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Abstract: The present study investigates low-grade heat utilization in ejector refrigeration systems
under hot climatic conditions. A variable area ejector is used to maximize the harvested heat from
the generator of the solar system at peak times. Exergy, economic, and exergoeconomic analyses are
conducted to evaluate the performance of the system. A thermodynamic model of the system has
been developed using Ebsilon Professional software. Available experimental and theoretical data
validate the results. The effects of properties of the working fluids, ejector geometry, and operation
conditions are also evaluated. It was found that the coefficient of performance of the system reached
0.45 at a generator pressure of 3 bars. Furthermore, it was noticed that the overall exergy efficiency
could be increased for a fixed generator temperature while increasing the ejector area ratio. A value
of 21% exergetic efficiency was calculated for the system. The exergoeconomic analysis of the system
demonstrated that heat exchangers are required to be improved thermodynamically at the expense of
the capital investment cost.

Keywords: ejector; refrigeration; solar collector; exergy analysis; exergoeconomic; optimization

1. Introduction

Recent years have been plagued by environmental disasters that can be directly
credited to global warming effects. Many nations worldwide are making tremendous
efforts toward greener and more efficient energy sources. One of the promising avenues is
solar energy. Solar energy is abundant and reliable, hence its popularity [1,2]. In countries
located in arid climates, it has been found that one of the highest energy consumers is the
residential air conditioning demand. In such areas, there is a high potential to utilize solar
energy, leading to high energy savings. Research studies have been conducted to analyze
the use of solar energy for refrigeration purposes [3,4]. Ejector refrigeration machines have
a long history of application [5–7].

Africa, Asia, and several parts of other continents are characterized by hot and dry
climatic conditions. The average daytime temperature is usually above 30 ◦C, which in-
creases the need for air conditioning [8]. The ejector refrigeration systems (ERS) could be
implemented in the air conditioning application. This would be advantageous because
not only would it reduce reliance on the national grid, but it would also help with envi-
ronmental concerns [9]. An ejector is also called a “jet compressor”. Ejector refrigeration
systems beyond the thermally-driven refrigeration systems, i.e., that utilize low-grade heat
and are attractive when driven by solar energy. [10]. They can be incorporated into various
system configurations and combined with power cycles [11]. Ejectors are reliable because
they have no moving parts. They also have relatively low capital costs and operating and
maintenance expenses. Ejector refrigeration systems have much lower performance when
compared to vapor-compressor systems because of their thermodynamic cycles [12].

Ejectors can be grouped based on their nozzle position, design, and number of phases.
The constant pressure mixing (CPM) ejectors are more applicable than constant area mixing
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ejectors due to their ability to work against higher back pressures and their superior
performance [13]. Constant area mixing (CAM) corresponds to higher mass flow rates.
A recent paper discusses combining CPM and CAM ejectors to create a constant rate of
momentum change. The constant rate of momentum-change (CRMC) configuration type
uses a variable area section to optimize the flow passage area, reducing the chances of
thermodynamic shocks and improving ejector performance. The geometry of the nozzle
can affect how the ejector operates [14,15]. The nozzle geometry can be convergent, which
means that the ejector can work at subsonic conditions and achieve the maximum sonic
velocity at the exit of the suction. The flow through the ejector can reach supersonic
speeds [16].

Ejectors are influenced by back pressure during sub-critical mode. As the pressure in
the mixing chamber rises, a shockwave enters the process, interacting with the mixing and
raising the pressure even higher. When the vacuum is turned off, the primary flow in the
suction chamber reverses. The flow through an ejector can be either one or two phases [17].
Two-phase ejectors can be classified by flow type: condensing ejectors, where the primary
flow condenses in the ejector, and two-phase ejectors, where the flow is two-phase at the
outlet [18].

The performance of the variable geometry ejector can be predicted by two 1-D mathe-
matical models. The so-called Huang’s model is a model that is used because it considers
the ejector’s critical point of operation. This model is applicable for variable geometry
ejectors [19,20]. Another model, Chen’s model, is used as a comparison tool to study ejector
operation in either the subcritical or critical. In both cases, there is some hypothetical
effective throat at which the speed of the secondary flow reaches its maximum value. Just
after this section of the throat, the mixing process of the primary and secondary streams
begins at a uniform pressure [21].

A study of a solar ejector refrigeration system (SERS) was carried out for the Mediter-
ranean Sea region, and the authors found that the overall efficiency had a lower performance
at the solar radiation peak [22]. As the flow increases, the ejector will be choked, and the
harvested heat in the generator will not be fully utilized. The thermal efficiency of the
SERS is decreased as the solar radiation approaches its maximum value. The ejector flow
caused a stoppage, which prevented the generator from using all the solar heat it could [23].
Recent research innovations have helped improve system performance, including the use of
special refrigerants, the use of renewable energy, and reduced mechanical pump work [24].

Exergy and exergoeconomic analyses were carried out to study the performance of
the ejector refrigeration system. An exergoeconomic analysis was conducted for series and
combined double effect ejector systems to evaluate the effect of key operating conditions
on the investment and product costs. It was found that the implementation of ejector
to the other thermodynamic cycles has an economic advantage over the double effect
system [25–27]. An exergy study of the Kalina power-cooling cycle with an ejector was
conducted to optimize the system using exergy and pinch analyses [28]. The frictional losses
on the ejector’s wall were investigated by developing a two-dimensional model for the
ejector. MATLAB software [29] was used to solve the exergy, energy, and exergoeconomic
equations of the model, and a multi-objective optimization was carried out [30,31].

So-called 4E analysis was conducted for an integrated process with capturing carbon
dioxide and storage, in combination with organic Rankine and absorption refrigeration
cycles [32]. Furthermore, an experimental analysis of a solar-assisted heat pump with
energy, exergy, economic and exergoeconomic analysis was carried out [33].

In addition, it should be mentioned that hot climatic conditions significantly influence
the exergetic and economic characteristics of any heat-driven refrigeration system [34].

Considering the above literature, although ejector refrigeration systems have been
around for some time, many improvements to the original design have been researched.
The operating principle of the ejector refrigeration systems states that the ejector’s ability
to expel refrigerant is limited, and a maximum flow rate is permitted, especially when
the heat source is dynamic (as in a solar-driven system). The present work addresses a



Energies 2022, 15, 9540 3 of 19

solar-driven ejector refrigeration system with an adjustable area ratio to cope with the
variation in the generator operating conditions. The ejector as a component has been
modeled in MATLAB, and simulations of the system in EbsilonProfessional. The energy,
exergy, economic, exergoeconomic analyses, and a sensitivity analysis of the system were
carried out to find the optimum operating conditions. The aim is to determine the optimal
combination of the variable ejector dimensions. Attention has been given to applying solar
ejector refrigeration systems under hot climatic conditions.

2. Materials and Methods

An ejector refrigeration system consists of a generator, evaporator, condenser, throt-
tling valve, pump, and ejector. The schematic of the evaluated system is shown in Figure 1a.
The saturated vapor from the generator (state 1) is the primary stream at a low velocity; it
enters the converging-diverging nozzle, where it is accelerated. At the exit from the ejector
(state 3), the supersonic accelerated refrigerant flow exits at low pressure while creating
a suction effect, and the secondary stream (low-pressure refrigerant from the evaporator)
is entrained (state 2). In the critical operation mode of the ejector, a shear layer is formed
due to the gradient of velocity between the secondary and primary flows. The secondary
stream is accelerated to sonic speed. The mixing process begins when the flow is obstructed.
The interactions of the primary and secondary streams with the ejector wall add to the
mixing process complexity. After the mixing process, a shock wave could form, either in the
constant area chamber or at the diffuser inlet. The operational conditions determine the lo-
cation of the shock wave. Normal shock causes the flow velocity to change from supersonic
to subsonic, resulting in a significant increase in pressure. Finally, in the diffuser section of
the ejector, the mixed flow stream pressure rises and exits at the condensation pressure.

After the condenser (state 4), the refrigerant splits into two parts. The evaporation of
the refrigerant provides the target refrigeration effect (process 8-2) and leaves the evaporator
as a saturated vapor.
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Figure 1. (a) Schematic of the evaluated system. (b) Schematic of the variable are ejector.

In the present study, we perform the simulation based on an ejector with variable
area ratios. In Figure 1b, a schematic diagram of the variable area ejector is presented.
The variable area ejector consists of five parts: primary nozzle, suction chamber, mixing
chamber, diffuser, and a spindle, which is driven by a motor. With its movement, the
effective flow area of the primary nozzle changes accordingly. By this, the primary flow
rate of the ejector can be adjusted, which in turn leads to a variation in the secondary flow
rate. This model will accommodate the variation in the solar radiation during the day and
allows the harvesting of more energy and increases the performance of the system. Figure 2
represents a screenshot of the proposed system in the Ebsilon Professional software.
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The selection of an appropriate refrigerant is a critical issue for ejector refrigeration
systems. The ecological properties of the refrigerant (i.e., ozone depletion potential (ODP),
and global warming potential (GWP)) should also be taken into account. In addition, it is
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preferable if the fluid is non-corrosive, has low toxicity, is non-explosive, chemically stable,
inexpensive, and commercially available.

In the present design, the refrigerant R141b has been chosen. R141b is a pure hydroflu-
orocarbon (HFC) working fluid with no chlorine atoms, i.e., ODP = 0 and GWP is negligibly
small. It is considered an appropriate refrigerant for ejector refrigeration systems due to
its high performance in terms of coefficient of performance (COP) and entrainment ratio
compared with other refrigerants [35,36].

3. System Modeling and Evaluation

For the simulation, the following has been assumed: steady state condition; 0.01 bar
pressure drop in pipes with negligible heat losses in the generator and evaporator; the
cooling air temperature of the condenser is 5 ◦C higher than the ambient temperature; the
refrigerant at the evaporator exit is saturated vapor. In addition, an adiabatic ejector is
assumed with a 1D steady flow. The changes in kinetic energy at the inlet and exit of the
ejector are neglected, and ejector efficiencies are used to calculate the losses in the ejector
sections. A constant pressure mixing process is assumed in the mixing chamber. The
thermodynamic properties are calculated using Ebsilon Professional.

3.1. Ejector Modelling

An ejector 1D mathematical model is used to evaluate and predict its performance. The
used governing equations are mass, momentum, and energy for a compressible flow. The
Mach number and pressure at the exit of the primary nozzle are then calculated assuming
isentropic flow using the isentropic flow equations. Then, assuming that the secondary
flow is choked, the pressure of the secondary flow at that section. The energy balance is
applied to the mixing process to estimate the mixing temperature, which is then used to
find the mixing Mach number.

Mm =
Vm√

γRgTm
(1)

where, vm is the mixed-flow speed, Rg is the ideal gas constant, γ is the gas specific ratios,
Tm is the mixed flow temperature.

The pressure and the Mach number at the diffuser exit are calculated after determining
the mixing Mach number at the constant pressure mixing process. The pressure at the exit
can be calculated as

Pc

P2
=

(
1 +

γ − 1
2

M2
2
) γ

γ − 1
(2)

where Pc is the pressure of the constant mixing process, P2 is the pressure at the diffuser exit.
Figure 3 depicts a flowchart of the process calculation and the equations used in the

energy analysis are presented in the Supplementary Materials.
The ejector efficiency definition used is based on ASHRAE, which relates the actual

recovered energy of compression to the theoretical maximum energy available in the
motive stream.

ηejector =

( .
mg +

.
me
)
(hc,in − he,out)

.
mg
(
hg,out − he,out

) (3)

where
.

mg is the mass flow rate in the generator,
.

me is the mass flow rate at the evaporator,
he,in is the enthalpy at the inlet of the condenser, he,out is the enthalpy at the exit of the evap-
orator, hg,out is the enthalpy at the generator exit. The ejector specifications are presented in
Table 1.
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Table 1. Ejector and entire system specifications.

Specification Value

Throat diameter (dt) 0.508 mm
Area ratio

(
Ap1/At

)
2.905

Specific heat ratio (γR141b) 1.2
Area ratio (A3/At) 4
Primary stream isentropic efficiency

(
ηp
)

0.95
Sec ondary stream isentropic efficiency (ηs) 0.85
Frictional losses coefficient of the primary flow (ϕp) 0.88
Mixed flow frictional losses coefficient (ϕm) 0.84
Generator pressure

(
pg
)

3.6 bar
Generator temperature

(
Tg
)

75 ◦C
Evaporator temperature (Te) 11.76 ◦C
Condenser temperature (Tc ) 33 ◦C

3.2. System Performance

The entrainment ratio, ω, the compression ratio, Rc, and the COP are parameters that
describe the ejector refrigeration system

ω =
ms

mp
(4)

where ms is the secondary mass flow rate and mp is the primary mass flow rate.

Rc =
pc

pe
(5)

COP =

.
Qe

.
Qg +

.
Wp

(6)

where
.

Qe is the evaporator cooling capacity,
.

Qg is the generator heat load, and Wp is the
pump work.

3.3. Exergy Analysis

Exergy analysis provides a more accurate and robust analysis of the thermodynamic
system compared to energy analysis. The total exergy of the system consists of chemical,
physical, potential, and kinetic exergy. Only physical exergy will be considered in this study.

The exergy analysis has been conducted using the “fuel (
.
EF)/product (

.
EP)” ap-

proach [37]:

• For the entire system
.
EF,tot =

.
EP,tot +

.
ED,tot +

.
EL,tot (7)

The subscripts F, P, D, and L indicate fuel, product, destruction, and losses, respectively.

• On the kth component level
.
EF,k =

.
EP,k +

.
ED,k (8)

The evaluation is based on:

• Exergetic efficiency of the entire system

εk =

.
EP,k
.
EF,k

(9)

• Exergetic efficiency of the kth component

εtot =

.
EP,tot
.
EF,tot

(10)
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• The exergy destruction ratio

y∗D,k =

.
ED,k
.
ED,tot

(11)

3.4. Economic Analysis

The total revenue requirement (TRR) method is used to examine the economic analysis
of the system. To perform the TRR, the system’s total capital investment (TCI) must first
be estimated based on the cost of each purchased item (PEC), after which the parameters
for the detailed cost calculation’s economic, financial, operating, and market inputs are
determined. Finally, the succession of expenses will be levelized into a constant number
with a comparable financial value (annuity). Estimating the PEC of each component with a
precise method is the most important and difficult portion of the economic analysis; this is
particularly tough for new and unproven technologies. The range of cost estimation errors
is typically between 10% and 30%. Given that the suggested system is innovative, the
cost estimation may be less accurate than expected. To estimate system costs and further
support system performance evaluation, the TRR approach is still a viable alternative as
the foundation for the exergoeconomic study.

The TRR consists of carrying charges (CCL) and the expenses of the fuel (FCL) and
operation and maintenance (OMCL)costs:

TRRL = CCL + FCL + OMCL (12)

The CCL is the capital investment (including total capital recovery, preferred stock,
return on investment, income taxes, and insurance). This means that it is the value of the
total capital investment cost (TCI), which is composed of the fixed capital investment (FCI)
and the interest accrued:

TCI = FCI + interest (13)

The FCI is obtained by adding the bare module cost (BMC) to the service facilities
and contingencies funds. The FCI represents the total system cost at time = 0; that is
before construction. The indirect system costs include construction costs, contingencies,
administrative fees, and engineering.

To calculate the TCI, we need to estimate the purchase equipment cost (PEC) using the
following approach:

CPE,re f = CPE,known

(
Xnew

Xknown

)α

(14)

where CPE,re f is the approximate equipment costs with the size Xnew, CPE,known is the known
equipment costs with the corresponding size Xknown, and α is the size exponent.

The third step is to adjust the estimated equipment cost to the reference year. The
reference year is 2019:

CPE,re f = CPE,old

(CEPCIre f

CEPCIold

)
(15)

where ref is the year, the equipment is to be purchased and old is the year the cost of the
equipment is known.

After calculating the current equipment purchase cost, the equipment’s nature and
characteristics must be considered in the form of factors. Material and pressure correction
factors (MPF) are defined for unique materials, high pressure, designs, and materials.

The final step is the module factor (MF) cost. This accounts for labor, piping, instru-
mentation, and everything necessary at the installation stage. The bare module cost (BMC)
can be calculated using:

BMC = CPE,re f ,new(MPF + MF − 1) (16)
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The total direct costs are the sum of BMC, while the indirect costs are calculated as a
percentage of the total direct costs.

The constant escalation levelization factor (CELF) and the capital recovery factor (CRF)
are calculated as

CRF =
ie f f

(
1 + ie f f

)n

(
1 + ie f f

)n
− 1

(17)

where ie f f is the effective interest rate, and n is the economic lifetime.
FCL and OMCL are determined as

FCL = FC0 × CELF = FC0 ×
kFC
(
1 − kn

FC
)

1 − kFC
× CRF (18)

With kFC = 1 + rFC
1 + ie f f

and kOMC = 1 + rOMC
1 + ie f f

where rFC is the average inflation rate of
fuel and rOMC is the operation and maintenance cost. FC0 is the fuel cost in the first year
of operation.

3.5. Exergoeconomic Analysis

This combined exergy and economic analysis provides more comprehensive infor-
mation that is unavailable through a conventional energy, exergy, and economic analysis.
Exergoeconomic analysis is based on cost balances on the component level [37], i.e.,

.
CP,k =

.
CF,k +

.
Zk (19)

cp
.
EP,k = cF

.
EF,k +

.
Zk (20)

where the average cost of fuel cF =
.
CF,k.
EF,k

and product cp =
.
CP,k.
EP,k

within a component; and the

exergy destruction cost rates within the component
.
CD,k = cF

.
ED,k, and the entire system

.
CD,tot = cFtot ∑

.
ED,k.

Exergoeconomic factor fk is used in the optimization procedure to make decisions
of either investing in a more efficient components to reduce the exergy destruction or to
sacrifice efficiency to decrease the costs associated with the carrying charges:

fk =

.
Zk

.
Zk +

.
CD,k

(21)

4. Results and Discussion

The mathematical model has been solved by EBSILON Professional Software, and
the system key properties and parameters are calculated. The simulation results of the
proposed system are reported in Table 2.

The mathematical model has been validated by already published data in the litera-
ture [38]. Comparisons between the obtained results and those published in the literature
for evaporator temperatures of 12 ◦C are presented in Table 3. The depicted good agreement
between the obtained results and the data published in the literature gives confidence in
the present model and its results.
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Table 2. Simulation results of the proposed system.

Stream No. Material Mass Flow Rate Temperature Pressure Specific
Enthalpy

Specific
Entropy

Specific
Physical Exergy

[kg/s] [◦C] [bar] [kJ/kg] [kJ/kgK] [kJ/kg]
1 R141b 0.030 75 3.59 488.79 1.8621 53.24
2 R141b 0.157 12 0.47 236.82 1.1302 1.20
3 R141b 0.187 38 1.03 464.16 1.8711 26.17
4 R141b 0.187 32 1.02 236.82 1.1272 2.02
5 R141b 0.030 32 1.02 236.82 1.1272 2.02
6 R141b 0.030 32 3.60 237.08 1.1273 2.49
7 R141b 0.157 32 1.02 236.82 1.1272 2.02
8 R141b 0.157 12 0.47 236.82 1.1302 1.21
9 Water 17.966 85 3.50 355.75 1.1330 46.17
10 Water 17.966 85 3.50 356.17 1.1342 46.27
11 Water 17.966 85 3.50 355.75 1.1330 46.17
12 Water 15.000 30 1.00 125.83 0.4368 6.43
13 Water 15.000 22 1.00 93.58 0.3290 3.61
14 Air 21.194 29 2.00 29.15 6.6831 54.76
15 Air 21.194 31 2.00 31.16 6.6898 54.96

Table 3. Model results validation.

Tg
[◦C]

Tc
[◦C]

A3/At ω

Exp Huang et al. [38] Present Model Exp Huang et al. [38] Present Model

95 31.3 10.64 10.87 10.33 0.4377 0.4627 0.4412
95 33.0 9.83 9.67 9.42 0.3937 0.3774 0.3876
95 33.6 9.41 9.29 9.35 0.3457 0.3476 0.3398
95 34.2 9.17 8.89 9.11 0.3505 0.3253 0.3298
95 36.3 8.28 8.57 8.64 0.2814 0.2983 0.2954
95 37.1 8.25 8.12 8.26 0.2902 0.2658 0.2733
95 38.8 7.26 7.27 8.09 0.2273 0.2078 0.2165
95 38.6 7.73 7.38 7.43 0.2552 0.2144 0.2232
95 41.0 6.77 7.05 7.11 0.2043 0.1919 0.2041
95 42.1 6.44 6.55 6.94 0.1859 0.1554 0.1763
90 31.5 9.41 9.28 9.34 0.4446 0.4178 0.4413
90 33.8 8.28 8.53 8.61 0.3488 0.3552 0.3461
90 36.7 7.73 7.03 7.53 0.3040 0.2395 0.2976
90 37.5 6.99 6.65 6.81 0.2718 0.2093 0.2103
90 38.9 6.44 6.74 6.43 0.2246 0.2156 0.2231
84 28.0 9.41 9.34 9.38 0.5387 0.5215 0.5406
84 30.5 8.28 8.68 8.76 0.4214 0.4605 0.4377
84 32.3 7.73 7.68 7.81 0.3883 0.3704 0.3713
84 33.6 6.99 6.99 6.83 0.3117 0.3042 0.3111
84 35.5 6.44 6.79 6.50 0.2880 0.2880 0.2792
78 24.4 9.41 9.92 9.87 0.6227 0.6944 0.6532
78 26.9 8.28 8.97 8.83 0.4889 0.5966 0.4679
78 29.1 7.73 7.64 7.81 0.4393 0.4609 0.4599
78 29.5 6.99 7.48 7.32 0.3922 0.4422 0.4274
78 32.5 6.44 6.62 6.44 0.3257 0.3525 0.3179

4.1. Sensitivity Energy Analysis

Various area ratios were studied to define the optimum temperature in the generator.
The temperature and pressure at the ejector inlet nozzle have high values and produce a
suction effect causing more secondary refrigerant flow to be entrained as the generator
temperature is increased. This is accompanied by an increase in COP, reaching a maxi-
mum value of 0.209 at the optimum generator temperature of 73 ◦C. When the generator
temperature continues to rise, the COP begins to fall because there is no corresponding
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increase in primary mass flow due to choking conditions in critical operating mode at
the ejector nozzle. As a result, a constant refrigerant mass flow prevails, which keeps
the cooling capacity constant with increasing the heat input. Thus, the COP decreases.
The driving pressure difference between the evaporator and the nozzle exit increases as
Tg increases, which increases both COP and entrainment ratio. As Tg rises, so does the
critical back pressure. This increase causes the thermodynamic shock wave to move to the
mixing chamber, preventing clogging of the secondary flow. As the back pressure increases,
the flow through the nozzle becomes slower, and the secondary stream stops because the
ejector stops working properly, and the direction of the primary flow will be reversed back
to the evaporator. At the downstream of the diffuser section, a thermodynamic shock wave
occurs, and thus the secondary pressure rises, and as the evaporator pressure rises, so
does the critical back pressure. Figure 4 depicts the effect of evaporator temperature on
the performance in Tg = 73 ◦C and Ta = 38 ◦C operating conditions. The system COP and
driving pressure difference increase rapidly as Te increases.
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Figure 4. COP vs. ejector secondary flow temperature at Tg = 73 ◦C and Tc = 38 ◦C operating
conditions.

The ejector’s area ratio rises as the generator temperature increases, as shown in
Figure 5. This is because as the generator temperature rises, so does the generator pres-
sure, resulting in enhanced ejector entrainment at constant condenser and evaporator
temperatures. More secondary flow can be entrained into the ejector once the area ra-
tio is increased. The area ratio increases can be doubled for every 50 ◦C increase in the
generator temperature.

The optimum Tg for a given area ratio can be estimated if the temperature and pressure
of the condenser and evaporator are known. To ensure that the ejector operates under
critical choking conditions, the condenser temperature, Tc, is set to 38 ◦C. Since the ejector
back pressure is equal to the pressure of condensation, the condenser temperature affects
the ejector’s mode of operation. As the generator temperature approaches its optimum
value, the system COP will be maximum COP. As the spindle position changes during time,
the primary pressure and mass flow rate change accordingly, as shown in Figure 6. The
refrigerant mass flow rate increases with the increase in the spindle movement, allowing
more refrigerant to pass at reduced pressure. This will lead to an increase in the COP.

The primary operating parameters selected for this analysis are the generator pressure,
and evaporator and generator temperatures. Figure 7 shows the relationship between
the generator temperature and the entrainment ratio. It is noted that as the generator
temperature increases, the entrainment ratio increases as well. The reason for this increase
is due to the increase in the primary flow temperature, which increases its energy and
leads to an increase in the flow speed in the suction chamber, and more secondary flow
is entrained.
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Figure 5. The ejector area ratio vs. generator temperature at Tg = 73 ◦Cand Tc = 38 ◦C.
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Figure 8 depicts the COP values in relation to generator temperature at various gener-
ator pressures. The heat delivered from the solar field causes the generator temperature
to rise and the COP to decrease. As Tg increases, the entrainment ratio will increase, and
because of the increased rate of heat addition, the COP decreases.
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As can be seen from Figure 9, the entrainment ratio increases as the temperature of
the evaporator increases. The entrained flow’s kinetic energy increases, which lead to an
increase in the suction efficiency of the ejector. At a predetermined generator pressure, the
primary flow rate is choked.
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Figure 9. Entrainment ratio vs. evaporator temperature at Tg = 73 ◦C and Ta = 38 ◦C operating
conditions.

Figure 10 shows that as the evaporator temperature rises, so does the COP of the
ejector cooling cycle. It is also clear that the range of the COP increases as the generator
pressure decreases.
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Figure 10. COP vs. evaporator temperature at Tg = 73 ◦C and Ta = 38 ◦C operating conditions.

4.2. Exergy Analysis

The data of the specific physical exergies (Table 2) were used to calculate the value
of the exergy destruction within system components via applying the exergy balances
(Equation (8)). These data and corresponding exergy destruction ratios (Equation (10)) are
shown in Figure 11a as well as the exergy efficiencies (Equation (9)) are shown in Figure 11b.
The definitions of the fuel and product for the solar collectors can be found in [39,40], and
for the ejector in [40].
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Figure 11. The results obtained from the exergy analysis: (a) exergy destruction(kW) and exergy
destruction ratio (%) and (b) exergetic efficiency.

The results demonstrate that the highest exergy destruction and associated low exer-
getic efficiencies are associated with the heat exchangers.

The effect of the autonomous variable geometry ejector on the system performance as
the generator temperature changes is reported in Figure 12. The higher the temperature
within the generator, the higher the performance of the entire system is observed.

From Figure 12 it can be noticed that the overall exergy efficiency can be increased for a
fixed generator temperature. Up to a certain point, increasing the ejector area ratio increases
efficiency before drastically decreasing again. The significant reduction can be attributed to
flow breakdown, as a mixture of primary and secondary streams would be very turbulent
at larger area openings. To improve system performance, an ejector refrigeration system
can be automated so that the nozzle opening can be regulated using a temperature sensor
connected to the generator.
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Figure 12. Comparison of entrainment ratio and exergy efficiency vs. generator temperature.

Figure 13 shows the variation in the system’s exergetic efficiency as a function of
the ejector area ratio for different generator temperatures. It can be seen that the highest
exergetic efficiency could be obtained at the optimum value of the generator temperature.
Yet, the maximum efficiencies are observed at an area ratio of 0.75.
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4.3. Economic Analysis

For conducting the economic analysis, the following parameters were assumed:
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Parameters assumed for the economic analysis are plant life (n)-15 years; effective
interest rate (ie f f )-10%; average general inflation rate for fuel (rFC) is zero because of solar
energy; average general inflation rate for OMC (rOMC) 2.5%, and total annual operation
time −7500 hr./a. The calculated levelized total capital investment is 2251.34 $/h, and the
levelized cost of the product is 0.009 $/kWh. Figure 14 shows the distribution of the total
capital investment. The evaporator, generator, air cooler, and solar system accounted for
90% of the system cost, whereas the ejector, pumps, and motors accounted for 10%.
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4.4. Exergoeconomic Analysis

The main results obtained from the exergoeconomic analysis are reported in
Figures 15 and 16. The values Zk and CD,k for each system component and corresponding
exergoeconomic factors (fk) demonstrate that the heat exchangers require improvement
thermodynamically with the expenses of the capital investment cost, i.e., the values of Zk
should be increased and CD,k decreased.
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5. Conclusions

The ejector refrigeration cycle is subjected to thermodynamic modeling, simulation,
energy, exergy, economic and exergoeconomic analyses, in addition to various sensitivity
studies in order to provide useful information on design specifications. The entrainment
ratio, spindle position, and COP were used for the system performance analysis, while the
effect of the area ratio on system performance was investigated. The COP and entrainment
ratio are two complex functions of inlet temperature, back pressure, and flow path geometry.
It is also worth noting that different spindle positions can yield higher COP values due
to differences in operating conditions. This demonstrates the advantage of using variable
geometry over fixed geometry. It is especially important in the study case because solar
energy is a volatile and unpredictable source. As a result, the variable geometry design
can maintain COP and cooling capacities even when the generator temperature varies. It
was found that the system’s coefficient of performance increased with the decrease in the
generator pressure and increase in the evaporator temperature. It reached a value of 0.45
at a generator pressure of 3 bars and an evaporator temperature of 20 ◦C. Furthermore,
it was noticed that the overall exergy efficiency increased as the generator temperature
increased and approached a constant value of 21% for a generator temperature of 85 ◦C,
while increasing the ejector area ratio. A value of 21% exergetic efficiency was recorded for
the system. The exergoeconomic analysis of the system demonstrated that heat exchangers
require improvement thermodynamically at the expense of the capital investment cost.
The economic analysis revealed that the calculated levelized total capital investment is
2251.34 $/h, and the levelized cost of the product is 0.009 $/kWh.
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