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Abstract: Sensorless control based on high-frequency square-wave voltage injection (HFSVI) is
one of the most common sensorless control methods for synchronous reluctance motors (SynRMs).
However, the injection frequency for SynRMs cannot be too high due to various factors. As the
injection frequency decreases, the dead-time harmonic current will greatly affect the separation of
high frequency signals. This paper analyzes the effect of dead-time harmonic current on the HFSVI-
based sensorless control performance of SynRMs and proposes a source of position estimation error.
Then, a dead-time compensation method suitable for filter-free HFSVI is proposed. It can estimate
current vector spatial orientation without any low-pass filters (LPFs) and effectively compensate
the impact of dead-time setting. The correctness of the theoretical analysis and the feasibility of the
proposed methods in this paper are verified by experiments.

Keywords: high-frequency square-wave signal injection; synchronous reluctance machines; sensorless
control; filter-free dead-time compensation

1. Introduction

Synchronous reluctance motors (SynRMs) have increasingly become a new research
trend in industrial applications and electric vehicles due to their high reliability, high
robustness and low cost [1]. Additionally, rare-earth permanent magnets materials used
in PMSMs can be largely avoided, which make SynRMs a resource-saving and low-cost
alternative for other motors [2]. However, accurate speed and rotor position are necessary
for a modern control system of SynRMs. The use of sensors makes the system complex and
expensive, and thus reduces the advantages of SynRMs [3]. Therefore, sensorless control
is desired.

At present, a variety of sensorless control methods for SynRMs have been proposed
successively. These methods can be divided into two main kinds [4]: model methods
based on the SynRM basic frequency model, and high-frequency voltage injection methods.
Model methods need the back electromotive force (EMF) which is related to the rotor
speed and susceptible to noise [5]. Thus, these methods are widely used in high-speed
and medium-speed conditions [6]. In low-speed or startup conditions, the back EMF is
too small to observe so the control methods based on high-frequency voltage injection
are widely used [7]. It can be divided into rotating high-frequency voltage injection
methods and pulsating high-frequency voltage injection methods in principle [8]. The
pulse injection method has gradually become the mainstream injection method due to
more accurate observation performance and simple signal separation. At present, an
eye-catching technical path is the filter-free high-frequency square-wave voltage injection
(HFSVI) method [9]. These methods inject HF square-wave signals into stators to generate
triangular wave response current, and then estimate the rotor position via response current
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signals [10,11]. Compared with previous sensorless control methods, these methods have
many excellent characteristics, such as no need to use filters, high system bandwidth, the
low computational load of the controller, and so on [12,13]. However, they are still affected
by several factors such as the non-linear characteristics of the inverters [14], which will
cause various sources of position estimation error [15].

Based on different ideas, there has been some research on error analysis of filter-
free HFSVI. In [16], cross-coupling of magnetic circuits is considered one of the main
sources of position estimation error. In [17], the effect of semiconductor switching tubes
voltage drop on the accuracy of HFSVI is analyzed in detail. Additionally, several studies
have suggested that the non-linear effect of the inverter will distort the injection voltage
signal [18]. Thus, several modified HFSVI methods have been proposed [19]. However,
most of these studies are based on PMSM, considering the error analysis of injection
frequency conditions above 10 kHz, and generally only discuss the effect of injection high-
frequency voltage distortion. In practical applications, some motors have large inductance,
especially SynRMs with high torque [20], sometimes the response current will approach the
lower detection limit of current sensors. In this case, the injection frequency can be reduced
to increase the amplitude of high-frequency response current and the switching frequency
is still maintained at a higher frequency to achieve high dynamic response performance.
However, at lower frequency injection conditions, the harmonic current and even the
fundamental current will have a greater impact on the accuracy of rotor position estimation,
but there are few studies on this.

In this paper, the error of position estimation caused by the harmonic current caused
by dead-time effect are analyzed when the filter-free HFSVI method is used. In contrast
to previous studies, a new source of error for filter-free square wave injection at lower
injection frequencies is proposed by qualitative analysis of current components. This paper
then presents a dead-time effect compensation method suitable for the SynRM sensorless
control system based on filter-free square-wave voltage injection. This method filters out the
high-frequency signal by a filter-free signal separation method. This paper also proposes
compensating voltage sector lag angles to reduce the influence of current space angle ripple
on compensation. Compared with the other methods, this method can achieve acceptable
accuracy in current vector spatial orientation without any low-pass filters and effectively
compensate for dead-time effects.

This paper is organized as follows: the model of SynRMs and filter-free HFSVI meth-
ods is presented in Section 2; analysis of error caused by dead time effect harmonic current
is presented in Section 3; current polarity detection and dead-time effect compensation for
filter-free square-wave injection method are presented in Section 4; experiment results are
presented in Section 5; conclusions are finally provided in Section 6.

2. Sensorless Control Based on Filter-Free Square-Wave Voltage Injection
2.1. The High-Frequency Equivalent Model of SynRM

The voltage and flux linkage equivalent mathematical model of the SynRM in the
synchronous reference frame can be shown in (1):[

ud
uq

]
=

[
Rs + Ld p −ωeLq

ωeLd Rs + Lq p

][
id
iq

]
(1)

where ud and uq represent the d-axis and q-axis voltages, respectively, while id and iq are
the d-axis and q-axis current, respectively; ωe is the electrical rotor speed (rad/s); Rs is the
winding resistance; p is a differential operator. When the frequency of injection signal is
high enough, the voltage drop on the stator resistor and back-EMF are too small, so Rs and
ωe can be ignored. Finally, (1) can be simplified to (2):[

udh
uqh

]
=

[
Ld p 0

0 Lq p

][
idh
iqh

]
(2)
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2.2. Sensorless Control Based on Filter-Free Square Voltage Injection

The use of LPFs will cause additional chip computing load, reduce the dynamic
performance of the system, and cause phase error. This is one of the main reasons why
the filter-free HFSVI method is favored by more and more researchers. When the injected
signal is in the form of (3), transform (2) from the estimated dq frame to αβ frame. In the αβ
static frame, the HF current response can be obtained by (4):[

udh
uqh

]
=

[
Uinj(−1)k

0

]
(3)

[
piαh
piβh

]
= T(θe)

[
pidh
piqh

]
= T(θe)

[
Ld 0
0 Lq

]−1

T(θ̃e − θe)

[
udh
uqh

]
(4)

In (3), Uinj is the amplitude of the injected signal, T(θe), T(θ̃e − θe) are coordinate sys-
tem transformation matrix, similarly to the form of (5), θ̃e is the estimation electrical angle.

T(θ) =
[

cos θ − sin θ
sin θ cos θ

]
(5)

Extracting the envelope signal of the current response, the response signal containing
position information can be obtained, shown as (6), in which ∆θe means the estimated
angular error:[

Iαh
Iβh

]
=

Uinj

2 fhLdLq

[
(Ld + Lq) cos θ̃e − (Ld − Lq) cos(θe + ∆θe)

(Ld + Lq) sin θ̃e − (Ld − Lq) sin(θe + ∆θe)

]
(6)

Under low-speed or middle-speed conditions, the frequency of the injected high-
frequency square wave signal is usually much greater than the frequency of the funda-
mental frequency current. Thus, the fundamental frequency current can be considered as
basically unchanged in a square wave period. When the sampling frequency is kept at half
of the injection frequency, the HF response current has symmetry, with equal amplitude
and opposite polarity at adjacent sampling times. Therefore, the high-frequency response
current signal can be simply separated without LPFs [21]. The analysis above can be more
clearly represented by Figure 1.
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As shown in Figure 1, αβ-axis HF response current can be simply calculated by (7).
In (7), k means the kth sampling, k − 1 represents the k − 1th sampling and the subscript
h represents the high-frequency quantity:

idh(k) =
id(k)− id(k− 1)

2

iqh(k) =
iq(k)− iq(k− 1)

2

(7)

Convert high-frequency current signal obtained by (7) to αβ coordinate, Iαh and Iβh
can be obtained by using an envelope extractor. Thus, the values of high frequency or base
frequency current at any sampling time can be obtained by two adjacent samples. The
filter-free signal separation method greatly improves the system response speed, reduces
the phase error, and significantly improves the control performance. As shown in Figure 2,
the estimated position information can be further extracted by position observer, such as
the phase-locked loop [21].
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Figure 2. Sensorless rotor position estimation.

This method is mature and robust. Under ideal conditions, the observation error is
relatively small. However, there are still some defects in practical engineering applications,
especially in the case of setting the dead zone of switching devices, the error will be
multiplied. The next section will analyze and improve this.

3. Analysis of Error Caused by Dead-Time Effect Harmonic Current

A classic three-phase PWM voltage-source inverter based on insulated-gate bipolar
transistors (IGBT) is shown in Figure 3. Its load is a SynRM, which can be considered as
a resistive-inductive load. When using an inverter in practice, due to the limitation of
physical properties of switching devices (such as on–off time, etc.), in order to avoid failure
and damage to equipment, it is necessary to set a dead-time. Thus, the PWM signals of a
pair of bridge arms of the inverter will not be strictly complementary, which will lead to
output voltage distortion.



Energies 2022, 15, 9539 5 of 21

Energies 2022, 15, x FOR PEER REVIEW 5 of 25 
 

 

Figure 2. Sensorless rotor position estimation. 

This method is mature and robust. Under ideal conditions, the observation error is 
relatively small. However, there are still some defects in practical engineering applica-
tions, especially in the case of setting the dead zone of switching devices, the error will be 
multiplied. The next section will analyze and improve this. 

3. Analysis of Error Caused by Dead-Time Effect Harmonic Current 
A classic three-phase PWM voltage-source inverter based on insulated-gate bipolar 

transistors (IGBT) is shown in Figure 3. Its load is a SynRM, which can be considered as a 
resistive-inductive load. When using an inverter in practice, due to the limitation of phys-
ical properties of switching devices (such as on–off time, etc.), in order to avoid failure 
and damage to equipment, it is necessary to set a dead-time. Thus, the PWM signals of a 
pair of bridge arms of the inverter will not be strictly complementary, which will lead to 
output voltage distortion.  

 
Figure 3. A three-phase PWM voltage-source inverter with SynRM load. 

The dead-time effect will cause a series of distorted voltage pulses, and the vector 
direction of the pulse is related to the polarity of the phase current. According to the volt-
age equivalent principle, these voltage pulses can be equivalent to a 180° conducting 
square wave, shown in Figure 4. Since the three-phase currents differ by 120° from each 
other, six error voltage vectors are formed in the motor winding [22]. 

Figure 3. A three-phase PWM voltage-source inverter with SynRM load.

The dead-time effect will cause a series of distorted voltage pulses, and the vector
direction of the pulse is related to the polarity of the phase current. According to the voltage
equivalent principle, these voltage pulses can be equivalent to a 180◦ conducting square
wave, shown in Figure 4. Since the three-phase currents differ by 120◦ from each other,
six error voltage vectors are formed in the motor winding [22].
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The direction of the error voltage vector is determined by the polarity of the phase
current. Define the phase current which flows into the motor winding as the positive
polarity and mark the positive polarity as 1, the negative polarity as 0. Arrange current
polarity in A, B, and C phases, the combined number is the corresponding error voltage
vector. For example, when the A-phase current is positive and the B, C-phase current is
negative, it corresponds to 100, that is, ∆V4.
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Taking A-phase as an example, the phase voltage error caused by the dead-time effect
in a switching cycle is defined as ∆V4, given by (8) and (9):

Vd = − fs(Td + Ton − To f f )Vdc (8)

∆VA = Vdsgn(ia) (9)

where Td, Ton, To f f are dead-time setting, on time and off time of the IGBT. fs is the switching
frequency. sgn(ia) is the symbolic function of A-phase current; when the current is in the
reference direction, its value is 1, otherwise it is −1.

The influence of dead time effect on other two phases is similar. Transform error
voltage vectors into two-phase static reference frame (αβ frame) and synchronous reference
frame (dq frame), and obtain the Fourier decomposition of them; then, (10) and (11) can be
obtained:

Uαe = −
4Ue

π

(
sin ωet +

∞
∑

k=1

sin[(6k− 1)ωet]
6k− 1

+
∞
∑

k=1

sin[(6k + 1)ωet]
6k + 1

)
Uβe =

4Ue

π

(
cos ωet−

∞
∑

k=1

cos[(6k− 1)ωet]
6k− 1

+
∞
∑

k=1

cos[(6k + 1)ωet]
6k + 1

) (10)


Ude =

4Ue

π

(
sin ϕ−

∞
∑

k=1

− sin(−6kωet− ϕ)

6k− 1
+

∞
∑

k=1

− sin(6kωet− ϕ)

6k + 1

)
Uqe =

4Ue

π

(
cos ϕ−

∞
∑

k=1

cos(−6kωet− ϕ)

6k− 1
+

∞
∑

k=1

cos(6kωet− ϕ)

6k + 1

) (11)

It is clear that the amplitude of harmonic voltage is inversely proportional to the har-
monic order. Sensorless position estimation based on filter-free HF square-wave injection
needs to obtain HF current signal in αβ frame. In αβ frame, the major harmonic components
are 1st, 5th, and 7th order harmonics. The separation of high-frequency signals is carried
out in dq frame, so ±6th order component is mainly considered. From (11) the steady-state
dead-time effect current in dq frame can be provided by (12):

ide =
4Ue

π

 sin ϕ

R
− − sin(−6ωet− ϕ)

5
√

R2 + 36ω2
e L2

d

+
− sin(6ωet− ϕ)

7
√

R2 + 36ω2
e L2

d


iqe =

4Ue

π

cos ϕ

R
− cos(−6ωet− ϕ)

5
√

R2 + 36ω2
e L2

q

+
cos(6ωet− ϕ)

7
√

R2 + 36ω2
e L2

q

 (12)

The core assumption of the filter-free signal separation method is that when the HF
current is separated within a sampling cycle, the change of fundamental current can be
ignored. However, in practice, the frequency of injected voltage should not be too high. As
shown in (13), ∆t is the sampling step which is generally set to half the injection frequency.
If Ld is large enough and ∆t is too small, the current signal will be too weak to be accurately
detected, so the influence of instrument error and sampling step will be too significant to
be ignored. Taking the accuracy of sampling points, chip computing load, and other factors
into account, the injection frequency is generally lower than 5 kHz, or even reduced to
1 kHz in practice.

|idh(k)− idh(k− 1)| =
Uinj

Ld
∆t (13)

When the injection frequency decreases, although it is still small, the error caused
by the change in harmonic current mentioned above has become a problem worthy of
discussion. Taking any axis current as an example, the schematic diagrams of HF square-
wave voltage, high-frequency response current, and fundamental wave current are shown
in Figure 5.
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The dq-axis current, other than the high-frequency response current, can be reasonably
decomposed into (14):{

idsum(t) = A f − A+6 sin(6ωet− ϕ) + A−6 sin(−6ωet− ϕ)
iqsum(t) = B f + B+6 cos(6ωet− ϕ)− B−6 cos(−6ωet− ϕ)

(14)

As shown in Figure 6, idq f , idq+6, idq−6 are DC component, 6th and −6th harmonics of
dq-axis current, respectively. iother is other components, including ripple current caused
by the controller. This paper focuses on the influence of the dead-time effect current, so it
mainly considers the influence of ±6th harmonic current. Therefore, (14) is rewritten into
the form of (15):{

idsum(t) = A f − A+6 sin(6ωet− ϕ) + A−6 sin(−6ωet− ϕ)
iqsum(t) = B f + B+6 cos(6ωet− ϕ)− B−6 cos(−6ωet− ϕ)

(15)
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In (15), A/B and subscript number, respectively, represent the amplitudes of the
fundamental current and harmonic components of different orders. Even the frequency
of the 6th harmonic is still low enough relative to the injection frequency. Therefore, the
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change of current ∆idq(t) during the sampling step ∆t can be expressed as the product of
the derivative of each current component at time t and the step time, shown as (15):{

∆id(t) = [−6A+6 cos(6ωet− ϕ)− 6A−6 cos(−6ωet− ϕ)]ωe∆t
∆iq(t) = [−6B+6 sin(6ωet− ϕ)− 6B−6 cos(−6ωet− ϕ)]ωe∆t

(16)

When the load is fixed, the faster the motor speed is, the greater the output electro-
magnetic torque is, so the current will increase. The SynRM has obvious magnetic circuit
saturation and cross coupling, which makes the inductance of the dq-axis reduce. It is more
obvious in the axis with more airgap.

According to (12) and (16), let A1
+6 be the amplitude of the 6th harmonic current at

electric angular velocity ωe1, A2
+6 be the amplitude of the 6th harmonic current at ωe2. If

ωe1 < ωe2, then A1
+6ωe1 < A2

+6ωe2. That means that the faster the rotor speed, the greater
the current variation between sampling steps.

Come back to (7) with conclusions above. At the nth sampling time, the current signal
obtained by processing the value of nth sampling and the (n − 1)th sampling is not entirely
a high-frequency current signal. It also includes the variation of other current components
during the sampling step, shown as Figure 7. Mark the (n − 1)th sampling time as t − 4t,
the nth sampling time as t, and rewrite (7) to (17).{

i∗dh(n) = idh(n) + ∆id(n− 1)/2 = idh(n) + idhe(n)
i∗qh(n) = iqh(n) + ∆iq(n− 1)/2 = iqh(n) + iqhe(n)

(17)
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In (17), idqh(n) is the error of HF response current obtained by filter-free signal separa-
tion method at nth sampling time.

Converting (17) to αβ-frame can obtain (18). After the envelope detector, high-
frequency current envelope and error signal for estimating the rotor position can be
obtained, shown in (19):[

i∗αh(n)
i∗βh(n)

]
= T(θ)

[
i∗dh(n)
i∗qh(n)

]
=

[
iαh(n)
iβh(n)

]
+

[
iαhe(n)
iβhe(n)

]
[

iαhe(n)
iβhe(n)

]
= T(θe)

[
idhe(n)
iqhe(n)

]
=

[
cos θeidhe(n)− sin θeiqhe(n)
sin θeidhe(n) + cos θeiqhe(n)

] (18)
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[
I∗αh(n)
I∗βh(n)

]
=

[
Iαh(n)
Iβh(n)

]
+ sgn[udh(n)]

[
iαhe(n)
iβhe(n)

]
(19)

Compare (6) with (19), when using (6) and for vector cross multiplication, the input of
position observer is k·2∆θe, as shown in (20):

−Iαh sin θ̃e + Iβh cos θ̃e = k[sin(2∆θe) + cos(2∆θe)] ≈ k·2∆θe

k =
Uinj(Ld − Lq)

2 fhLdLq

(20)

However, when using (19), the inputs will change to (21):{
I∗βh cos θ̃e − I∗αh sin θ̃e ≈ 2k∆θe + Error

Error = sgn[udh(n)][idhe(n) sin ∆θe + iqhe(n) cos ∆θe]
(21)

According to (16), (17), and (21), the value of idqhe(n)∆θe changes periodically and the
amplitude depends on the magnitude of the ±6-th harmonic current. Therefore, the higher
the harmonic content, the greater the variation of current within the sampling steps, and the
more significant the possible error of the sensorless rotor position estimation. In practice,
with appropriate dead-time setting, the total harmonic distortion (THD) of stator current of
an unloaded SynRM is between 20–40% [23]. However, the position error caused by it may
lead to the deterioration of the controller performance, which will further increase idqhe(n).
In addition, due to the combined influence of multiple factors (such as magnet harmonic
caused by auxiliary permanent magnet), the error may be multiplied compared with the
ideal condition. Additionally, when the injection frequency decreases or the rotor speed
increases, idqhe(n) will also increase, and the error will be more significant.

4. Current Polarity Detection and Dead-Time Effect Compensation for Filter-Free
Square-Wave Injection
4.1. Voltage Compensation Methods for Inverter

In order to reduce the error of the sensorless position estimation method based on filter
free square wave injection caused by dead-time effects, dead-time compensation is desired.
For SVPWM modulation methods, voltage compensation is commonly used. Generate
vectors with the same size and opposite direction as the dead-time error voltage, so as to
reduce the influence of dead-time effects, shown in Figure 8.

Energies 2022, 15, x FOR PEER REVIEW 10 of 25 
 

 

of stator current of an unloaded SynRM is between 20%–40% [23]. However, the position 
error caused by it may lead to the deterioration of the controller performance, which will 
further increase ( )dqhei n . In addition, due to the combined influence of multiple factors 
(such as magnet harmonic caused by auxiliary permanent magnet), the error may be mul-
tiplied compared with the ideal condition. Additionally, when the injection frequency de-
creases or the rotor speed increases, ( )dqhei n  will also increase, and the error will be more 
significant. 

4. Current Polarity Detection and Dead-Time Effect Compensation for Filter-Free 
Square-Wave Injection 
4.1. Voltage Compensation Methods for Inverter 

In order to reduce the error of the sensorless position estimation method based on 
filter free square wave injection caused by dead-time effects, dead-time compensation is 
desired. For SVPWM modulation methods, voltage compensation is commonly used. 
Generate vectors with the same size and opposite direction as the dead-time error voltage, 
so as to reduce the influence of dead-time effects, shown in Figure 8. 

 
Figure 8. Compensation voltage vectors for dead-time effect. 

The compensated voltage vector is represented by com
iV , the subscript I means the 

error voltage vector serial number. Then, com
iV  can be expressed as (22): 

( )

com
i i

com
i s on off dcd

V V

V f T T T V

= −Δ

= +



 −

 (22)

Project com
iV  to the α-axis and the β-axis, respectively, and αβ-axis component can 

be obtained. Take 4
comV , which is the compensated vector for 4VΔ , as an example, its αβ-

axis component is shown in (23): 

( )
0

com
s on of dcd f

com

V f T T T V
V

α

β

= + −

 =

 (23)

Figure 8. Compensation voltage vectors for dead-time effect.



Energies 2022, 15, 9539 10 of 21

The compensated voltage vector is represented by Vcom
i , the subscript I means the

error voltage vector serial number. Then, Vcom
i can be expressed as (22):{

Vcom
i = −∆Vi∣∣Vcom

i

∣∣ = fs(Td + Ton − To f f )Vdc
(22)

Project Vcom
i to the α-axis and the β-axis, respectively, and αβ-axis component can be

obtained. Take Vcom
4 , which is the compensated vector for ∆V4, as an example, its αβ-axis

component is shown in (23):{
Vcom

α = fs(Td + Ton − To f f )Vdc
Vcom

β = 0 (23)

Other compensation vectors can also be decomposed in the same way. SVPWM
needs to calculate the switching time of each IGBT by the αβ-axis component of voltage
vectors. Therefore, αβ-axis voltage vector can be expressed as V∗α and V∗β after dead-time
compensation, as shown in (24): {

V∗α = Vα + Vcom
α

V∗β = Vβ + Vcom
β

(24)

4.2. Filter-Free Current Polarity Detection

In voltage-type dead-time compensation methods, it is necessary to determine which
compensation vector to use according to the current polarity. At present, the most widely
used method is to indirectly judge the current polarity by the space position of current
vector. In addition to the fundamental current, the detected three-phase load current
also contains a large number of harmonic components and high-frequency interference.
The harmonic current and high-frequency component may cause zero current clamping
and pulse width modulation noise when the current crosses zero, especially when the
high-frequency square-wave voltage is injected.

The conventional method is to process the two-axis current in the dq coordinate after
3s/2r transformation of the three-phase current. This requires not only low-pass filters
(LPF) but also positions sensors to provide accurate rotor mechanical angles. However,
for sensorless vector control systems based on filterless square-wave injection, traditional
methods not only re-add filters, but also conflict with sensorless algorithms. Therefore, an
appropriate current polarity detection method is needed to remove high-frequency currents
and detect current polarity.

As shown in (7), the symmetry of HF response current produced by HF square-wave
injected voltage can also be utilized. Because the HF current amplitudes at two adjacent
sampling points are equal but the polarity is opposite, current signals can be easily separate
by two sampling values, an shown in (25):

isd(k) =
id(k) + id(k− 1)

2

isq(k) =
iq(k) + iq(k− 1)

2

(25)

It is worth noting that, since the high frequency current can be canceled out with two
adjacent sampling values, the accuracy of the separated low-frequency current is high.
Then, convert the dq-axis current to αβ-axis current. Depending on the spatial position
characteristics of the current vector, take three different vectors as an example. Current
vector space graphics can be provided by Figure 9.
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In Figure 9, θ is the current space position angle; θ can be obtained by using the four
quadrant arc tangent function with αβ-axis current, as shown in (26):

θ = arctan(isα/isβ) (26)

The polarity distribution of the three-phase stator current is shown in Figure 10, from
which the corresponding relationship between θ and the three-phase stator current polarity
can be obtained. Then, θ can be used to judge the polarity of three-phase stator current
conveniently and accurately. The phase current sequence in the table is A, B, and C phase.
Similarly, 1 indicates positive current polarity, 0 indicates negative current polarity. The
current polarity array in turn can correspond exactly to the selected compensating voltage
vector in the form of binary numbers, as shown in Table 1.

Table 1. Relationship between θ and three-phase stator current polarities.

The Range of θ Stator Current Polarities (ia, ib, ic)

−π~−5π/6 011
−5π/6~−π/2 001
−π/2~−π/6 101
−π/6~π/6 100
π/6~π/2 110
π/2~5π/6 010

5π/6~π 011

Under the filter-free condition, in addition to the high-frequency response current,
current harmonics and other high-frequency components will cause ripple in the results
of identifying the spatial position angle of the current. When the compensation voltage
is switched, the large angle fluctuation will cause the two adjacent compensation voltage
vectors to alternate in a short time, which will greatly worsen the effect of compensation.
Therefore, before and after switching angle of compensation voltage vectors (such as π/6
for Vcom

4 and Vcom
6 ), lag angles are set to reduce the influence of the ripple of θ.
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As shown in Figure 11, take the switching angle π/6 for Vcom
4 and Vcom

6 as an example.
With the setting of lag angles, compensation voltage vector Vcom

4 switches to Vcom
6 at

π/6 + θ f , rather than π/6. After the voltage vector is switched, when θ falls back below
π/6 due to the influence of current ripple, the compensation vector will not change to Vcom

4
immediately, but to roll back if θ is less than π/6− θb. Similarly, the relationship between
current spatial position and compensation voltage vector can be obtained by carrying out
the same processing for other switching points, as shown in Figure 12.

1 
 

 

Figure 11. Forward and back lag angles for switching angle π/6.
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Figure 12. Improved relationship between θ and compensation voltage vectors.

5. Experiment Results and Analysis

Figure 13 shows the experiment circumstance of the SynSM, a dSPACE MicroLabBox
real-time platform is used to realize the control law of SynRM. The parameters of the
SynRM are shown in Table 2. The switch frequency of PWM is set to 10 kHz. The injected
voltage is set to 100 V and the frequency is set to 1000 Hz. The DC-link voltage is set to
500 V and the dead-time of inverter is set to 5 us. In experiments, the reference speeds are
set as 200 rpm, 350 rpm, and 500 rpm, respectively. In order to highlight the influence of
current harmonics, there is no external load, but the load motor connected to SynRM itself
will be equivalent to a light load of about 1.4 N·m.

Table 2. The parameters of the SynRM.

The Parameters The Value of the Parameters

Number of pole pairs 3
Stator resistance (Ω) 3.11

d-axis inductance (mH) 52.61
q-axis inductance (mH) 152.76

Permanent magnet flux linkage (Wb) 0.3064
Rotor inertia (kg·m2) 0.0042

Viscous damping (N·m·s) 0.002
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5.1. Uncompensated/Compensated Experiment and Result Analysis

In the first experiment, the speed command value is 200 rpm, the load motor is not
powered on, and there is no additional load. Experiments are performed with and without
dead-time effect compensation. Figure 14a shows the error between estimated electric angle
θee and real electric angle θer under these two conditions. Before using the compensation
method proposed in this paper, the average and peak values of errors are −0.108 rad
and −0.207 rad, respectively. With the filter-free dead-time compensation, the average
value of error reduces to −0.048 rad, and the peak value reduces to −0.121 rad, which
decreases by 55.5% and 41.5%, respectively. Meanwhile, the difference between the peak
and mean electrical angle errors is reduced by 73.7%, which will significantly reduce the
system torque fluctuation, as shown in Figure 14b. Figure 14c,d shows the A-phase stator
current and their FFT results under compensated and uncompensated conditions. The
non-fundamental components of the compensated A-phase current decreases significantly.
Without compensation, the THD of A-phase current is 20.71%, of which the 5th and
7th harmonic components are 13.82% and 6.18%, respectively. With dead-time effect
compensation, THD of A-phase current decreases to less than 3%, among which the 5th
and 7th harmonic components are 1.57% and 1.07%, respectively, and the overall reduction
is 86.8%. Comparing the experimental data of the two cases, the effect of the proposed
methods is very obvious.
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Figure 14. Experiment data for 200 rpm condition.

The experimental data are shown in Figure 15 when the speed instruction value is
350 rpm. Without compensation, the THD of A-phase current is 14.43%, the 5th and 7th
harmonic contents are 11.21% and 3.14%, respectively. With the proposed methods, the
THD of A-phase current decreased significantly to 2.64%, and 5th and 7th harmonics
contents decreased to 1.06% and 1.41%, respectively. After compensation, the average
and peak values of errors are −0.062 rad and −0.126 rad, which decreased by 55.07% and
52.10%, respectively. The difference between average and peak decreased from 0.121 rad to
0.064 rad, which is 47.10% lower than that without compensation. With the improvement
of estimation accuracy, the data in Figure 15b show that the speed fluctuation of the SynRM
before and after compensation decreases from−4.12~+4.37 rpm to−0.87~+1.14 rpm during
the 1 s recording period. The steady-state performance of the SynRM system has been
greatly improved.

When the third set of experiments with the speed instruction value of 500 rpm is
carried out, the frequencies of the 5th and 7th harmonic current reach 125 Hz and 175 Hz,
respectively. The frequency of the injected square-wave voltage cannot be considered to
be much greater than the frequency of the harmonic current. Under this condition, the
variation of harmonic current within sampling steps has a significant impact on the accuracy
of high frequency signal separated without filters. As shown in Figure 16a, the average
value of electrical angle error reaches −0.162 rad while the peak value is −0.311~0.318 rad
when the motor is running steadily under this condition, which is already a large error.
Due to the large position estimation error, the speed ripple of the rotor during the 1 s data
recording period is ±8 rpm. After using the compensation method proposed in this paper,
the A-phase current THD is reduced by 73.53%, and the sum of the 5th and 7th harmonic
content is reduced from 7.91% to 2.11%. As the amplitude of harmonic current decreases,
the average electrical angle error decreased from −0.162 rad to 0.087 rad, while the peak
decreased from 0.318 rad to 0.167 rad. During the 1 s data recording period, the speed
fluctuation under compensated state decreased by 81.3% to −1~+2 rpm compared with
that under uncompensated condition. The experimental data show that the compensation
method proposed in this paper achieves a good compensation effect without filter, and the
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steady-state performance of the system is better than that before the introduction of the
compensation method.

Energies 2022, 15, x FOR PEER REVIEW 19 of 25 
 

 

 
    (a) Position estimation error 

 
   (b) Rotor speed 

0 1 2 3 4 5

-0.3

-0.2

-0.1

0.0

p
o
s
i
t
i
o
n
 
e
s
t
i
m
a
t
i
o
n
 

e
r
r
o
r
(
r
a
d
)

time(s)

 thetaE_error_uncompensated
 thetaE_error_compensated 

0.0 0.2 0.4 0.6 0.8 1.0
340

342

344

346

348

350

352

354

356

358

360
 SpeedRef
 rotor_speed(uncompensated)
 rotor_speed(compensated)

r
o
t
o
r
 
s
p
e
e
d
(
r
p
m
)

Time(s)

Energies 2022, 15, x FOR PEER REVIEW 19 of 25 
 

 

 
    (a) Position estimation error 

 
   (b) Rotor speed 

0 1 2 3 4 5

-0.3

-0.2

-0.1

0.0

p
o
s
i
t
i
o
n
 
e
s
t
i
m
a
t
i
o
n
 

e
r
r
o
r
(
r
a
d
)

time(s)

 thetaE_error_uncompensated
 thetaE_error_compensated 

0.0 0.2 0.4 0.6 0.8 1.0
340

342

344

346

348

350

352

354

356

358

360
 SpeedRef
 rotor_speed(uncompensated)
 rotor_speed(compensated)

r
o
t
o
r
 
s
p
e
e
d
(
r
p
m
)

Time(s)
Energies 2022, 15, x FOR PEER REVIEW 20 of 25 
 

 

 
    (c) Phase current and THD (uncompensated) 

 
   (d) Phase current and THD (compensated) 

11.21

3.14

0.00 0.08 0.16 0.24 0.32 0.40
-2

-1

0

1

2

A
-
p
h
a
s
e
 
s
t
a
t
o
r

c
u
r
r
e
n
t
(
A
)

Time(s)

 IA(uncompensated)

0 1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

P
e
r
c
e
n
t
a
g
e
 
o
f
 

f
u
n
d
a
m
e
n
t
a
l
 
c
u
r
r
e
n
t
(
%
)

Harmonic order (fundamental 17.5Hz)

1.06 1.41

0.00 0.08 0.16 0.24 0.32 0.40
-2

-1

0

1

2

A
-
p
h
a
s
e
 
s
t
a
t
o
r

c
u
r
r
e
n
t
(
A
)

Time(s)

 IA(compensated)

0 1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

P
e
r
c
e
n
t
a
g
e
 
o
f
 

f
u
n
d
a
m
e
n
t
a
l
 
c
u
r
r
e
n
t
(
%
)

Harmonic order (fundamental 17.5Hz)

Figure 15. Cont.



Energies 2022, 15, 9539 18 of 21

Energies 2022, 15, x FOR PEER REVIEW 20 of 25 
 

 

 
    (c) Phase current and THD (uncompensated) 

 
   (d) Phase current and THD (compensated) 

11.21

3.14

0.00 0.08 0.16 0.24 0.32 0.40
-2

-1

0

1

2

A
-
p
h
a
s
e
 
s
t
a
t
o
r

c
u
r
r
e
n
t
(
A
)

Time(s)

 IA(uncompensated)

0 1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

P
e
r
c
e
n
t
a
g
e
 
o
f
 

f
u
n
d
a
m
e
n
t
a
l
 
c
u
r
r
e
n
t
(
%
)

Harmonic order (fundamental 17.5Hz)

1.06 1.41

0.00 0.08 0.16 0.24 0.32 0.40
-2

-1

0

1

2

A
-
p
h
a
s
e
 
s
t
a
t
o
r

c
u
r
r
e
n
t
(
A
)

Time(s)

 IA(compensated)

0 1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

P
e
r
c
e
n
t
a
g
e
 
o
f
 

f
u
n
d
a
m
e
n
t
a
l
 
c
u
r
r
e
n
t
(
%
)

Harmonic order (fundamental 17.5Hz)

Figure 15. Experiment data for 350 rpm condition.

Energies 2022, 15, x FOR PEER REVIEW 21 of 25 
 

 

Figure 15. experiment data for 350 rpm condition. 

When the third set of experiments with the speed instruction value of 500 rpm is 
carried out, the frequencies of the 5th and 7th harmonic current reach 125 Hz and 175 Hz, 
respectively. The frequency of the injected square-wave voltage cannot be considered to 
be much greater than the frequency of the harmonic current. Under this condition, the 
variation of harmonic current within sampling steps has a significant impact on the accu-
racy of high frequency signal separated without filters. As shown in Figure 16a, the aver-
age value of electrical angle error reaches −0.162 rad while the peak value is −0.311~0.318 
rad when the motor is running steadily under this condition, which is already a large 
error. Due to the large position estimation error, the speed ripple of the rotor during the 1 
s data recording period is ±8 rpm. After using the compensation method proposed in this 
paper, the A-phase current THD is reduced by 73.53%, and the sum of the 5th and 7th 
harmonic content is reduced from 7.91% to 2.11%. As the amplitude of harmonic current 
decreases, the average electrical angle error decreased from −0.162 rad to 0.087 rad, while 
the peak decreased from 0.318 rad to 0.167 rad. During the 1 s data recording period, the 
speed fluctuation under compensated state decreased by 81.3% to −1~+2 rpm compared 
with that under uncompensated condition. The experimental data show that the compen-
sation method proposed in this paper achieves a good compensation effect without filter, 
and the steady-state performance of the system is better than that before the introduction 
of the compensation method. 

 
    (a) Position estimation error  

0 1 2 3 4 5

-0.3

-0.2

-0.1

0.0

p
o
s
i
t
i
o
n
 
e
s
t
i
m
a
t
i
o
n
 

e
r
r
o
r
(
r
a
d
)

Time(s)

 thetaE_error_uncompensated
 thetaE_error_compensated 

Energies 2022, 15, x FOR PEER REVIEW 22 of 25 
 

 

 
   (b) Rotor speed 

 
   (c) Phase current and THD (uncompensated) 

0.0 0.2 0.4 0.6 0.8 1.0
490

492

494

496

498

500

502

504

506

508

510
 SpeedRef
 rotor_speed(uncompensated)
 rotor_speed(compensated)

r
o
t
o
r
 
s
p
e
e
d
(
r
p
m
)

Time(s)

7.03

1.88

0.00 0.04 0.08 0.12 0.16 0.20
-3

-2

-1

0

1

2

3

A
-
p
h
a
s
e
 
s
t
a
t
o
r

c
u
r
r
e
n
t
(
A
)

Time(s)

 IA(uncompensated)

0 1 2 3 4 5 6 7 8
0

2

4

6

8

P
e
r
c
e
n
t
a
g
e
 
o
f
 

f
u
n
d
a
m
e
n
t
a
l
 
c
u
r
r
e
n
t
(
%
)

Harmonic order (fundamental 25Hz)

Figure 16. Cont.



Energies 2022, 15, 9539 19 of 21

Energies 2022, 15, x FOR PEER REVIEW 22 of 25 
 

 

 
   (b) Rotor speed 

 
   (c) Phase current and THD (uncompensated) 

0.0 0.2 0.4 0.6 0.8 1.0
490

492

494

496

498

500

502

504

506

508

510
 SpeedRef
 rotor_speed(uncompensated)
 rotor_speed(compensated)

r
o
t
o
r
 
s
p
e
e
d
(
r
p
m
)

Time(s)

7.03

1.88

0.00 0.04 0.08 0.12 0.16 0.20
-3

-2

-1

0

1

2

3

A
-
p
h
a
s
e
 
s
t
a
t
o
r

c
u
r
r
e
n
t
(
A
)

Time(s)

 IA(uncompensated)

0 1 2 3 4 5 6 7 8
0

2

4

6

8

P
e
r
c
e
n
t
a
g
e
 
o
f
 

f
u
n
d
a
m
e
n
t
a
l
 
c
u
r
r
e
n
t
(
%
)

Harmonic order (fundamental 25Hz)

Energies 2022, 15, x FOR PEER REVIEW 23 of 25 
 

 

 
    (d) Phase current and THD (compensated) 

Figure 16. Experiment data for 500 rpm condition. 

5.2. Comparision and Analysis of Experimentation Data for Different Speed Conditions 
As shown in Figures 14c, 15c, and 16c, under 200 rpm, 350 rpm, and 500 rpm condi-

tions, the 5th and 7th harmonic components of the stator current decrease gradually, 
which are 20.0%, 14.35%, and 7.91%, respectively. This is due to the increase in the stator 
current caused by the higher rotor speed and the heavier equivalent load of the motor. 
Additionally, according to (21), the increase in the harmonic impedance also reduces the 
amplitude of the harmonic current. According to the deduction in (16), the position esti-
mation error caused by the dead-time effect current increases with the higher angular ve-
locity at medium and low speeds. As shown in Figures 14a, 15a, and 16a, with the increase 
in rotor speed, the peak values of electrical angle estimation error are −0.207 rad, −0.263 
rad, and −0.318 rad for the three rated speeds. The larger the position estimation error, the 
faster the motor runs, and the greater the ripple of rotor speed. The increase in the error 
is slightly larger than the theoretical expectation, which may be due to the combined effect 
of other factors besides the dead-time effect and the harmonic current. For example, be-
cause the experimental motor is a permanent-magnet-assisted SynRM, the actual motor 
cannot meet the standard of an ideal motor in design. Affected by machining errors and 
tooth-groove effect, the magnetic field generated by ferrite installed on the rotor usually 
contains a large number of harmonics. Due to the cross-coupling phenomenon caused by 
the increase of current, the d-axis inductance changes, and the sensorless position solution 
is very dependent on the accuracy of parameters, etc. 

In the three groups of experiments, the compensation method proposed in this paper 
has a good effect. According to the data of Figure 14d, the phase current THD has been 
reduced to less than 3%. The higher the speed of the experimental group, the lower the 

1.43
0.68

0.00 0.04 0.08 0.12 0.16 0.20
-3

-2

-1

0

1

2

3

A
-
p
h
a
s
e
 
s
t
a
t
o
r

c
u
r
r
e
n
t
(
A
)

Time(s)

 IA(compensated)

0 1 2 3 4 5 6 7 8
0

2

4

6

8

P
e
r
c
e
n
t
a
g
e
 
o
f
 

f
u
n
d
a
m
e
n
t
a
l
 
c
u
r
r
e
n
t
(
%
)

Harmonic order (fundamental 25Hz)

Figure 16. Experiment data for 500 rpm condition.

5.2. Comparision and Analysis of Experimentation Data for Different Speed Conditions

As shown in Figure 14c, Figure 15c, and Figure 16c, under 200 rpm, 350 rpm, and
500 rpm conditions, the 5th and 7th harmonic components of the stator current decrease
gradually, which are 20.0%, 14.35%, and 7.91%, respectively. This is due to the increase in
the stator current caused by the higher rotor speed and the heavier equivalent load of the
motor. Additionally, according to (21), the increase in the harmonic impedance also reduces
the amplitude of the harmonic current. According to the deduction in (16), the position
estimation error caused by the dead-time effect current increases with the higher angular
velocity at medium and low speeds. As shown in Figure 14a, Figure 15a, and Figure 16a,
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with the increase in rotor speed, the peak values of electrical angle estimation error are
−0.207 rad, −0.263 rad, and −0.318 rad for the three rated speeds. The larger the position
estimation error, the faster the motor runs, and the greater the ripple of rotor speed. The
increase in the error is slightly larger than the theoretical expectation, which may be due to
the combined effect of other factors besides the dead-time effect and the harmonic current.
For example, because the experimental motor is a permanent-magnet-assisted SynRM, the
actual motor cannot meet the standard of an ideal motor in design. Affected by machining
errors and tooth-groove effect, the magnetic field generated by ferrite installed on the rotor
usually contains a large number of harmonics. Due to the cross-coupling phenomenon
caused by the increase of current, the d-axis inductance changes, and the sensorless position
solution is very dependent on the accuracy of parameters, etc.

In the three groups of experiments, the compensation method proposed in this paper
has a good effect. According to the data of Figure 14d, the phase current THD has been
reduced to less than 3%. The higher the speed of the experimental group, the lower
the harmonic contents after compensation. After adopting the compensation method
proposed in this paper, the larger the given speed of the experimental group, the greater
the angle error and speed ripple when the rotor operates stably. This is because the
higher the frequency of residual harmonic current, the more significant the influence
according to Equations (16), (17), and (21). At the same time, it may also be affected by the
harmonic generated by the ferrite permanent magnet and the performance degradation
of the controller caused by the change of inductance parameters, but this paper will not
discuss this in detail.

6. Conclusions

This paper presents a new error source sensorless rotor position estimation at low
injection frequency and a dead-time compensation method suitable for filter-free HF square-
wave voltage-based sensorless vector control systems. The sources of electric angle esti-
mation errors caused by dead-zone harmonic currents are discussed in detail in this paper.
The feasibility, the effect of reducing stator current THD, and the effect of reducing position
estimation error of the new dead-time effect compensation method are fully proved by
theoretical derivation and experimental results in this paper. Compared with previous
studies, the new error sources proposed in this paper point out other error sources besides
voltage distortion factors. The experimental results also show that the proposed filter-free
dead-time compensation method still has good effect without filters and sensors. After
reducing the harmonic current content, the accuracy of sensorless position estimation is
significantly better than that of the state without compensation.
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