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Abstract: Sodium-ion batteries (SIBs) are among the most cost-effective and environmentally benign
electrical energy storage devices required to match the needs of commercialized stationary and
automotive applications. Because of its excellent chemical characteristics, infinite abundance, and
low cost, the SIB is an excellent technology for grid energy storage compared with others. When used
as anodes, titanium compounds based on the Ti4+/Ti3+ redox couple have a potential of typically
0.5–1.0 V, which is far from the potential of dangerous sodium plating (0.0–0.1 V). This ensures the
operational safety of large-scale SIBs. Low lattice strain, usually associated with Ti-based materials, is
also helpful for the longevity of the cycling of SIBs. Numerous Ti-based anode materials are being
developed for use in SIBs. In particular, due to adequate electrode–electrolyte interaction and rapid
charge transportation, hierarchical porous (HP) Ti-based anode materials were reported as having
high specific capacity, current density, and cycling stability. HPTi-based anode materials for SIBs
have the potential to be used in automobiles and portable, flexible, and wearable electronic devices.
This review addresses recent developments in HPTiO2-based SIBs and their preparation, properties,
performance, and challenges.

Keywords: sodium-ion batteries; hierarchically porous TiO2; titanium dioxide; anode materials;
Ti nanomaterials

1. Introduction

The shortage of fossil fuels is increasing and an alternative is necessary to switch from
nonrenewable to renewable energy sources, such as ocean energy, wind, solar, thermal, and
geothermal [1–3]. Moreover, the climate has been changing due to pollution, resulting in
an increase in pollution as well as global warming [4]. Carbon and harmful gases emitted
from automobiles and industries are inducing global warming [5,6], which is considered
a potential threat to the world, causing health issues, floods, and droughts. Batteries,
a major energy storage device, have been considered as having the potential to control
and reduce the damage being caused to the environment [7]. The most recent example
is electric vehicles equipped with batteries [8]. Based on usage, batteries are categorized
into two types: (1) primary batteries and (2) secondary batteries [9,10]. Primary batteries
are nonrechargeable, but the secondary batteries are rechargeable and can be used for
prolonged periods of time. This review deals with secondary batteries.
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Based on the material source used, the secondary batteries are further divided into sev-
eral types: lead-acid [11], aluminium-ion [12], dual carbon [13], vanadium redox flow [14],
magnesium-ion [15], lithium-ion [16,17], sodium-ion [18,19], etc. Sodium (Na)-ion batteries
are being developed as an economic replacement, as lithium batteries cost more [20]. The
foremost advantage of sodium-ion batteries is that they are more abundant naturally and
are less expensive than lithium. In the crust of the earth, sodium is present at 2.6%, while
lithium is present at a much lower 0.06%. Compared with Li, which has an extraction cost of
USD 5000 per ton, Na has a much lower cost of USD 150 per ton. Additionally, the cathode
materials for Na-ion batteries contain abundant and environmentally safe materials instead
of cobalt and nickel [21]. The most prominent anode material for batteries is graphite,
which has a distinct layered structure, good cycling stability, a flat potential profile, high
conductivity, and high coulombic efficiency [22]. However, its applicability in sodium-ion
batteries is constrained by the small interlayer spacing and poor rate capability [23]. In
addition, they are limited by the inability of reversible insertion/extraction of sodium
ions [24]. Moreover, sodium-ion batteries have been intensively researched to replace
expensive charge carriers with less expensive alternatives [25]. In order to improve the
efficiency and energy storage in Na-ion batteries, titanium (Ti)-based materials and nanos-
tructures have been synthesized. When used as anodes, titanium compounds based on the
Ti4+/Ti3+ redox couple have a potential of typically 0.5–1.0 V, which is far away from the
potential of dangerous sodium plating (0.0–0.1 V). This ensures the operational safety of
large-scale SIBs.

In the Earth’s crust, Ti is widely distributed because it is one of the rock-forming elements.
TiO2 is nontoxic, stable, and inexpensive [26]. In nature, TiO2 exists in four crystal structures,
namely brookite, rutile, anatase, and bronze [27]. The sodiation/desodiation mechanism
for different TiO2 polymorphs is different and still unclear. It was recently studied only for
anatase [28–30]. The conductivity of TiO2 is low, which affects the performance of Na-ion
batteries [31]. To overcome these disadvantages, multiple methods are being developed to
prepare materials with varying morphology, control, size, and doping with heteroatoms [32–35].

2. TiO2 as Anode Materials

For the first time, in 1991, Sony established commercialized Li-ion batteries (LiBs)
in the energy storage market, whereas hard carbon and layered LiCoO2 were utilized as
anode and cathode materials, respectively [36]. Graphite was used as an anode material for
LiBs instead of hard carbon. Due to increasing power demands, researchers focused on
developing advanced batteries with higher storage capacity, power, and safety.

Graphite has safety issues in high-performance batteries [37,38]. To overcome the
safety issues, graphite has been successfully replaced by lithium titanium oxide (LTO) [39]
in the anode terminal. TiO2 was proposed to replace LTO to increase the energy density
of LIBs [40]. In this regard, the properties of TiO2, such as electrochemical stability, low
cost, and large-scale availability, are advantageous for battery applications [41]. Among
the valve materials, TiO2 possesses the highest stability [42,43]. Ti surfaces always have
a thin, formed, natural oxide layer (TiO2) due to their easy reaction with oxygen in the
atmosphere [44]. Hence, the formation of TiO2 can be achieved via simple, cost-effective,
and eco-friendly procedures [45–47]. Upon calcination, TiO2 with varying surface and crys-
talline features can be obtained. High-performance batteries require high storage density,
which is associated with a short diffusion distance. To minimize the diffusion distance,
Lewis et al. proposed a strategy of increasing the effective surface area of anode materials
by using nanostructured TiO2 [48]. The nanostructures rendered a remarkable Li storage
value of 1.01–0.5 Li+ [48]. Additionally, the effectiveness of several TiO2 nanostructured
morphologies as LiB anode materials was explored. Wu et al. achieved a maximum perfor-
mance of 150 mAhg−1 and acycle performance of 100 mAhg−1 at the 70th cycle by using
TiO2 nanocrystals as anode materials [49]. Su et al. used TiO2 anatase hollow nanospheres
as anode materials in SIBs, and they obtained a maximum performance of 265 mAhg−1 [50].
TiO2 nanorods were used as anode materials, and the maximum performance was about
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220 mAhg−1. Only nanosized particles were interacting with the electrolyte, resulting in
another electrochemical reaction [51]. It may be the reason for the difficulties associated
with reaching high power in SIBs. Therefore, the mixed micro/nano structure of TiO2 has
received attention. Table 1 demonstrates the electrochemical performance of hierarchically
micro/nanoporous TiO2 anode materials for SIBs.

Table 1. Electrochemical performance of hierarchically micro/nanoporous TiO2 anode materials for SIBs.

Characteristics
Maximum Rate

Performance
(mAhg−1)

Cycle Performance
(mAhg−1) Strategy Ref.

HP Li4Ti5O 12 165 121 at 30C (500 cycles) Temperature-dependent rate
capability of SIBs [52]

Porous anatase TiO2-HP
structure 255.98 112.93 at 5C (100 cycles) Low-cost yeast cells used as

bio-templates [53]

NaTi2(PO4)3,
nanoparticles 121 103 at 2C (300 cycles) Cost-effective hydrothermal method

without calcination [54]

HP and high-tap-density
TiO2 spheres with
controllable size

189 184 at 1C (200 cycles) Hydrolysis method for producing
different types of high-tap-density TiO2

[55]

TiO2 porous cake-like 250 173 (2500 cycles) Annealing Ti-based metal-organic
frameworks templates [56]

TiO2 free-standing HP
nanocrystals 100 150 (500 cycles)

Mixing of multiwall carbon nanotubes
and free-standing TiO2 nano crystals by
ubes (designated as TiO2 MWCNTs) for

Na storage by free-drying, annealing,
and modified vacuum filtering

[57]

TiO2 HP nanopills 196.4 115.9 (3000 cycles) MIL-125(Ti) titanium metal–organic
framework as a precursor [58]

Flower-like ultrathin TiO2
nanosheets composed of

anatase and bronze
120 104 at 100C (6000 cycles) Simple solvothermal reaction and high

temperature annealing [59]

Self-assembled
hierarchical spheroid-like

KTi2(PO4)3@C
nanocomposites

283.2 136.1 (5000 cycles) Electrospray method [60]

TiO2 nanoparticles linked
in consistent pattern to

compose HP hybrid
nanosheet

146 129 at 10C (20,000 cycles) Adding nitrogen-doped
graphene layer networks [61]

HP anatase TiO2
microparticles 275 40 at 10C (450 cycles)

Incorporation of organic surface
modifiers with supercritical

methanol (scMeOH)
[62]

Hierarchical architecture
of porous anatase TiO2

microspheres
207.3 140.6 (10,000 cycles)

Solvothermal reaction, combining
ether-based electrolyte
with porous structure

[63]

TiO2/MoS2 to form a
nanoflower structure 616 460 (350 cycles) Construction of hybrid architecture

composed of MoS2 and TiO2 nanosheets [64]

Figure 1 shows the structure of nanoporous and hierarchically micro/nanoporous TiO2
anodes and associated preparation methods. The material’s active surface area is important
to obtain batteries with high charge storage parameters. Thus, porous materials, especially
nanoporous ones, were developed. Table 2 compares the performance of nanoporous TiO2
made using different methods for use in Na-ion batteries. In this material, nanopores
are connected by a very thin wall of TiO2. Thin walls of TiO2 are highly prone to react
with electrolytes and gradually detach from the anode terminal. Disintegration of the
anode structure decreases the overall performance of SIBs. Additionally, hierarchically
structured micro/nanoporous (HMNP) surfaces endow better binding energy and a high
surface-to-volume ratio and prevent the undesirable electrochemical reaction between the
electrode and TiO2. Thereby, the performance of SIBs can be maintained over a prolonged
usage cycle. HMNP TiO2 can be fabricated by several methods, including the sol-gel route,
coprecipitation, metal–organic framework, vacuum filtration process, and electrospray.
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Table 2. The electrochemical performance of nanoporous TiO2 as anode materials for SIBs.

Characteristics
Maximum Rate

Performance
(mAhg−1/Ag−1)

Cycle Performance
(mAh g−1) Strategy Reference

Porous TiO2 nanospheres 123.1/4.0 208 (over 500 cycles)
Graphene-supported TiO2

nanospheres by using
hydrothermal method

[65]

Nanoporous anatase TiO2 179/6.7 145 at 1C
(over 3000 cycles)

Combination of uniforme
nanopores and tiny

nanocrystals
[66]

TiO2 nanotubes 257/0.05 103 (over 700 cycles) Sn doping [67]

Mesoporous TiO2(B) For Zn-doping 173/0.05
For nickel-doping 104/1.8

For Zn-doping 151
(over 100 cycles)

For nickel-doping 97
(over 50 cycles)

Zn doping, nickel doping [68]

Mesoporous TiO2 150/2 135–150 (over 100 cycles)
Anode material prepared

by using anatase
TiO2 nanocrystals

[69]

Nanoporous
NaTi2(PO4)3//Na3V2(PO4)3

85/2.4 64 (over 1000 cycles) Scalable sol-gel method [70]

3. Methods of Preparing Hierarchical Micro/Nanoporous Structured Ti-Based Materials
3.1. Sol-Gel Route

Low cost, improved power density, and efficiency are major requirements for an an-
ode. For example, Li4Ti5O12 [52] monolith was synthesized by treating TiO2 gels (tunable
macro-porous) in aqueous LiOH, and subsequent calcinations at 700–800 ◦C. The resultant
flower-like nanostructures exhibited a performance of 146 mAhg−1 at 10C and 105 mAhg−1

at 30C, without carbon coating. When applied as an anode in SIBs, this material improved



Energies 2022, 15, 9495 5 of 16

the operating temperature. Figure 2 displays the morphology of the obtained nanostruc-
tures after each step. As previously stated, hydrous lithium titanate (LHLT) particles are
produced on the surface of macropores by treating porous TiO2 gels in aqueous LiOH
under moderate conditions. Though subjected to a high-temperature calcination process,
crack-free, monolithic, flower-like structures with interconnected macroporous structure
are preserved. The flower-like structures have a thickness of ~30 nm and have granular
crystallites of 30–80 nm in diameter. The rod-like structures were obtained at 800 ◦C due
to sintering-induced densification. An increase in the number of active sites increased the
rate-capability performance.
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Figure 2. (a) Appearance of the monolithic Li4Ti5O12 calcined at 700 ◦C. (b–f) SEM image samples
calcined at 700 and 800 ◦C: (b,c,e) samples calcined at 700 ◦C; and (d,f) samples calcined at 800 ◦C.
Insets in (e) and (f) are respective cross-sectional images [52].

3.2. Coprecipitation

The phosphates in NASICON (Na superionic conductor) have the general formula
AxMM’(PO4)3; for example, KTi2(PO4)3@C has a 3D-framework structure. This material
structure provides fast ion interactions and fast extractions. Because of its low cost and high
safety compared with aqueous Na-ion-based batteries, superionic conductor structures of
sodium titanium phosphate (NaTi2(PO4)3) were synthesized [54] and subjected to a carbon
coating process. NaTi2(PO4)3 was formed as a NASICON structure with good crystallinity
and high phase purity. For electrochemical evaluations, under ambient conditions, a 1 M
Na2SO4 aqueous electrolyte, NTP5h/C anode, and Na0.44 MnO2 cathode were assembled.

The initial charge and discharge capacities based on NTP mass were 131 and 121 mAh g−1,
respectively, as shown in Figure 3a,b, equating to a coulombic efficiency of 92%. The remark-
able reversibility was ascribed to its open 3D framework inside the NTP structures, better
aqueous electrolyte kinetics, and rapid Na ion transport. Discharge capabilities at different
rates were measured. When the rate was increased to 2C, the discharge capacity was deter-
mined to be around 103 mAh g−1, which is 85% of the value reported. In terms of cycling
performance, Figure 3c shows that after 300 cycles at 1C at voltages ranging from 0.7 to 1.3 V,
the cell had around 75% cyclic stability and >99.5% coulombic efficiency. Electrochemical
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impedance spectra between 1 MHz and 10 mHz, measured after 10, 30, and 50 cycles of 100%
discharge, each had an amplitude of 10 mV (Figure 3d). In comparison with the fitted RCT
values (i.e., [Rs + RCT]—[Rs]), it can be noticed that the RCT value of the NTP 5h/C slightly
decreased upon cycling, i.e., 2.3 Ω at the 10th cycle and 2.1 Ω at the 50th cycle. This promoted
electronic conductivities. In addition, they possessed rate capability, high reversible capacity,
and cycling performance. Apart from these advantages of NASICON, however, there are
some disadvantages, such as its low electronic conductivity (>10−12 Scm−1) and slow kinetic
property. Therefore, it failed to reach its theoretical capacity [60].
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spectra of the NTP-5h/C. For (a) and (c), the C rates employed were 0.2 C and 1 C, respectively. The
analogous circuit model utilized for the parameter-fitting is shown in (d) [54].

3.3. Hydrolysis Route

Hydrolysis of a precursor mixture containing graphite oxide, hydrogen peroxide, NH3
H2O [55], different high-tap-density TiO2 spheres, and nanograins with hierarchical porous
structure were synthesized, the morphology of which is shown in Figure 4. Hydrolysis at
80 ◦C and annealing in an Ar atmosphere at 450 ◦C resulted in crystalline TiO2 spheres
having a typical size of 500 nm. The size was further decreased to 100–150 nm TiO2. The
addition of ethanol and changes in the concentration of Ti(OH)4 yielded different sizes
of TiO2 spheres. As the volume ratio of the precursor solution to the ethanol reduced
from 2:1, 1:1, 1:2, to 1:4, the average diameter of the TiO2 spheres steadily shrunk from
approximately 1.5 µm to 100 nm. Many nanospheres, each with a diameter of 90 nm from
the TiO2 sample, contained a few microspheres; this is schematically explained in Figure 5.
The as-synthesized material had improved storage and transportation properties. At 1 C,
the Na-ion storage specific capacity was found to be 184 mAh g−1 with a capacity retention
of 90.5% after 200 cycles.
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Figure 5. Diagrammatic representation of the synthesis of four TiO2 spheres with different sizes
by adjusting the volume ratios of the precursor solution consisting of GO, H2O2, and NH3 H2O to
absolute ethanol [55].

3.4. Metal-Organic Framework (MOF)

Simple synthesis methods are still required to improve the properties and to make it
cost-effective. TiO2 with a porous cake structure [56] was synthesized by simple annealing
of Ti-based metal-organic templates. All the corresponding tests were conducted such
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as X-ray diffraction, nitrogen adsorption-desorption, galvanic charge, or discharge tests.
The maximum charge capacity was to be found to be 250 mAhg−1 after 50 cycles, and
50 mAhg−1 of charge density provided stable reversible capacity. An excellent electrochem-
ical performance was observed (Figure 6).

TiO2 nanopills were synthesized using a titanium metal-organic framework [58]. These
nanopills had a high specific surface area of 102 m2/g. When the material was employed
as an anode in SIBs, it provided good results with a discharge capacity of 196.4 mAh g−1 at
a current density of 0.1 Ag−1. The capacitive retention was 90% after 3000 cycles. Figure 7
shows the Na+-ion storage and diffusion in hierarchically porous TiO2 nanopills.
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3.5. Vacuum Filtration Process

Different types of hierarchical structures were designed to determine their perfor-
mance. Liu et al. prepared freestanding HP assemblies from TiO2 nanocrystals and
multiwalled nanotubes (MWCNTs) [57]. Figure 8 shows a schematic representation of
commercially viable and low-cost methods for obtaining free-standing TiO2-MWCNT
assemblies. TiO2 nanocrystals (60 mg) were dispersed in 0.5% bovine serum albumin,
then the BSA-coated TiO2 nanocrystals were mixed with 1 mg/mL of oxidized MWC-
NTS. This composite was redispersed in 1 mg/mL NH4HCO3 and stirred to yield a fluffy
TiO2/MWCNTs intermediate. Upon filtration and two-step heat treatment (600 ◦C for 6 h
and 350 ◦C for 2 h) annealing at free-standing TiO2-MWCNTs assembly was obtained. The
packing density of this assembly was 0.63 g cm−3. The TiO2-MWCNTs assembly was found
to be mechanically stable and possess high electrical conductivity. Apart from flower-like
structures, nanotubes and nanoparticles were also explored.
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Figure 8. An example of a schematic showing the steps involved in creating a free-standing TiO2

MWCNT electrode with routes for salt storage. “D” and “C” represent sodium storage behavior that
is diffusion-controlled and capacitive (due to the interfacial Na storage process) [57].

3.6. Combined Techniques of Solvothermal and Annealing Process

Ultrathin nanosheets with a flower structure assembly consisting of anatase/bronze type
TiO2 in carbon were reported [59]. The synthesis process consisted of a solvothermal process
and subsequent annealing at high temperatures. Excellent electrochemical properties were
observed. Apart from structure-driven performance improvement, the carbon matrix and the
interface between anatase and carbon structure also enhanced the overall efficiency. Figure 9
shows the hypothesis model sodium storage at the TiO2(A)/TiO2(B) interface.
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Figure 9. (a) A hypothesis about the storage of sodium at the TiO2(A)/TiO2(B) interface. Relaxed
interfacial structure doped with Na in the [100] and [001] directions of TiO2(A) and TiO2(B), or in
the [010] and [100] directions of TiO2(A) and TiO2(B) (b). (c,d) The change in charge density at the
interface caused by Na doping. The red zone shows an accumulation of density, the blue region
shows a depletion of electron density. (A) and (B) correspond to the anatase and bronze crystal
structures of TiO2, respectively; a, b, and c stand for lattice parameters [59].

3.7. Coating Techniques

In order to attain efficient energy storage in SIBs, various materials were coated on
TiO2-based hierarchical nano and microporous anode materials. Li et al. prepared nitrogen-
doped graphene nanosheets and TiO2 composites with an interconnected structure having
a layered network [61]. This composite functioned as both a self-sacrificial template and
as a hybrid carbon source and provided the longest cyclabilities. Wei et al. [60], fabricated
potassium titanyl phosphate and a carbon-based porous composite (KTP@C). The schemat-
ics of the synthesis and morphology of this composite are shown in Figure 10. Because
charged droplets were present throughout the electrospray procedure, microspheres could
be observed and were clearly dispersed in the TEM and SEM pictures displayed. The
KTP@C composite was heated for four hours at 800 ◦C. In Figure 10d,e, nanoscale particles
(between 50 and 300 nm) are depicted, and the average spherical size ranged from 1 to
4 m (see the inset in Figure 10d). The spheres were self-assembled aggregates of KTP
nanoparticles, according to the TEM images in Figure 10f,g.

HP anatase TiO2 microparticles were synthesized by using supercritical methanol
with organic surface-modifying substances such oleic acid. Porous anatase TiO2 was also
prepared by typical solvothermal methods as it improved electronic or ionic transport,
cyclic stability, and other properties [62,63]. As mentioned earlier, in terms of the Na+-ion
storage mechanism in the carbon-coated TiO2 particles (CPC-TiO2, which was prepared by
using citric acid (CA) and polyethylene glycol methyl ether (PEGME)) electrode, electronic
impedance spectra were obtained during the first processes of sodiation and desodiation
(Figure 11a,b). When sodiation and desodiation first began, the electrolyte impedance (Re)
levels were low. When the insertion of the Na+ ion occurred at 0.005 V, the RSEI values
steadily climbed to 123.97 Ω. Then, they gradually dropped to 39.27 Ω upon electrode
desodiatation. The potential profile depicted in Figure 11a was produced by the solid
electrolyte interphase layer formation at close to 0.5 V during sodiation.

Ex situ XRD analysis was used to better explore CPC-sodium TiO2’s storage behavior
(Figure 11c). Prior to cycling shifting to 25.130, the (101) plane’s apex was visible at 25.250.
Prior to cycling, the peak of the (200) plane was at 48.210, it changed to 48.260 at 0.005 V
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during sodiation, and it returned to the initial values at 2.5 V after the electrode was fully
desodiated. The Na+-ion uptake by the CPC-TiO2 and the Na+-ion insertion into the TiO2
phase are both influenced by the interfacial storage.
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Figure 10. (a) Synthesis diagram for KTP@C nanocomposites; (b–g) morphology of SEM of KTP@C;
(b,c) precursor as sprayed; different resolutions of KTP@C nanocomposites are shown in (d,e). The KTP@C’s
grain size distribution is shown in the inset in (d), and the KTP@C’s TEM image is shown in (f,g) [60].

3.8. Template-Assisted Spray Pyrolysis

The cow electronic conductivity and drastic volume of the cycles of batteries lead
to decaying capacity and poor structural stability. So, the intercalation TiO2 materials or
hybrid structure materials for anode have gained popularity due to their affordable price
and strong stability. In the case of hybrid nanoflowers and nanosheets, the structure of
TiO2/MoS2 has improved the mobility of Na+ ions during charge and discharge cycles.
These materials can be synthesized by the template-supported spray pyrolysis method or
by the hydrothermal and calcination method [64,71].

The morphology of TiO2/MoS2 is shown in Figure 12a–c. The samples of TiO2:MoS2
with lattice spacings of 1:0.5, 1:1, and 1:1.5 had respective lattice spacings of 0.35, 0.37, and
0.35 nm. Figure 12d indicates the XRD patterns of these three samples. Two identified peaks
at 464.46 eV and 458.71 eV, corresponding to the Ti 2p3/2 and Ti 2p1/2 orbitals, respectively,
and two peaks of binding energy with an interval of 5.75 eV are visible in the 1:1 sample of
the Ti 2p XPS spectra seen in Figure 12e. The aforementioned findings demonstrated that
the electron density around Ti4+ was reduced, leading to a decrease in the binding energy.
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3.9. Biotemplate Route

TiO2-based anode materials were also prepared using biotemplates. For example,
a yeast biotemplate [53] was used to prepare a porous TiO2 anode material. Figure 13
shows the significant FESEM images of the biotemplate yeast cells. Spheres with a diameter
of 2.0–3.0 µm were formed. The surface of yeast cells was coated with spherical TiO2
particles; the solid, porous TiO2 was typically 1.5 to 2.5 microns in diameter and had pore
walls that were 0.2 to 0.7 microns thick. According to Figure 13d, the very small primary
nanoparticles filled the outer surface of the micropore. The produced porous TiO2 material
had a discharge capacity of 255.98 mAh g−1, and after 100 cycles, capacity retention was
around 80%. Ion diffusion was excellent due to the electrolyte’s access to the electrode.
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Figure 13. FESEM micrographs of yeast cells (a), yeast@TiO2 precursor (b), and its calcined sample
TiO2 (c,d) in air at 450 ◦C for 3 h. Points I and II in (b) and points III and IV in (c) were the points in
which energy dispersive spectroscopy was studied for the calcined products [53].

4. Conclusions

The selection of electrode material was found to be one of the main factors impor-
tant for obtaining high-performance SIBs. Hierarchical TiO2 nanostructures-based anode
materials were found to be useful for developing SIBs with high grid storage. HP TiO2
anode materials were utilized for achieving long cycle ability without a sudden drop in rate
performance in the SIBs. Generally, TiO2-based anodes possess merits such as relatively
high performance, cost-effectiveness, and higher stability than other materials used so far.
In order to decrease the diffusion length by HP TiO2,anodes in SIBs for various synthesis
routes were used, such as sol-gel route, coprecipitation, hydrolysis route, vacuum filtration
process, combined method of solvothermal and annealing process and coating techniques.
These multiple developments of porous titania-based anode materials were focused on SIBs,
and its anode material will improve performance and can be used for wide applications,
completely replacing LIBs in the future. However, a few disadvantages are still present
with the available fabrication route. They are expensive, time-consuming, use hazardous
chemicals, and complicate the process to develop prototypes for mass production; these
required parameters need to be studied by researchers. In general, all of those will be
addressed and resolved by laser sintering 3D-printing technology in the future. Moreover,
by preventing dangerous sodium plating, TiO2-based anodes endow operational safety to
SIBs. TiO2 nanostructures were rendering SIBs with high current density, cyclic stability,
and specific capacity along with less durability. In the case of SIBs with HP TiO2 anodes,
they have the potential to be used in wearable electronic devices and automobiles for
achieving high mileage and long life in the near future.
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