability facilities [4]. These systems may cover sys‑
tem peak loads by using the energy accumulated during low power consumption periods
(Figure 1a) or by using the constant power of the facility (Figure 1b) [5–7]. In the electricity
market, accumulation systems may accumulate energy during the low price periods and
supply it during the higher demand periods at higher electricity prices [8,9].
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1.2. Energy Storage Methods Classification
The energy accumulation principle is based on the transformation of primary energy

into a form that is easier to accumulate and store as well as its further transformation into a
customer‑acceptable form (Figure 2). The accumulation process may consist of sequential
transformation elements or of direct accumulation without transformation, for example,
the accumulation of water in a municipal heat supply system. Nowadays, the methods of
energy accumulation differ with the type of primary energy and storage form.
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The classification of accumulationmethods is necessary because of the variety ofmeth‑
ods. The classification approaches are based on the stored energy type, the forms of con‑
sumed and supplied energy, the storage capacity, or the form of primary energy. Figure 3
presents the classification by primary energy type of the accumulation methods that may
be applied to power supply systems. The accumulation systems may be split into elec‑
trical or thermal primary energy forms. The thermal energy supplied to the system may
be accumulated in the form of heat capacity internal energy or the heat carrier storage in



Energies 2022, 15, 9541 3 of 17

heat insulation systems, for example, accumulating tanks in a city water network. These
are known as heat capacity accumulation systems. Another method involves the applica‑
tion of thermal energy to a special material, such as salt alloys or low melt metals, so as to
change the material. This so‑called phase transition accumulator method uses phase tran‑
sition internal heat. Another prospective technology is known as thermochemical energy
accumulation, whereby thermal energy is used in a reversible chemical reaction and the
energy is accumulated via the storage of reaction products.
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Another class of accumulation system may be defined as the transformation of pri‑
mary electrical energy by electro‑magnet accumulators, which store energy in the form of
electrical or magnet fields. Mechanical accumulators transform electrical energy into the
potential or kinetic energy of a working substance. Electro‑chemical accumulators store
the energy via chemical processes.

The performance of the mentioned accumulation methods may be described by their
specific energy transformation sequences, maximal capacities, power, costs, etc. The appli‑
cation of methods to a power production systems ought to be preceded by an analysis of
the performance and specific features of existing and prospective accumulation methods,
the possible versions available, and the methods of introducing them into power produc‑
tion systems.

This paper presents a review and comparison of energy accumulation methods. The
most prospective schemes are chosen and recommended for their application to power
production systems.

2. Methods for Electric Energy Accumulation
If the primary energy is electricity, it may be accumulated in the form of an electro‑

magnetic field. The energy may be accumulated in magnetic field form promoted by a
superconductive coil (superconductingmagnetic energy storage—SMES). This system can
promptly release its energy into a grid. The use this type of accumulator for grid opera‑
tion support is promising [10]. However, these systems are not widely used because of the
necessity to keep the temperature low in the superconductive coils, which results in high
costs [11].

Capacitors and supercapacitors accumulate energy in the form of an electrical field
formed between electrodes by a potentials difference. Such devices may produce up to
high power levels but their capacity is smaller than that of other systems [12] and the cost
for 1 kWh storage may be too high, making this accumulation method uncompetitive [13].

Additionally, electric energy may be transformed into the potential or kinetic me‑
chanical energy of various solid bodies. The Figure 4 shows an accumulating facility that
uses electricity to lift a massive object. This facility accumulates potential energy by lifting
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the load against gravity forces, with the load descending to discharge electricity produc‑
tion [14]. This technology can be used separately from energy systems, where the special
materials are used as cargo, or it can be integrated into technological processes at facili‑
ties and enterprises where it is necessary to frequently lift and release various objects [15].
There are works that consider the use of gravitational energy storage systems with the in‑
tegration of renewable energy sources [16,17]. The authors of [18] analyzed the prospect
of using of a gravitational energy storage system in existing shafts of hard coal mines in
Poland. The authors found that the obtained economic effects of the solutionwere low, and
therefore there was no economic justification for activities related to its implementation.
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The pumped hydroelectric energy storage (PHES) principle is similar. A PHES uses
either a set of generators and pumps or a convertible hydroelectric facility that can operate
in generator or pumpmodes (Figure 5). During the power consumption dropwhich occurs
at night, the PHES system takes power from an electric grid and uses it to pumpwater into
the pool located high up. During peak power consumption in the morning and afternoon,
the PHES system releases water from the high pool to a lower one, producing electricity
and supplying it into a grid. Modern PHES systems exhibit 60–80% efficiency [19].
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The remarkably large amount of accumulated energy is limited by the pool volume.
Nowadays. PHES systems are widely used and make up over 96% of world energy ac‑
cumulation storage [20]. In addition to its high capacity, a PHES system can produce
high power at high discharge velocities. Furthermore, this method has almost zero storage
losses or a nearly zero self‑discharge level. The shortcoming of this method is the neces‑
sity of the facility to be located nearby to a water source and the necessity of a water pond
buildup, whichmay be environmentally harmful and capital intensive because of thewater
pond levels.
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Certain projects store electricity in the form of compressed air potential energy (com‑
pressed air energy storage—CAES). Electricity drives an air compressor that supplies com‑
pressed atmospheric air to accumulator vessels. In high‑capacity systems, the compressed
air is usually stored in natural caverns or salt caves (Figure 6). For system discharge, the
high‑pressure air is supplied to a combustor or to an air heater, and then the energy is
utilized in a gas turbine [21].
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Figure 6. Compressed air energy storage system.

Nowadays, at least six CAES projects have been introduced and at least seven projects
are beingdeveloped (Table 1). The existingCAESprojects have amaximal power of 290MW
(Huntorf plant) and a 2860 MWh capacity (McIntosh) [22]. Nearly all operating CAES sys‑
tems store air in salt caves [23].

Table 1. Operating and planned CAES projects.

Location Year Power, MW Capacity, MWh Efficiency, %

Operating CAES projects

Huntorf plant, Germany 1978 290 580 42
McIntosh, Alabama 1991 110 2860 54

Gaines, Texas 2012 2 ‑ ‑
Goderich, Ontario 2019 2.2 10 ‑
Jiangsu, China 2022 60 300 60

Zhangjiakou, China 2022 100 400 70.4
Sardinia, Italy 2022 2.5 4 ‑

Planned (and unrealized) CAES projects

Bakersfield, California 2009 300 ‑ ‑
Watkins Glen, New York 2010 150 ‑ ‑

Essen, Germany 2013 200 1040 70
Cheshire, Britain 2017 40 800 ‑
Northern Ireland 2019 330 ‑ ‑

New South Wales, Australia 2022 200 1600 ‑
San Luis Obispo, California 2022 400 3200 ‑

Rosamond, California 2022 500 4000 ‑

In addition to the transformation of electricity into potential energy, certain systems
transform it into kinetic energy, specifically into flywheel rotation energy. An electric mo‑
tor rotates a massive body located in a vacuum pit. The friction losses are small, so the
flywheel shaft saves its rotation energy for a time. In the discharge, this energy is spent
for the electricity generator drive [24]. The capacity of such accumulators is mostly deter‑
mined by the flywheel mass and size, so these systems are not widely used. The flywheel
can store energy for a short amount of time, and these systems have a high degree of self‑
discharge. The maximum storage period usually does not exceed 1 h, so this technology
has not been widely used in power systems and complexes.
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Electric energy may be accumulated in a secondary power source or an electric ac‑
cumulator. This method is widely used in modern devices, from domestic gadgets to
transport. In the power industry, accumulators are not so widely used, especially in high‑
capacity systems. Most of the projects of this type are based on the application of lithium‑
ion accumulators. Lithium‑ion batteries have a high energy density, high efficiency, and
low self‑discharge. Existing storage projects based on the operation of Li‑ion batteries can
develop a discharge power of up to 100 MW, with their round‑trip efficiency reaching
95% [25]. Another important advantage of these batteries is their high specific mass and
volume capacity.

This is due to the advantages and efficiency of this type of system. To compare the
capacities and power parameters of different chemical batteries, lithium‑ion accumulators
have the best capacity and specific power and smallest self‑discharge degree. Because of
these advantages, most existing high‑power projects use systems of this type.

Electrolysis facilities with hydrogen fuel accumulation are also a prospective energy
accumulation direction. These systems use electricity for water electrolysis and hydrogen
production. The hydrogen is stored in storage systems, vessels, or natural subterranean
cavities. Then, electricity is produced by hydrogen combustion in a gas turbine or in a
fuel cell (Figure 7) [26]. The accumulation capacity is directly determined by the amount
of stored hydrogen. The power of the facility is determined by the electrolyzer and gas
turbine or the fuel cell performance.
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This technology is promising due to the possibility of a large amount of energy being
stored and a high‑power capacity. In [27], the authors showed that the hydrogen storage
capacity may be equal to or even higher than a PHES system. However, this technology
has many problems which are yet to be solved concerning the production, transportation,
and storage of hydrogen fuel. Furthermore, the high capital costs of the main components
of hydrogen storage systems (fuel cells and electrolyzers) is one of the key problems con‑
cerning their implementation in the energy sector [28]. Although the system’s efficiency is
still comparatively low, hydrogen accumulation system technology is a prospective R&D
direction [29].

3. Thermal Energy Accumulation Methods
In heat insulating systems, a heat accumulator stores energy as the internal energy

of a heat‑accumulating material (thermal capacity filling) or as the physical storage of a
high potential heat carrier. Currently, the most widely used accumulators of this type are
heated water accumulators. These are favored because of the low price of water, their high
heat capacity, and their availability [30].

These systems require the efficient heat insulation of the accumulator tank walls since
the thermal resistance directly determines the self‑discharge rate. The water tanks are of‑
ten subterranean or semi‑subterranean, with the walls partly or completely located below
ground level, which reduces the heat flux through walls [31]. These systems have a high
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accumulation capacity and a low self‑discharge rate. Systems featuring heat storage in the
ground or the storage of underground material are more simple from a structural point of
view, but they have a lower energy storage capacity [32].

A system may store high temperature or cool water. When used with the cool water,
the system works as a frost accumulator. Ice accumulation forms another class of system.

Heat accumulation systemswith high potential heat carriers have an efficiency of 59 to
90 % due to pumping and heat conductivity losses. Their storage capacity is determined
by the accumulator tank volume and the allowable temperature of the heat carrier. In
Russia, subterranean or semi‑subterranean tanks of 20 thousand cubicmeters are currently
available. An increase in tank volume reduces the specific capital investment in terms of
energy storage [33,34].

In addition to accumulation in the heat capacity of a carrier, heat may be stored by
means of phase transition accumulators. During low power demand periods, a portion
of the produced energy may be used for the phase transition of a low melting agent, for
example salt alloy [35]. At the moment of the peak load, the heat is usually released by
the crystallization of the agent. This accumulator type has a high energy capacity that is
due to the accumulation process performance. The phase transition heat of salt alloys and
low melt metals is much higher than that needed to hear water up to 95 ◦C. Table 2 sum‑
marizes the main parameters of the metals used for phase transition accumulators (PTA).
Works are also underway to develop new materials for phase transition energy storage
systems [36–38].

Table 2. Materials for phase transition accumulators.

PTA Type Melt Temperature Range, ◦C Accumulated Energy
Density, MJ/m3

Organic staff 20–70 150–250
Salt hydrate and mixtures 25–80 200–400

Salts and mixtures 140–1000 300–1900
Metals and alloys 270–1000 540–3000

Thermochemical energy storage (TCES) systems represent a promising developmen‑
tal direction. In such systems, heat is used in convertible reactions followed by heat con‑
sumption and release. In these systems, energy is accumulated via the storage of chemical
transformation components. The thermochemical accumulation reactions may be between a
solid and a gas where carbonates, hydroxides, metal hydrides, or metal oxides are used [39].
Additionally, the reactionmay be between gases: ammonia synthesis/dissociation, methane
reforming, or sulfur base reactions (Figure 8).
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andpressure, and the availability of components. More than 20 different types of reversible
thermochemical reactions are known in the context of energy storage and transportation
systems, including the dissociation of ammonia (1), calcium carbonate and calciumhydrox‑
ide (2), (3) steam and carbon dioxide reforming (4), and others (5) [40]:

2NH3(g) + 67 kJ/mol <—> N2(g) + 3H2(g) (1)

CaCO3(s) + 178 kJ/mol <—> CaO(s) + CO2(g) (2)

CaO + H2O <—> Ca(OH)2 + 104 kJ/mol (3)

CH4(g) + H2O(g) + 250 kJ/mol <—> 3H2(g) + CO(g) (4)

CH4(g) + CO2(g) + 247 kJ/mol <—> 2H2(g) + 2CO(g) (5)

The reversible reaction componentsmay be used for accumulation or for long distance
transportation. Heat is consumed in an endothermal reaction, and the reaction products
may be stored or transported. An exothermal reaction takes place at the energy consumer
site. The produced heat is consumed during the discharge periods. The reaction products
are accumulated and transported to the heat source where they are used for charging [41].

4. Areas for the Application of Accumulation Methods
4.1. Main Performance Charactristics of the Accumulation Systems

The large variety of accumulation methods requires a comparative analysis of their
performances based on the main parameters defined for the comparison. The main pa‑
rameters to be marked are the following:
1. Energy capacity, which describes the maximal amount of stored energy, MWh;
2. The system charge/discharge power or round‑trip power, MW;
3. The round‑trip cycle efficiency, which describes the energy losses in the accumulation

system transformation sequence, %;
4. Self‑discharge, which describes the energy losses associated with long‑term energy

storage, %/day;
5. Specific mass/volume capacity and power, which determine the mass and dimen‑

sional system performance, MWh/kg (MWh/m3);
6. Cost parameters, which showcapital investments per unit of energy capacity ($/MWh)

and power ($/MW).
In power production systems, these performance characteristics determine the appli‑

cability of the technology.
The performance of existing and prospective accumulation systems may be remark‑

ably different. The review of published materials creates a foundation for a comparative
analysis in term of operating and developing accumulation methods.

Figure 9a shows the storage capacity and power of each accumulation system. The
capacity of the largest pumped hydroelectric energy storage system in the world (Fengn‑
ing Pumped Storage Power Station, China) is currently up to 3.6 GW [42], with the stor‑
age capacity primarily being determined by the water reservoir volume. A thermochem‑
ical accumulation and hydrogen system capacity is primarily determined by the storage,
gasholder, tank, subterranean cavity size, and its power is limited by the performance of
the equipment.

Figure 9b compares themass anddimensional performances of accumulation systems.
The mass and dimensional capacity of hydro‑accumulating plants is directly determined
by the pool’s height difference. These PHES parameters are comparatively low. Hydrogen,
thermochemical, and thermo‑capacity systems have perform better, first of all because of
the high combustion heat of hydrogen or the power output in fuel cells and the heat of
reversible reactions and phase transformation. Flywheel technology cannot be used for
the storage of large amounts of energy.
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Heat capacity accumulation systems are among the cheapest type of system
(Figure 10). Hydrogen and chemical accumulations are the most capital‑intensive energy
storage methods.
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In addition to these parameters, an important applicability factor is the possibility
of the accumulation facility location being at a short distance from power production or
consumption objects. For example, hydro‑accumulating power plants requirewater ponds
or storage and the air accumulators require large subterranean cavities such as salt caves,
which significantly limits the locations of such systems.

4.2. Accumulation Systems in Energy Production Systems and Complexes
The choice of the accumulation system type and scheme is a topical problem. Most

of the reviewed methods may be combined with other power generation facilities such as
solar or nuclear facilities. This may improve the flexibility and stability of a power plant.
Also, this may help in support of the electricity grid regime.

Feed water accumulation (Figure 11) is a promising option for thermal and nuclear
power plants that work in water–steam cycles. During the charge period, a pump supplies
an additional condensate flow from the cold condensate tank. The feed water is heated up
to the given temperature by an additional heater operating on primary steam, and the
steam flow into the high‑pressure heater (HPH) is increased. Additionally, a drop in the
boiler steam production reduces the block power. During the discharge period, the feed
water is supplied from the accumulator tank into the feed water pipeline after regenera‑
tion. The excessive condensate after low‑pressure regeneration enters the “cold” conden‑
sate tank. The power increase is provided by the HPH reduction or termination in the
discharge regime. The accumulator tank pressure in the discharge mode is maintained by
its connection with the primary steam pipeline, which prevents the water from boiling.
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water accumulation that is storage and release of the district heat supply water (Figure 12).
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The accumulation of water heat carriers in atmospheric type tanks is limited by the
95 ◦C fluid temperature that prevents the water from boiling. The manufacturing and
operation of high‑pressure tanks is complicated, and their price is significantly higher than
that of atmospheric tanks. To achieve heat accumulation at a higher temperature, it is
necessary to use an intermediate accumulating heat carrier, for example, of oil (Figure 13).
This method’s higher boiling temperature allows for accumulation at a higher potential
heat, but this requires additional heat exchangers to transfer heat from the steam–water
heat carrier.
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is used for the phase transformation of a low melting agent, for example, salt alloy. Dur‑
ing the peak load period, the heat is usually released by the crystallization of the agent,
and the energy is used, for example, in a special peak turbine that covers the peak loads
(Figure 14).
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Another prospective power block scheme featuring thermochemical heat accumula‑
tion is energy transformation based on a thermochemical reaction with heat consumption
and release.

Papers [43–45] describe the accumulation of the heat obtained from renewable heat
sources by reversible reactions based on calcium. The cycle charge involves the reaction
of CaCO3 synthesis with heat consumption in a carbonator. In the discharge, it dissoci‑
ates into carbon dioxide and calcium oxide, with the heat release occurring in a calciner
(Figure 15a). Another example of this is the application of ammonia synthesis and dissoci‑
ation (Figure 15b) [46,47].
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Papers [48,49] considered heat transportation and storage via methane reversible re‑
actions, carbon dioxide, and steam reforming (Figure 16). The reforming catalytic reaction
produces a synthesis gas that enters a reactor where it produces methane, carbon dioxide,
and water and releases heat that is supplied to a customer. This released heat may be also
used in a traditional steam turbine cycle.
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In addition to reversible chemical reactions, a thermochemical accumulation systems
may employ synthesis gas frommethane for direct combustion and the feeding of a gas tur‑
bine (Figure 17) [50,51]. A portion of the combined cycle facility flue gas heats themethane,
reforming and synthesizing gas production. During the discharge period, the accumulated
synthesis gas is burned in a gas turbine for additional electricity production.
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Figure 17. Combined cycle facility equipped with methane steam conversion.

Electrochemical accumulation systems with electrolyzers may produce additional fuel
by superheating wet steam for low‑pressure turbines in thermal or nuclear power plants [52].
The electrolyzers take power from a grid or fromNPP auxiliar consumption and uses it for
the dissociation of water into hydrogen and oxygen. During discharging, the fuel burns in
a hydrogen combustion chamber, and the generated steammixes with the wet steam, with
the high‑pressure turbine increasing its temperature and dryness (Figure 18). Another
application of accumulated hydrogen is in reversible fuel cell power production [53]. A
hydrogen production and storage system can be up to 30% of the total capital intensity of
a station [54].
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One more prospective method in gas turbines is the compressed air energy storage
system (CAES). A small number of CAES facilities operate such systems successfully. Built
in 1978, the CAES facility in Huntorf (Germany) was the first and simplest possible facility,
with minimal power production equipment in the form of an air compressor, combustor,
and gas turbine (Figure 19a). The facility efficiency was below 42%. The CAES facility in
McIntosh, USA included a heat recuperation systemwhich increased the facility efficiency
up to 50–55%. In both facilities, the combustor increased the turbine inlet temperature
(Figure 19b). This solution may be reasonable in the case of cheap fuel. Otherwise, it is
reasonable to apply fuel‑free adiabatic CAES schemes (Figure 20) [55].
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The accumulation of compressed air heat is the key problem in adiabatic CAES sys‑
tems. The simplest solution to this is the storage of thermal energy in the air heated by its
compression (Figure 20a). This requires efficient heat insulation in terms of the storage sys‑
tems. The high storage temperature reduces the volumetric storage density and increases
the compression power. These shortages lower the prospects of such system in compari‑
son to systems with additional buildup accumulation (Figure 20b). In these systems, the
compressed air releases its energy into a heat accumulation system, usually a heat capacity
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system, and the cooled air enters the compressed air storage [56]. During discharge, the
compressed air is heated by the heat accumulated in thermal energy storage and expands
in a turbine, producing electricity.

The capacity of the compressed air energy storage systems is mostly determined by
the subterranean cave, or some other cavity volumes and the maximal compressed air
pressure. The system capacity may be increased by a liquation system installed down‑
stream compression (Figure 21). This allows a remarkable reduction in the stored fluid
volume [57] and increase in the system total capacity.
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Table 3 shows the main financial indicators of certain energy complexes with promis‑
ing energy storage systems. The addition of storage systems significantly increases the
capital intensity of the complex; however, the flexibility of power units increases, and it
becomes possible to regulate the load level over a larger range.

Table 3. Main characteristics of energy complexes with energy storage systems.

Energy Complex Unit Power,
MW

Unit Specific Capital
Cost, $/kW

Accumulation
System Specific

Capital Cost, $/kW

Energy Complex
Specific Capital
Cost, $/kW

TPP with feed water accumulation 50–300 1200 200 1400
Steam turbine CHP plant with
heated water accumulation 50–300 1200 100 1300

TPP with phase transition
accumulation 50–300 1200 400 1600

Concentrating solar power plant 50–390 5600 2000 7600
CCPP CHP with steam reforming 200–500 1100 1400 2500
NPP with hydrogen superheating 1000–1200 5000 1500 6500

CAES 60–300 700 600 1300

5. Conclusions
This paper presents a review of energy accumulation methods and their application

in power production facilities and plants.
1. In the large‑scale power production industry, the most promising accumulation

methods for energy systems and complexes (systems characterized by the best capacities
and costs/performances) are the following:
• Pumped hydroelectric energy storage systems are widely used and approved as a

storage technology. The associated large volumes of stored energy and relatively low
cost of supplying electricity determined the applicability of this technology.

• Thermochemical accumulation is a promisingmethod that allows for large amounts of
accumulation and prompt energy release. The use of this technology can help increase
the flexibility of power units.
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• Thermo‑capacity accumulation includes feed water heat supply tanks and phase tran‑
sition accumulators. The main advantage of such systems is their low capital costs.
Electrochemical accumulatio, especially electrolysis systems including hydrogen sys‑

tems, are currently being actively developed. This technology promises a large amount
and power, which makes these methods prospective.

2. Accumulation systemsmay be integrated into power production plants, steam and
gas turbine facilities, and renewable power sources. Accumulation systems smooth elec‑
tricity consumption peaks and supply power in the case of insufficient equipment power
due to weather or conditions, etc.

3. Possible options for the use of energy storage systems in energy complexes to increase
the possible level of load regulation have been considered. Thermochemical storage systems
for concentrating solar power plants, water accumulators for thermal power plants, hydrogen
storage at nuclear power plants, and methane reforming at combined cycle power units are
an important direction in the development of power generation technologies.
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Nomenclature
CAES compressed air energy storage
CCPP combined cycle power plant
CHP combined heat and power
HPH high‑pressure heater
NPP nuclear power plants
PHES pumped hydroelectric energy storage
PTA phase transition accumulators
SMES superconducting magnetic energy storage
TCES thermochemical energy storage
TPP thermal power plant
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