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Abstract: The imbalance of data samples and fluctuating operating conditions are the two main
challenges faced by vibration data-driven fault diagnosis for the iron core looseness of saturable
reactors in UHVDC thyristor valves. This paper proposes a vibration data-driven saturable reac-
tor iron core looseness fault diagnosis strategy named CVG-MFICNN based on CVAE-GAN and
MFICNN to overcome the two challenges. This strategy uses a novel 1-D CVAE-GAN model to
produce generated samples and expand the training set based on imbalanced training samples. An
MFICNN model structure is designed to allow the simultaneous processing of multimodal features
such as the SST time-frequency spectrum, time-domain vibration sequence, frequency-domain power
spectrum sequence, and time-domain statistics. Using these multimodal features and the MFICNN
model, the hidden fault information in vibration data can be effectively mined. An experiment is
conducted to collect vibration data of saturable reactors with different faults. Models based on the
proposed strategy and other methods are trained and tested using the collected data. The compar-
ison results show that the performance of the proposed CVG-MFICNN approach is significantly
superior to that of single-feature CNNs, traditional machine learning methods, and classical image
classification CNNs in the application of UHVDC thyristor valve saturable reactor iron core looseness
fault diagnosis.

Keywords: UHVDC thyristor valve; saturable reactor; iron core looseness; fault diagnosis; data
imbalance; variable operating conditions; CVAE-GAN

1. Introduction

The ultrahigh voltage direct current (UHVDC) thyristor valve is the core equipment
of a UHVDC transmission project [1]. A saturable reactor is a critical component of the
UHVDC thyristor valve, which can inhibit the rapid growth of surge currents during
the opening and closing progress of the thyristors, bear most of the peak voltage under
lightning overvoltage, and protect the thyristors under various working conditions [2].
Under long-term engineering mechanical stress, the tension band of a saturable reactor
iron core will undergo permanent plastic deformation, decreasing the tension force. Then,
the air gap of the iron core may change. This may lead to the protection capability of the
saturable reactor not meeting the design requirements. Abnormal vibration of the iron core
can also occur, which may damage the insulation and cause excessive temperature due to
the eddy current effect. Through routine inspection and maintenance, it is impossible to
identify the iron core state. Therefore, it is necessary to study the monitoring and diagnosis
method of saturable reactor iron core looseness faults to determine the state of the iron core
and support reasonable operation and maintenance in engineering.
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Vibration signals have been widely used in the condition monitoring and diagnosis
of power equipment as a physical quantity that directly reflects the structure state of
devices [3–6]. Similar to a transformer or an alternative current (AC) reactor, when a
saturable reactor works, its iron core vibrates under magnetostriction. The vibration
characteristics are directly affected by the iron core’s structural state. Therefore, it is
theoretically feasible to diagnose the iron core looseness of a saturable reactor by analyzing
and processing the vibration signals.

In the early stage, the time domain statistical characteristics of the vibration signal
were used to diagnose the equipment status, and the operation status of the equipment was
diagnosed by calculating the root mean square (RMS), skewness, kurtosis, and other time
domain statistical features [7–9]. However, the time domain characteristics do not change
significantly when some faults occur, and the diagnostic methods based on time domain
statistical features cannot detect and distinguish the faults in a timely manner, which creates
a certain hysteresis and ambiguity in engineering. With the development of frequency
domain analysis methods based on the Fourier transform, such as the frequency spectrum,
power spectrum, and cepstrum, it is possible to analyze and calculate the characteristics of
signals in the frequency domain [10–13]. Some faults do not obviously influence the time
domain features of vibration signals but cause significant changes in frequency domain
characteristics. Frequency domain analysis can diagnose these faults earlier and more
accurately. However, the vibration signals of equipment faults are usually nonstationary
signals, which vary both in the time domain and frequency domain [14]. Some research
used time-frequency analysis methods such as a short-time Fourier transform and a wavelet
transform to calculate the time-frequency spectrum characteristics of the signal to diagnose
equipment faults [15–17]. The time-frequency spectrum expresses the signal both in the
time domain and the frequency domain, and state information within it is more abundant
than that in the simple time domain feature and frequency domain feature [18].

Methods combining statistical features and threshold judgment have been widely
used from the early days to the present. With the development of artificial intelligence
technology, machine learning algorithms such as k-nearest neighbor (KNN), decision tree
(DT), support vector machine (SVM), and artificial neural network (ANN) are combined
with the statistical characteristics of signals in the time domain or frequency domain and
applied in vibration-based fault diagnosis [19–21]. Compared with threshold judgment
methods, machine learning methods do not need to conduct in-depth research on the vibra-
tion mechanism of equipment faults, nor do they need to manually design the judgment
threshold, which greatly reduces the difficulty for engineering applications to enact fault
diagnosis methods [22,23]. However, due to the influence of working conditions, different
fault samples based on the statistical characteristics under variable working conditions
may be confused and difficult to separate. Traditional machine learning methods cannot
solve the problem of fault diagnosis under unknown working conditions. In recent years,
research on fault diagnosis based on deep learning has made great progress [24–27]. The
deep learning method can automatically realize feature extraction and classify samples and
can distinguish between the small differences of samples. With sufficient samples, it has
higher accuracy than traditional machine learning methods and has the potential to solve
the problem of fault diagnosis under unknown working conditions [28–30].

The imbalance of data samples and the fluctuation of operating conditions are the two
main challenges for vibration data-driven fault diagnosis of saturable reactors in UHVDC
thyristor valves. The challenges should be solved from the perspectives of expanding data
samples and exploring new fault features or diagnosis models.

It is impossible to obtain sufficient vibration data samples of saturable reactors with
different iron core looseness faults from engineering fields. Research on dataset extension
should be carried out to improve the accuracy and generalization capability of the fault
diagnosis method and to solve the problem of imbalanced samples. In recent years, mod-
els such as the variational autoencoder (VAE) [31] and generative adversarial networks
(GANs) [32] and derived methods based on these models, such as the conditional VAE
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(CVAE) and Wasserstein GAN, have been widely used in sample expansion in different
fields [33–35]. The CVAE-GAN model combines the advantages of VAE and GAN. It
can improve the low generated sample quality of the VAE model and perfect the GAN
model’s mode collapse and sample distortion. The CVAE-GAN model has been applied in
image generation and mechanical vibration signal generation [36,37], and its performance
is superior to that of pure VAE, GAN, and their derived methods.

The vibration of a saturable reactor is affected by the structural state and electrical
excitation at the same time. The DC transmission project may operate under different loads,
and the current passing through a saturable reactor is variable rather than fixed. Because
there is no bridge current and no reactor voltage acquisition device in its engineering,
electrical excitation data are not available in real time, which increases the difficulty of
saturable reactor fault diagnosis. Without electrical excitation data, it is almost impossible
to diagnose the iron core looseness of a saturable reactor using traditional machine learning
methods combined with time-domain or frequency-domain statistical features. Therefore,
it is necessary to study more effective features and fault diagnosis models to solve the
challenges of fluctuating and unknown working conditions. Sychrosqueezed wavelet trans-
form (SST) is an improved wavelet transform method that can sharpen the time-frequency
domain representation results of signals by relocating the wavelet transform results on
the time-frequency domain plane [38]. Compared with the general wavelet transform
time-frequency spectrum, the energy distribution of the SST time-frequency spectrum is
more concentrated, and the key components are more prominent, which is conducive to
improving the fault diagnostic performance. Through convolution, pooling, and other
technologies, the deep convolution neural network (DCNN) can avoid the exponential
increase in the number of neurons caused by the rise in input feature dimensions and
hidden layers [39]. It can build a deeper network structure and use fewer hidden layer
parameters. It has a more vital ability to learn high-dimensional input features. The DCNN
can accept features of sequences or images as input, and some research uses the original
vibration signal sequence or time spectrum as the input feature of the DCNN to diagnose
faults and achieve good diagnostic performance [28,40,41]. Furthermore, the DCNN model
can be designed and modified into a special structure that allows multiple different features
to be input at the same time, thus achieving higher diagnostic performance than the method
based on a single feature [36].

This paper presents a fault diagnosis method named CVG-MFICNN for the iron core
looseness of a UHVDC thyristor valve saturable reactor. A CVAE-GAN model was trained
based on an unbalanced dataset to produce generated samples and expand the original
dataset to balance. The vibration signals of the expanded dataset samples are processed
from different perspectives. The time-frequency spectrum and frequency-domain sequence
of the vibration signals are calculated using the SST and Welch method, respectively. The
time-domain series and time-domain statistics are also extracted as vibration signal features.
A new MFICNN structure is designed that integrates different multimodal features to
diagnose the iron core looseness fault of a UHVDC thyristor valve saturable reactor under
variable operating conditions.

The remaining part of this paper is organized as follows: The vibration mechanism of
the saturable reactor in a UHVDC thyristor valve is introduced in Section 2. The workflow
and key model structure of the proposed CVG-MFICNN method are described in detail
in Section 3. In Section 4, the saturable reactor vibration experiment is described, and the
performance of the proposed method is tested using manually set unbalanced datasets
collected from the vibration experiment and compared with other methods. The work of
this paper is summarized in Section 5.

2. Vibration Mechanism of the Saturable Reactor

The wiring diagram of a 6-pulse converter consists of six single thyristor valves, and
the location of the saturable reactor in a single valve is shown in Figure 1a. Figure 1b shows
the structure of a saturable reactor, mainly composed of a coil, iron cores, clamping boards,
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and screw bolts. The coil is covered by cast epoxy resin, and the iron cores are mounted
outside the epoxy resin. Clamping boards and screw bolts connect the saturable reactor as
a whole structure. Figure 1c shows a cross-sectional view of the iron core. A single iron
core comprises two U-shaped laminated silicon steel sheets and a tensioning belt. There
is an air gap filled with insulating material between the two U-shaped laminated silicon
steel sheets.
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Figure 1. Structure of the UHVDC thyristor valve and saturable reactor: (a) UHVDC thyristor valve
appearance; (b) saturable reactor structure; (c) iron core cross-sectional view.

The primary vibration source of a saturable reactor is the magnetostrictive vibration
of the iron core [42]. Under the operating condition of the thyristor valve, the periodic
trapezoidal wave-like current passing through the saturated reactor can be equivalent to
the sum of multiple sinusoidal currents.

I =
n

∑
k=0,1,2,...

Iksin(kωt + ϕk) (1)

Ik and ϕk are the k-th harmonic’s current amplitude and phase angle, respectively. ω is the
base angle frequency of the 50 Hz current. According to the principle of electromagnetic
induction, the magnetic field strength H in the iron core of a saturable reactor is:

H =
NI
L

=
N
L
·

n

∑
k=0,1,2,...

Iksin(kωt + ϕk) (2)

N and L are the turns of a saturable reactor coil and the equivalent length of the iron
core magnetic circuit, respectively. Without considering the magnetic saturation effect, the
small relative deformation λ of the silicon steel sheet caused by magnetostriction satisfies
Equation (3) [43]:

λ =
∆l
l

=
2λs

H2
c

∫ H

0
|H|dH =

λs

H2
c

H2 (3)

∆l and l are the deformation and the original length of the silicon steel sheet, respectively.
λs is the saturated magnetostriction rate of the silicon steel sheet. Hc is the coercive force,
and H is the magnetic field strength in the iron core. By substituting Equation (2) into
Equation (3) and consecutively calculating the differential of the deformation to the time
twice, the vibration acceleration of the iron core can be obtained as Equation (4):
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a = d2∆l
dt2 = λs l

H2
c
· d

2(H2)
dt2 = λs l

H2
c
· N2

L2 ·
d2((

n
∑

k=0,1,2,...
Iksin(kωt+ϕk))

2)

dt2

= λs l
H2

c
· N2

L2 ·ω2·



n
∑

k=0,1,2,...
2k2 I2

k cos(2kωt + 2ϕk)+

n
∑

k1 6=k2=0,1,2,...
(k1k2 + k2

2)Ik1
Ik2 cos((k1 + k2)ωt + (ϕk1

+ ϕk2 ))+

n
∑

k1 6=k2=0,1,2,...
(k1k2 − k2

2)Ik1
Ik2 cos((k1 − k2)ωt + (ϕk1

− ϕk2 ))


(4)

where λs l
H2

c
·N2

L2 ·ω2 is a constant, its value is related to the magnetostriction rate λs, the
original length l of the silicon steel sheet, the coercive force Hc, the coil turns N, and the
equivalent length L of the iron core. k stands for the harmonic order. k1 and k2 are two
different orders of harmonics. It can be seen from Equation (4) that there are both odd
and even times of 50 Hz components within the vibration signals of a saturable reactor.
Magnetization saturation and magnetostriction of silicon steel sheets are both nonlinear
physical processes. This will aggravate the complexity of the iron core vibration signal.
The looseness fault of an iron core directly affects its air gap size, structural mode, and,
ultimately, vibration characteristics.

3. Proposed CVG-MFICNN Method

Figure 2 is the framework of the CVG-MFICNN method proposed in this paper. First, a
1-D (one-dimensional) CVAE-GAN model is trained based on the vibration data samples of
the training set to produce generated samples. The generated and original training samples
are combined to form an extended training set. Second, the time-frequency spectrum,
time-domain vibration sequence, frequency spectrum sequence, and time-domain statistics
of vibration signals are extracted. The extended training feature set, validation feature
set and testing feature set are formed based on the above features. Then, the extended
training feature set is used to train the MFICNN model, and the validation feature set is
used to select the model with the best validation accuracy during the total training process.
After training and validation, a model can be obtained without overfitting or underfitting.
Finally, the performance of the selected model is tested using the testing feature set to
evaluate the effectiveness of the proposed method.
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Figure 2. Framework of the proposed CVG-MFICNN diagnosis method.

The processes of training, validation, and testing simulate the actual procedure in
engineering applications. The testing corresponds to a practical diagnosis process. Before
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testing, only training and validation data are available for model training and selection.
There is no data leakage during the whole process.

3.1. 1-D CVAE-GAN Model for Dataset Extending

The method proposed in this paper uses a 1-D CVAE-GAN model to generate vibration
time series data to expand the training set. The CVAE-GAN model is composed of CVAE
and GAN [37]. As shown in Figure 3, CVAE-GAN includes the following four parts:
(1) encoder E; (2) generator G; (3) discriminator D; and (4) classifier C. Encoder E maps real
sample x to implicit representation z by learning conditional distribution P(z|x, c) of the
real sample, where c is the category of the sample. Generator G learns the distribution of
real samples through the gradient provided by discriminator D and samples z to produce
generated sample x’ through the learned conditional distribution P(x|z, c). Discriminator
D learns to distinguish between real and generated samples, and classifier C learns to
classify samples.
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The loss functions [37] used for CVAE-GAN training are:

LD = −Ex∼Pr [logD(x)]−Ez∼Pz [log(1− D(G(z)))]

LC = −Ex∼Pr [logP(c|x)]

LG =
1
2
(‖x− x′‖2

2 + ‖ fD(x)− fD(x′)‖2
2 + ‖ fC(x)− fC(x′)‖2

2)

LKL =
1
2
(µTµ + sum(exp(ε)− ε− 1))

LGD =
1
2
‖Ex∼Pr fD(x)−Ez∼Pz fD(G(z))‖2

2

LGC =
1
2 ∑c ‖Ex∼Pr fc(x)−Ez∼Pz fc(G(z))‖2

2

(5)

LD, LC, LG, and LKL are the loss functions of discriminator D, classifier C, generator G, and
encoder E, respectively. LGD and LGC are introduced to solve the problem of unstable early
training caused by gradient explosion. D(x) is the output of discriminator D. P(c|x) is the
classification probability output of classifier C. fD(x) and fC(x) are the input vectors of the
last fully connected (FC) layer of discriminator D and classifier C, respectively. µ and ε are
the mean and standard deviation logarithm vectors of hidden layer representation z. LD
and LC are used to update discriminator D and classifier C, respectively. LG, LGD, and LGC
are used to update generator G. LKL and LG are used to update encoder E.

A 1-D CVAE-GAN model is designed, and its structure is shown in Figure 4. The
1-D CVAE-GAN model is constructed based on CNN. The encoder, the discriminator, and
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the classifier use kernels with a size of 17 and a stride of 5 to construct convolution layers.
Through two consecutive convolutions, the size of the feature map input to the final FC
layer is reduced to 1/25 of the original vibration data. The decoder applies two consecutive
transposed convolution layers constructed using kernels with the same parameters to
realize the conversion from code to data. The parameters of each component of the model
are shown in Table 1.
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Table 1. Parameters of the designed 1-D CVAE-GAN model.

Component Layer Filter Size,
Stride

Filter/Neuron
Number Output Size

Encoder

Input1 - - N × 1 × 1
Conv1 5, 1 16 N × 1 × 16
Conv2 17, 5 16 N/5 × 1 × 16
Conv3 17, 5 32 N/25 × 1 × 32
Conv4 3, 1 32 N/25 × 1 × 32

Fc1 - 2048 2048
Fc2 - 2048 2048

Decoder

Input2 - - 2048 + K
Fc 3 - N/25 × 32 N/25 × 1 × 32

TrCv1 17, 5 16 N/5 × 1 × 16
TrCv2 17, 5 16 N × 1 × 16
TrCv3 5, 1 1 N × 1 × 1

Classifier

Input3 - - N × 1 × 1
Conv5 5, 1 16 N × 1 × 1
Conv6 17, 5 16 N/5 × 1 × 16
Conv7 17, 5 32 N/25 × 1 × 32

Fc4 - 64 64
Fc5 - K K

Discriminator

Input4 - - N × 1 × 1
Conv8 5, 1 16 N × 1 × 1
Conv9 17, 5 16 N/5 × 1 × 16

Conv10 17, 5 32 N/25 × 1 × 32
Fc6 - 64 64
Fc7 - 1 1

The encoder consists of four convolution layers and two fully connected layers. A
batch normalization layer and a ReLU activation layer are set after every convolution layer.
The Fc1 and Fc2 FC layers output the mean and standard deviation vector of the code,
respectively. The decoder consists of one FC layer and three transposed convolution layers.
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The FC layer is used to input codes and category labels. A ReLU activation layer is set
after each of the first two convolution layers, and a sigmoid activation layer is set after the
last transposed convolution layer. The discriminator and classifier are composed of three
convolution layers and two FC layers. For the discriminator and classifier, all convolution
layers and the first FC layer are set with a ReLU activation layer, and the second FC layer is
set with a sigmoid layer as the activation function.

Model parameters are randomly initialized before training. For a single training
process, the classifier parameters are first updated based on the original samples. Then,
the batched original samples are put into the encoder to obtain the mean and standard
deviation of the code corresponding to every original sample in the batch. Then, the
random codes are generated and input into the decoder together with the category labels
to obtain batched generated samples. The generated samples are put into the classifier
and discriminator to obtain the classification and discrimination results, respectively. The
parameters of the decoder, encoder, and discriminator are updated according to the output
of each component. The training of the whole CVAE-GAN model can be performed through
multiple iterations of the above processes.

For the sample generation stage, we input the batched original samples and category
labels into the encoder and generate random codes according to the mean and standard
deviation of the code corresponding to every original sample. The random codes are put
into the decoder together with the sample category labels to obtain the batched generated
samples to extend the training dataset.

3.2. Features as Input of the MFICNN Model

The time-frequency spectrum, time-domain sequence, frequency-domain sequence,
and time-domain statistical code are used as features as the input of the MFICNN model in
the proposed method, as shown in Table 2.

Table 2. Features used in the proposed method.

Feature Method Size Remarks

Time-frequency spectrum SST [38] 500 × 500 × 3 With a duration of one complete cycle,
rescaled and pseudo color processed.

Time-domain sequence Time-domain signal data
segmentation 4000 × 1 With a duration of two complete cycles.

Frequency-domain sequence Welch method [44] 4001 × 1 With a frequency range of 0~50 kHz.

Time-domain statistical code One-hot method 10 × 4
The four statistics are the peak value,
the peak-peak value, the root mean
square value, and the peak factor.

3.3. MFICNN Model

Conventional convolutional neural network models cannot process multiple types of
input features, such as images and sequences, simultaneously. In this paper, an MFICNN
model structure is designed which can fuse and process multiple types of input features.
The model structure is shown in Figure 5. In the figure, TFDS, TDS, FDS, and TDF represent
the time-frequency spectrum, time-domain sequence, frequency-domain sequence, and
time-domain statistical value code, respectively.

The MFICNN model is constructed using several two-dimensional (2-D) and 1-D
convolution pooling layer groups. A convolution pooling layer group is composed of a
convolution layer, a batch normalization layer, a maximum pooling layer, and a ReLU
activation layer, in order. After the convolution layer, the size of the feature graph remains
unchanged. After subsampling by the maximum pool layer, the size of the feature graph is
reduced to 1/2 of the original size. The parameters of the above two kinds of convolution
and pooling layer groups are shown in Table 3. The data dimension is reduced, and the
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key fault characteristics are extracted by passing the original features through multiple
consecutively stacked convolution pooling layer groups.
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Table 3. Parameters of the convolution and pooling layer groups.

Components Layer Filter Size, Stride

2-D convolution pooling layer group

Convolution 5 × 5, (1, 1)
BatchNormlization -

MaxPooling 2 × 2, (2, 2)
ReLU -

1-D convolution pooling layer group

Convolution 5, 1
BatchNormlization -

MaxPooling 2, 2
ReLU -

The time-frequency spectrum and sequence features are converted into feature graphs
with sizes of 4 × 4 × 16 and 8 × 16, respectively. The final output feature graphs are
flattened into three 1-D sequences and combined with the flattened time-domain statistics
codes to form an integrated sequence. The integrated sequence is input to the first FC layer
with 16 neurons and a dropout rate of 0.4. The number of neurons in the second FC layer is
five, which is consistent with the number of fault types. A softmax layer is set in the end
to compute the probability that the samples belong to different categories and output the
classification result.

4. Case Study and Discussion
4.1. Saturable Reactor Vibration Experiment

A vibration experiment was conducted to obtain the vibration data of the faulty
saturable reactor under different electrical excitations.

Figure 6 shows the vibration experiment wiring diagram. An AC power with a voltage
of 220 V is used and connected to a DC power via a transformer. The DC power mainly
consists of four sets of IGBTs and is used to charge capacitor Cs. The capacitor Cs is
connected to the DC power through switch K1, grounded through grounding resistance
Rcs and switch Ks. Ks ensures that capacitor Cs is reliably grounded when the experiment
is not running. A thyristor valve Thy is set to control the energy supplement for the H-
bridge module. Isolation transformers and series reactors are arranged in the H-bridge
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module cabinet to supply energy for IGBT drivers. The H-bridge module rectifies the DC
voltage for the saturable reactor. The voltage peak value is adjusted by connecting the
equivalent stray capacitor to simulate the operating conditions of the saturable reactor. The
excitation can simulate the two pulse voltages generated at the moment of opening and
closing the UHVDC thyristor valve. The current passing through the saturable reactor
is approximately trapezoidal. The voltage and the current waveform are consistent with
the actual engineering waveform. Therefore, the operating vibration characteristics of the
saturated reactor can be well simulated by conducting this vibration experiment.
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Figure 6. Wiring diagram of the saturable reactor vibration experiment.

A high-voltage probe and a Rogowski coil are used to measure the voltage and current
of the saturable reactor. The voltage, current, and vibration data are synchronously collected
using a high-voltage isolated data acquisition system. The isolated data acquisition system
uses laser fiber communication to ensure reliable insulation between the saturable reactor
and the data acquisition device and prevent high voltage from causing safety accidents
or damaging the data acquisition device. The high-voltage probe, Rogowski coil, and
piezoelectric accelerometer are connected to the laser transmitter of the acquisition system
and isolated from each other. The piezoelectric accelerometer and the laser transmitter use
batteries for the power supply. The laser transmitter is connected to the receiving device of
the data acquisition system through laser fibers, and the laser receiver and data recorder
are connected to a PC for data storage.

The experimental field, the appearance of the saturable reactor used in the experiment,
and the installation of the accelerometer are shown in Figure 7. To ensure dynamic insu-
lation, the reactor iron core and fixing screw bolts are equipotent to the midpoint of the
coil, and all discrete metal parts are wired together. The reactor iron cores are installed on
the epoxy resin structure outside the coil and fixed by the tensioning belt. The iron core
looseness faults at various levels are simulated by adjusting the torque of the tensioning
belt screw bolt. Considering the accuracy of vibration measurement and insulation require-
ments, we stuck the piezoelectric accelerometer to the surface of the clamping board above
the iron core to measure the acceleration along the iron core length direction.

The vibration experiment is conducted under different peak currents to collect vibra-
tion data of saturable reactors with iron core looseness faults of various levels. Specific
experimental parameters are shown in Table 4. In the table, a, b, c, d, and e represent five
levels of iron core looseness faults.

Figure 8 shows the saturable reactor’s voltage, current, and vibration data with the
iron core in the normal state (NS) and a peak current of 1280 A. Figure 8a represents the
time domain waveform of voltage, current, and vibration acceleration of five consecutive
cycles, and Figure 8b represents the first valve opening and closing process in Figure 8a.
Saturable reactor vibration is caused by current change, so the macro period of vibration is
also 50 Hz, which is the same as that of the current. In the process of single valve opening
and closing, the vibration excitation of a saturated reactor caused by current change and
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magnetostriction is similar to two consecutive shocks with a certain time interval. Due
to the higher current change rate di/dt during the closing process, the corresponding
shock excitation is stronger, and the resulting vibration response is more intense than the
opening process.

Energies 2022, 15, x FOR PEER REVIEW 11 of 25 
 

 

 

Figure 6. Wiring diagram of the saturable reactor vibration experiment. 

A high-voltage probe and a Rogowski coil are used to measure the voltage and cur-

rent of the saturable reactor. The voltage, current, and vibration data are synchronously 

collected using a high-voltage isolated data acquisition system. The isolated data acquisi-

tion system uses laser fiber communication to ensure reliable insulation between the sat-

urable reactor and the data acquisition device and prevent high voltage from causing 

safety accidents or damaging the data acquisition device. The high-voltage probe, 

Rogowski coil, and piezoelectric accelerometer are connected to the laser transmitter of 

the acquisition system and isolated from each other. The piezoelectric accelerometer and 

the laser transmitter use batteries for the power supply. The laser transmitter is connected 

to the receiving device of the data acquisition system through laser fibers, and the laser 

receiver and data recorder are connected to a PC for data storage. 

The experimental field, the appearance of the saturable reactor used in the experi-

ment, and the installation of the accelerometer are shown in Figure 7. To ensure dynamic 

insulation, the reactor iron core and fixing screw bolts are equipotent to the midpoint of 

the coil, and all discrete metal parts are wired together. The reactor iron cores are installed 

on the epoxy resin structure outside the coil and fixed by the tensioning belt. The iron core 

looseness faults at various levels are simulated by adjusting the torque of the tensioning 

belt screw bolt. Considering the accuracy of vibration measurement and insulation re-

quirements, we stuck the piezoelectric accelerometer to the surface of the clamping board 

above the iron core to measure the acceleration along the iron core length direction. 

  
(a) (b) 

Figure 7. Saturable reactor vibration experiment: (a) experimental field; (b) saturable reactor ap-

pearance and installation of the accelerometer. 

The vibration experiment is conducted under different peak currents to collect vibra-

tion data of saturable reactors with iron core looseness faults of various levels. Specific 

 
Charging part

Lc

Power circuit

Cs

K1

Ks

Rcs H -
bridge 

module

High voltage probe

Accelerometer

Rogowski coil

Laser Receiver
&Data Recorder

PC

Saturable 
Reactor

Laser 
Transmitter

Fiber connection

T2

T4

T1

T3

~220V

ThyDC power

 Accelerometer

Figure 7. Saturable reactor vibration experiment: (a) experimental field; (b) saturable reactor appear-
ance and installation of the accelerometer.

Table 4. Parameters of the vibration experiment.

Parameter Fault Value

Tension belt screw torque

a. Screw off (SO) Tension belt screw removed
b. Totally loose(TL) 0 N·m

c. Extremely loose(EL) 6 N·m
d. Slightly loose(SL) 8 N·m
e. Normal state(NS) 10 N·m

Current peak value All faults
270 A, 335 A, 465 A,
600 A, 730 A, 865 A,

1000 A, 1130 A, 1280 A

Cooling water temperature All faults 25

Accelerometer response
frequency All faults 3 Hz~30 KHz

Sampling rate All faults 1 MHz
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Figure 9 shows two periodic vibration time domain waveforms of saturated reactors
with different loose cores under different operating conditions. The fault state and load
affect the vibration signal of the saturable reactor at the same time. It is difficult to distin-
guish the fault state of the saturable reactor iron core by purely analyzing the characteristics
of the vibration signal without load information.
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Figure 9. Comparison of the time domain vibration waveform of saturable reactors with different
loose iron cores under various operating conditions. From top to bottom, a~e represent the five iron
core looseness faults in Table 4. From left to right, A, B, and C represent that the current peak values
are 270 A, 730 A, and 1280 A, respectively.

4.2. Dataset Splitting and Extending

The collected vibration data are resampled at 100 kHz and cut into samples with a
length of 0.25 s to form the original dataset. The dataset is divided into a training set,
a validation set, and a testing set with a ratio of 50%:25%:25%. To create datasets with
unbalanced sample distribution, one can randomly remove a certain number of faulty
samples of four types except for the normal state type so that the proportion of faulty and
normal samples is 2, 4, 8, 15, and 30. The above training sets are defined as training sets I,
II, III, IV, and V. The number of different load samples in each dataset is consistent. The
specific division of datasets is shown in Table 5.

The CVAE-GAN model was trained separately using each unbalanced training set.
The model parameters are set as N = 25,000 and K = 5 since the length of a single vibration
data sample is 25,000. Every unbalanced training set is expanded to balance so that the
proportion between normal and faulty samples is 1:1.

Figure 10 shows the power spectra of the original and generated samples in training
set V or produced based on training set V. The blue lines represent the real samples, and
the red lines represent the generated samples. In general, the power spectrum curve of the
generated sample coincides with the real sample, which means that the CVAE-GAN model
has learned the key features of the real sample data. Due to the limited number of samples
used to train the CVAE-GAN model, there are local differences in certain positions. This
can increase the difference among training samples, alleviate the overfitting problem, and
improve the model’s generalization capability to a certain extent.
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Table 5. Datasets organization.

Dataset

Number of Samples Belonging to Different Categories Unbalance
Proportion:

Normal:Faulty
a. Screw off

(SO)
b. Totally

Loose (TL)
c. Extremely
Loose (EL)

d. Slightly
Loose (SL)

e. Normal
State (NS)

Training I 300 300 300 300 600 2:1
Training II 150 150 150 150 600 4:1
Training III 75 75 75 75 600 8:1
Training IV 40 40 40 40 600 15:1
Training V 20 20 20 20 600 30:1
Validation 300 300 300 300 300 1:1

Testing 300 300 300 300 300 1:1
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Figure 10. Power spectra of the original and generated samples. The blue line represents the real
sample, and the red line represents the generated sample. From top to bottom, a~e represent the five
iron core looseness faults in Table 4. From left to right, A, B, and C represent that the current peak
values are 270 A, 730 A, and 1280 A, respectively.

4.3. Feature Extraction
4.3.1. Time-frequency Domain Feature Extraction

For a given signal x(t), its continuous wavelet transform Ws(a, b) is defined as:

Ws(a, b) =
∫

x(t)a−
1
2 ψ

(
t− b

a

)
dt (6)

ψ is the selected mother wavelet. a and b are the scale parameter and translation parameter,
respectively. For any (a, b) meeting Ws(a, b) 6= 0, the instantaneous frequency ωs(a, b) of
signal x(t) is:

ωs(a, b) = −i(Ws(a, b))−1 ∂

∂b
Ws(a, b) (7)

Ws(a, b) is converted from the time-scale plane to the time-frequency plane according to
the mapping relationship of (b, a)→ (b, ωs(a, b)) , which is called sychrosqueezing. a and
ω are divided into several small boxes so that ak − ak−1 = (∆a)k, ωl − ωl−1 = ∆ω. The
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sychrosqueezed transform Ts(ωl , b) is only determined by Ws(a, b) in consecutive boxes
with a center of ωl and a width of ∆ω [38]:

Ts(ωl , b) = (∆ω)−1 ∑
ak :|ω(a,b)−ωl |≤∆ω/2

Ws(ak, b)a−3/2
k (∆a)k (8)

where ak is the k-th discrete scale and ωl is the l-th discrete angular frequency. Through the
above transformation, the wavelet factor spectrum can be squeezed along the scale axis,
and the energy distribution can be more concentrated. Therefore, the SST time-frequency
spectrum has higher energy aggregation than the general wavelet factor spectrum.

The time-frequency spectra of the vibration samples are calculated using the SST
method. The vibration signals are linearly normalized to the range of (−0.5, 0.5) according
to the peak value before the time-frequency spectrum calculation. Considering the period-
icity of the vibration signal in the time domain, we only retain the time-frequency spectrum
within one single period for a single data sample. The time-frequency spectrum’s center
of the time dimension is defined based on its peak position in the time domain to ensure
phase consistency. Because the original SST time-frequency spectrum can only highlight
the main frequency components, the original SST time-frequency spectrum is processed
with a logarithm of Tst = log(Ts + α) to better express the nonmajor components that are
submerged in the background area, and the parameter α is set as α = 0.0005. Every single
time-frequency spectrum matrix is linearly normalized according to its maximum and
minimum values and then pseudocolor processed using the Turbo color map to improve
its distinguishability.

Figure 11 shows the SST time-frequency spectrum features of saturable reactors with
different fault states operating under different loads. It can be seen from the figure that both
the operating condition and fault state affect the color and shape of the internal vortices in
the time-frequency spectrum. With increasing load, the concentration degree of the signal
in the frequency domain increases, and the difference between the hot spot area and the
background area of the time-frequency spectrum increases as well. However, both the over-
all brightness of the image and the proportion of red, yellow, and green areas decrease. By
comparing the time-frequency spectra of different fault samples under the same operating
conditions, we find that the color distribution position and the shape, number, and position
of the internal vortices all vary. The time-frequency spectrum in the areas circled by the red
solid ovals change significantly. In general, the time-frequency spectra of different faulty
samples under different operating conditions are quite different, which can be roughly
distinguished by human eyes and used as input of CNN for fault classification.
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4.3.2. Time Domain Sequence Feature Extraction

The time-domain vibration waveforms of the samples are shown in Figure 8. The
time-domain vibration sequence segment phase is consistent with the SST time-frequency
spectrum. A two-periodic time-domain segment with a duration of 0.04 s and a length of
4000 is intercepted for each sample. The vibration time domain sequence is normalized
according to Equation (9) so that the original vibration signal with a mean value of 0 is
converted into a sequence with a mean value of 0.5 and maximum and minimum values
not exceeding the range of (0.05, 0.95).

xnorm(t) =
0.45·x(t)

max(max(x(t)), abs(min(x(t))))
+ 0.5 (9)

4.3.3. Frequency Domain Sequence Feature Extraction

A power spectrum sequence with a length of 4001 is calculated using the Welch
method for each complete sample with a length of 0.25 s. Figure 10 shows the power
spectrum curves of real and generated samples in different fault states under different
loads. To improve the power spectrum data distribution and the resolving ability of
nonmajor frequency components, we convert the spectrum sequence into a decibel value
according to xdB( f ) = 10log10

(
xoriginal( f )

)
. Before being input into the neural network,

the power spectrum sequence should be linearly normalized to the range of (0.05, 0.95)
according to the maximum and minimum values according to Equation (10).

xnorm( f ) =
0.9·(xdB( f )−min(xdB( f )))
max(xdB( f ))−min(xdB( f ))

+ 0.05 (10)

4.3.4. Time Domain Statistic Code Extraction

Four time-domain statistics, the peak value, peak-peak value, root mean square value,
and peak factor, are added as value features to retain the absolute value information of
vibration signals, as the above three features are all normalized before being input into
the neural network. These features are processed into structured code using the one-hot
method. In this case, each feature is converted into a code with a length of 10. We divided
the distribution range of features in the dataset into ten sections at equal intervals and set
the code value at the same position as the section where the feature is located as 1, and the
other 9 code values are set as 0, as shown in Figure 12.
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4.4. Model Training and Testing

The F1 score [45] is used to evaluate the performance of the fault diagnosis methods.
Equation (11) is the definition of the F1 score, where P is the precision rate, R is the recall
rate, TP is the number of samples correctly diagnosed for a specific type of fault, FP is the
number of samples wrongly diagnosed as a specific type of fault, and FN is the number of
wrongly diagnosed samples for a specific type of fault. The precision ratio P indicates the
proportion of a specific type of sample in the diagnosis results that truly belongs to this
type of fault. The recall ratio R represents the correctly diagnosed proportion of all samples
belonging to a specific type of fault in the set. The F1 score combines the P and R values
and more comprehensively considers the method’s performance. Diagnosing the iron
core looseness fault of the UHVDC thyristor saturable reactor is a multiclass classification
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problem. For models trained based on a certain method, this paper calculates the F1 score of
all fault classifications and uses the minimum and average values of all fault classifications
F1 scores to characterize the method performance.

P =
TP

TP + FP

R =
TP

TP + FN

F1 = 2· P·R
P + R

(11)

The MFICNN model is trained using the imbalanced training set I~V and the cor-
responding CVAE-GAN extended training sets. The Adam optimizer is used for model
training. The learning rate is set to 0.0005, the maximum number of iterations is set to 1000,
the number of small batch samples is set to 64, and the single training model selection
strategy is set as selecting the model with the best validation loss. Figure 13 shows the
model training process using the CVG-MFICNN method based on training set I. The solid
blue line represents the training accuracy, the dotted blue line represents the validation
accuracy, the solid red line represents the training loss, and the dotted red line represents
the validation loss. In the early stage, the model’s accuracy continues to rise with the
increase in training iterations. At 248 iterations, the training accuracy reached 100% and
remained almost unchanged. The validation accuracy exceeded 95% but still fluctuated
with the increase in iterations. The changing trend of the loss and the accuracy rate is the
opposite. After 694 iterations, the accuracy of model validation reached the maximum value
of 99.47%, and the validation loss reached the minimum value. After that, the accuracy and
loss of model validation continued to fluctuate, but it could not obtain better validation
performance than the model of iteration 694, which indicates that the model was overfitted
after 694 iterations. Therefore, the model corresponding to iteration 694 is selected as the
final model obtained from this training process and then used for performance testing.
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Figure 13. Model training process using the CVG-MFICNN method based on training set I.

To illustrate the advantage of MFICNN over the single-feature neural network, we
trained and tested single-feature neural network models of the time-frequency spectrum,
time-domain sequence, and frequency-domain sequence for all training sets. 1-D CNN
models and 2-D CNN models are separately trained based on the sequence features and
the time-frequency spectrum feature. The above neural network model parameters are
consistent with the parameters in the MFICNN model proposed in this paper, and the
training parameters and model selection strategy are the same as those of the MFICNN
model training process.

The testing results of models trained using different methods and based on different
training sets are shown in Table 6. In the table, I~V represent five training sets with different
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unbalanced proportions. TDS-1DCNN, FDS-1DCNN, and TFD-CNN represent three single-
feature CNN methods. The three features are the time-domain sequence feature, frequency-
domain sequence feature, and time-frequency spectrum feature. MFICNN represents the
method using the MFICNN model designed in this paper. CVG represents the combination
of the above methods with CVAE-GAN data extension. To exclude the influence of the
model training randomness on the testing results, 30 models were trained for each method.
The average values of the minimum F1 scores and average F1 scores of the 30 models for
each method were used for performance comparison. A higher F1 score indicates better
method performance. The results in Table 6 are also illustrated in Figures 14 and 15.

Table 6. Testing results of models trained by different methods and based on different training sets.

Method
Min. F1 Score Ave. F1 Score

I II III IV V I II III IV V

TDS-1DCNN 0.586 0.514 0.495 0.477 0.421 0.741 0.685 0.631 0.626 0.583
CVG-TDS-1DCNN 0.604 0.586 0.563 0.554 0.444 0.767 0.723 0.700 0.688 0.619

FDS-1DCNN 0.838 0.781 0.762 0.702 0.598 0.924 0.889 0.878 0.828 0.768
CVG-FDS-1DCNN 0.856 0.840 0.819 0.797 0.680 0.924 0.925 0.903 0.902 0.823

TFDS-CNN 0.865 0.839 0.792 0.766 0.653 0.927 0.920 0.894 0.863 0.801
CVG-TFDS-CNN 0.911 0.905 0.890 0.905 0.849 0.955 0.954 0.947 0.951 0.916

MFICNN 0.902 0.871 0.828 0.791 0.701 0.949 0.932 0.907 0.872 0.812
CVG-MFICNN 0.965 0.947 0.921 0.918 0.863 0.983 0.973 0.959 0.958 0.927
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Table 6 shows that CVAE-GAN data extension can improve the performance of models
trained based on all original unbalanced training sets for all methods. Especially for the
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III, IV, and V training sets with an imbalance ratio of greater than 8, the performance
improvement is more significant.

Compared to the other two single-feature methods, the TDS-1DCNN method has the
worst performance. The performance of the FDS-1DCNN method is better than that of the
TDS-1DCNN method. Combined with CVAE-GAN data extension, the average F1 score of
the CVG-FDS-1DCNN method on datasets I~IV exceeds 0.900, which is significantly better
than that of the TDS-1DCNN and CVG-TDS-1DCNN methods. The TFDS-CNN method
has the best performance. Combined with CVAE-GAN data extension, the average F1 score
of the CVG-TFDS-CNN method on all datasets exceeds 0.900, especially on datasets I~IV,
and the average F1 score is close to or exceeds 0.950.

The performance of the MFICNN method is better than that of any method based
on a single feature and CNN. The F1 scores of models trained based on the MFICNN
and CVG-MFICNN methods are higher than those trained based on the TFDS-CNN and
CVG-TFDS-CNN methods, respectively. The average F1 score of models trained using
the CVG-MFICNN method on training set I reaches 0.983. For the extremely imbalanced
training set V with an imbalance ratio of 30, the average F1 score of models trained based
on the CVG-MFICNN method still reaches 0.927.

To represent the diagnosis result of the CVG-MFICNN method more clearly, we take
training sets I and V as examples to compare the testing confusion charts of the TFDS-CNN,
CVG-TFDS-CNN, MFICNN, and CVG-MFICNN methods, as shown in Figure 16. The
vertical axis of a confusion chart represents the real fault categories, and the horizontal
axis represents the diagnosed fault categories. The five fault categories are defined in
Table 4. Paired comparisons of A vs. B, C vs. D, E vs. F, and G vs. H show that combining
CVAE-GAN data extension can improve the performance of the models trained using
unbalanced training sets. We find that the performance of models trained using the most
imbalanced training set V is improved significantly from paired comparisons of C vs. D
and G vs. H. In addition, by comparing A vs. E, B vs. F, C vs. G, and D vs. H, it can be
found that the number of samples wrongly classified by the MFICNN method for a single
fault category is less than that of the TFDS-CNN method, so the diagnostic performance of
the MFICNN method is better.

Energies 2022, 15, x FOR PEER REVIEW 20 of 25 
 

 

Table 6 shows that CVAE-GAN data extension can improve the performance of mod-

els trained based on all original unbalanced training sets for all methods. Especially for 

the III, IV, and V training sets with an imbalance ratio of greater than 8, the performance 

improvement is more significant. 

Compared to the other two single-feature methods, the TDS-1DCNN method has the 

worst performance. The performance of the FDS-1DCNN method is better than that of the 

TDS-1DCNN method. Combined with CVAE-GAN data extension, the average F1 score 

of the CVG-FDS-1DCNN method on datasets I~IV exceeds 0.900, which is significantly 

better than that of the TDS-1DCNN and CVG-TDS-1DCNN methods. The TFDS-CNN 

method has the best performance. Combined with CVAE-GAN data extension, the aver-

age F1 score of the CVG-TFDS-CNN method on all datasets exceeds 0.900, especially on 

datasets I~IV, and the average F1 score is close to or exceeds 0.950. 

The performance of the MFICNN method is better than that of any method based on 

a single feature and CNN. The F1 scores of models trained based on the MFICNN and 

CVG-MFICNN methods are higher than those trained based on the TFDS-CNN and CVG-

TFDS-CNN methods, respectively. The average F1 score of models trained using the CVG-

MFICNN method on training set I reaches 0.983. For the extremely imbalanced training 

set V with an imbalance ratio of 30, the average F1 score of models trained based on the 

CVG-MFICNN method still reaches 0.927. 

To represent the diagnosis result of the CVG-MFICNN method more clearly, we take 

training sets I and V as examples to compare the testing confusion charts of the TFDS-

CNN, CVG-TFDS-CNN, MFICNN, and CVG-MFICNN methods, as shown in Figure 16. 

The vertical axis of a confusion chart represents the real fault categories, and the horizon-

tal axis represents the diagnosed fault categories. The five fault categories are defined in 

Table 4. Paired comparisons of A vs. B, C vs. D, E vs. F, and G vs. H show that combining 

CVAE-GAN data extension can improve the performance of the models trained using un-

balanced training sets. We find that the performance of models trained using the most 

imbalanced training set V is improved significantly from paired comparisons of C vs. D 

and G vs. H. In addition, by comparing A vs. E, B vs. F, C vs. G, and D vs. H, it can be 

found that the number of samples wrongly classified by the MFICNN method for a single 

fault category is less than that of the TFDS-CNN method, so the diagnostic performance 

of the MFICNN method is better. 

 

Figure 16. Testing confusion charts of models trained using the TFDS-CNN, CVG-TFDS-CNN, 

MFICNN, and CVG-MFICNN methods based on training sets I and V. 

a.SO b.TL c.EL d.SL e.NS

(A)TFDS-CNN Trained on Set I

a.SO

b.TL

c.EL

d.SL

e.NS

38

28

17

300

262

272

283

300

a.SO b.TL c.EL d.SL e.NS

(B)CVG-TFDS-CNN Trained on Set I

a.SO

b.TL

c.EL

d.SL

e.NS

11

21

300

300

289

279

300

a.SO b.TL c.EL d.SL e.NS

(C)TFDS-CNN Trained on Set V

a.SO

b.TL

c.EL

d.SL

e.NS

1

9 5

14

8

2

116

2

23

1

176

284

262

297

300

a.SO b.TL c.EL d.SL e.NS

(D)CVG-TFDS-CNN Trained on Set V

a.SO

b.TL

c.EL

d.SL

e.NS

4

1

59

300

300

299

237

300

a.SO b.TL c.EL d.SL e.NS

(E)MFICNN Trained on Set I

a.SO

b.TL

c.EL

d.SL

e.NS

20

4

7

300

280

296

293

300

a.SO b.TL c.EL d.SL e.NS

(F)CVG-MFICNN Trained on Set I

a.SO

b.TL

c.EL

d.SL

e.NS

1

13

1

300

299

287

299

300

a.SO b.TL c.EL d.SL e.NS

(G)MFICNN Trained on Set V

a.SO

b.TL

c.EL

d.SL

e.NS

90

14

196

18

1

8

5

4

208

6

1

87

299

263

300

a.SO b.TL c.EL d.SL e.NS

(H)CVG-MFICNN Trained on Set V

a.SO

b.TL

c.EL

d.SL

e.NS

15

2

1

1

19

298

285

299

280

300

Figure 16. Testing confusion charts of models trained using the TFDS-CNN, CVG-TFDS-CNN,
MFICNN, and CVG-MFICNN methods based on training sets I and V.

In summary, the CVG-MFICNN method proposed in this paper can effectively im-
prove the diagnostic performance of the models trained based on unbalanced training
sets by extending the datasets using the CVAE-GAN method. The performance of the
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severely unbalanced training sets III, IV, and V is improved rather significantly. Using mul-
timodal features can achieve a higher minimum and average F1 score than other methods
based on single features such as the time-frequency spectrum, time-domain sequence, and
frequency-domain sequence.

4.5. Comparison with Other Methods

To further illustrate the performance advantages of the CVG-MFICNN method, tra-
ditional machine learning models such as KNN, DT, SVM, fully connected neural net-
work (FCNN), and classical convolutional neural network models such as LeNet-5 [39],
AlexNet [46], VGGNet-16 [47], ResNet-50 [48] were trained, tested, and compared in
this chapter.

The time domain and frequency domain statistics [49] are taken as the input features
for the traditional machine learning models. Time domain statistics include the peak-to-
peak value, the average amplitude, the root mean square value, the kurtosis factor, the
skewness factor, and the peak factor. Frequency domain statistics include the average
frequency domain amplitude, the gravity frequency, the standard deviation of frequency,
the skewness factor of frequency amplitude, and the kurtosis factor of frequency domain
amplitude. The SST time-frequency spectrum is taken as the feature for the classical
convolutional neural network models. To adapt to the classical network structure, the SST
time-frequency spectrum image is scaled before being input into the neural networks. The
neuron number in the last fully connected layer of all CNN models is changed to five,
which is the number of iron core looseness fault categories of the saturable reactor in the
UHVDC thyristor valve.

The performance comparison result is shown in Table 7. The TFSF represents the time
domain and frequency domain statistics, and the TFDS stands for the SST time-frequency
spectrum. Similar to the comparison in Table 6, 30 models were trained for each method,
and the average value of the minimum F1 scores and average F1 scores of the 30 models
were used for method performance comparison. The computational costs and parameter
numbers of different method models are also illustrated in the table. The computational
cost is obtained by training models of different methods via the same platform with a CPU
of i5-12600KF and a GPU of Nvidia RTX 3090. The computational cost is defined as the
time of the total model training process with 1000 iterations for other methods, and the
CVG-MFICNN method needs an additional 60 h to extend the training set. The results in
Table 7 are also illustrated in Figures 17 and 18.

Table 7. Performance comparison of traditional ML and classical CNN methods.

Method Computational
Cost

Para.
Number

Min. F1 Score Ave. F1 Score

I II III IV V I II III IV V

TFSF-KNN - - 0.472 0.323 0.328 0.338 0.325 0.648 0.508 0.477 0.456 0.520
TFSF-DT - - 0.333 0.316 0.369 0.370 0.010 0.571 0.481 0.528 0.472 0.347

TFSF-SVM - - 0.634 0.541 0.336 0.489 0.499 0.702 0.623 0.548 0.599 0.579
TFSF-FCNN - - 0.392 0.357 0.366 0.351 0.276 0.550 0.529 0.523 0.524 0.452

TFDS-LeNet-5 16 min 43 s 61.8 k 0.675 0.837 0.763 0.786 0.792 0.837 0.893 0.859 0.858 0.832
TFDS-AlexNet 17 min 40s 56.8 M 0.672 0.807 0.757 0.786 0.743 0.853 0.915 0.902 0.891 0.863

TFDS-VGGNet-16 25 min 8 s 134.2 M 0.530 0.620 0.578 0.682 0.495 0.702 0.788 0.754 0.795 0.734
TFDS-ResNet-50 43 min 0s 23.5 M 0.728 0.710 0.591 0.627 0.467 0.857 0.843 0.777 0.785 0.707
CVG-MFICNN 60 h 20 min 28 s 70.3 k 0.965 0.947 0.921 0.918 0.863 0.983 0.973 0.959 0.958 0.927

The minimum and average F1 scores of all traditional machine learning methods are
low. The performance of the SVM is the best, but its average F1 score is only 0.5~0.7, and
the minimum F1 score is 0.3~0.6. The performance of KNN, decision tree, and FCNN is
inferior to that of SVM, the minimum F1 score is in the range of 0.3~0.4, and the average F1
score is approximately 0.5.
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Among the classical CNN methods, AlexNet has the best performance. The average
F1 scores of AlexNet models trained on all imbalanced training sets exceed 0.850, and the
average F1 scores of models trained on training sets II and III exceed 0.900. The performance
of LeNet-5, which has the simplest structure, was the second best. The average F1 scores
of the LeNet-5 models trained on training sets I, II, and III exceed 0.870, and the average
F1 scores of the LeNet-5 models trained on training sets IV and V exceed 0.810. The
performance of ResNet-50 and VGGNet-16 is poor. Only the average F1 scores of ResNet-50
models trained on training sets I and II exceed 0.800. The average F1 scores of ResNet-50
models trained on other training sets and VGGNet-16 models trained on all training sets
do not exceed 0.800.

Through comparison, it can be found that the performance of the CVG-MFICNN
method proposed in this paper is far superior to the traditional machine learning methods
and the classical CNN methods. The model training computational cost of the CVG-
MFICNN method is similar to that of the LeNet-5, AlexNet, and VGGNet-16 but over 50%
less than that of the ResNet-50. The CVG-MFICNN method costs additional computational
resources of approximately 60 h for training set expansion during the model preparation
stage, but this is acceptable because the model preparation is conducted only once before
the model deployment. On the other hand, the models trained using the CVG-MFICNN
method have significantly fewer parameters than most classical CNN models, which makes
the models easier to deploy in the actual production environment.

5. Conclusions

This paper proposes a CVG-MFICNN fault diagnosis method for the iron core loose-
ness of saturable reactors in UHVDC thyristor valves. The method can achieve high-
accuracy saturable reactor iron core looseness fault diagnosis without operating condition
information under variable line loads based on training sets with various imbalance propor-
tions. Its performance is significantly superior to traditional machine learning and classical
CNN methods. The work of this paper is summarized as follows:
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1. A saturable reactor vibration experiment was conducted to obtain the vibration data.
Saturable reactors with five types of iron core looseness faults operated under various
loads using the comprehensive experimental platform, and the vibration acceleration,
voltage, and current data were synchronously acquired. The vibration signals are
similar to the response of periodic continuous two-time shock, and the frequency
distribution range is approximately 0~20 kHz.

2. To solve the problem of imbalanced data in engineering, a 1-D CVAE-GAN model
is designed and used to extend the original training sets with various imbalance
proportions. The testing results show that the performance of the models trained
on imbalanced training sets can be improved significantly by extending the training
sets using the designed 1-D CVAE-GAN model, especially for severely unbalanced
training sets.

3. The time-frequency spectrum features of vibration signals are extracted based on the
SST method, and the identifiability of the time-frequency spectrum is improved by
logarithmic calculation and pseudocolor processing. The testing results show that the
method’s performance using the SST time-frequency spectrum feature is superior to
that of other methods using the time-domain sequence feature or frequency-domain
sequence feature.

4. An MFICNN model is designed, which allows simultaneous input of the time-
frequency spectrum feature, the time-domain sequence feature, the frequency-domain
sequence feature, and the time-domain statistical code feature. Its diagnostic perfor-
mance is superior to the method using any single type of feature. Combined with the
CVAE-GAN data extension model, a CVG-MFICNN method for iron core looseness
fault diagnosis of a saturable reactor in a UHVDC thyristor valve is proposed. Its
performance is significantly better than traditional machine learning and classical
CNN methods. The problems of imbalanced data and variable unknown operating
conditions in saturable reactor iron core looseness fault diagnosis can be solved using
the proposed method.
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