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Abstract: In this paper, electro-hydraulic braking (EHB) force allocation for electric vehicles (EVs) is
modeled as a constrained nonlinear optimization problem (NOP). Recurrent neural networks (RNNs)
are advantageous in many folds for solving NOPs, yet existing RNNs’ convergence usually requires
convexity with calculation of second-order partial derivatives. In this paper, a recurrent neural
network-based NOP solver (RNN-NOPS) is developed. It is seen that the RNN-NOPS is designed
to drive all state variables to asymptotically converge to the feasible region, with loose requirement
on the NOP’s first-order partial derivative. In addition, the RNN-NOPS’s equilibria are proved to
meet Karush–Kuhn–Tucker (KKT) conditions, and the RNN-NOPS behaves with a strong robustness
against the violation of the constraints. The comparative studies are conducted to show RNN-NOPS’s
advantages for solving the EHB force allocation problem, it is reported that the overall regenerative
energy of RNN-NOPS is 15.39% more than that of the method for comparison under SC03 cycle.

Keywords: recurrent neural network (RNN); nonlinear optimization problems (NOP); electric vehicle
(EV); electro-hydraulic braking (EHB); asymptotical convergence

1. Introduction

The momentum of the development of pure electric vehicles (EVs) has been increasing
due to the shortage of foreseeable fossil fuel and the air pollution caused from fossil fuel
combustion. Limited battery power, however, has become one of the main shortcomings
influencing EVs’ further commercialization. Recently, many efficient energy management
strategies have been developed, offering a significant improvement of EV’s performance. It
has been shown that in urban driving, the energy consumed in braking is almost half of
the total traction power [1]. Therefore, an effective electro-hydraulic braking (EHB) force
allocation strategy is required for achieving optimal regenerative energy while guaranteeing
the braking safety.

Various optimization and control algorithms have been developed for regenerative
braking control. In [2], given the desired yaw moment and road friction coefficient, the
regenerative and EHB torque can be designed by using a genetic algorithm (GA). It is noted
that the quality of a GA’s solution could be improved by using a larger initial population,
which, however, would increase GA’s computational cost; GA also suffers from premature
convergence [3]. A regenerative braking control method based on model predictive control
(MPC) was proposed in [4], where maximization of energy recuperation and wheel slip
regulation are achieved. However, it has been noted that high-quality system models
built with accurate measurement data are required by MPC, which may increase model
complexity and computational cost [5].

To attain optimal recovered energy with braking safety guaranteed, the EHB force
allocation problem of EVs has been treated as a nonlinear optimization problem (NOP)
recently. The NOP is widely used in portfolio optimization [6–8], system control [9–12],
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and machine learning [13]. For solving NOPs, many numerical algorithms have been
proposed over decades [14,15]. It has been noted that the NOP algorithms’ computing cost
is highly affected by the dimension of the state variable vector and the complexity of the
NOP solvers’ structures and thus, most of these algorithms are less effective in real-time
applications as pointed out in [16,17].

Since Tank and Hopfield’s work [18], many recurrent neural networks (RNNs) have
been available for solving NOPs. The benefits of the RNN-based methods are threefold: (i)
the availability of electronic implementation by using very large-scale integration (VLSI)
chips, (ii) the capability of solving NOPs with time-varying parameters, (iii) the efficiency
of applying the numerical ordinary differential equation (ODE) techniques for solving
NOPs [17]. Variants of RNN such as long short-term memory (LSTM) have been employed
for battery state of health and power consumption forecasting [19]. Since the proposal of
neural differential equations [20], where Residual NN [21] was proposed to be a discretized
ODE. It has been a trend to bridge neural networks and ODEs and exploit off-the-shelf
researches on ODEs for further enhancing deep learning strategies. Other neural network-
based algorithms, such as an SGTM neural-like structure can also be used to process large
amounts of data from a variety of industries [22].

In [16], an RNN was proposed for solving NOPs and it was proved that the state
variables can all converge to an exact Karush–Kuhn–Tucker (KKT) point with an assumption
on the convexity of both the objective function and constraints. Moreover, a single-layered
RNN was developed for solving NOPs in [23], where it is required that the gradients of all
inequality constraints equal to 0 and are linearly independent, and other conditions are
also necessary for exact penalty. In [24], a neurodynamic model based on an augmented
Lagrangian function was proposed; the states of the model are asymptotically stable at a
strict local minimum given that the second-order sufficiency conditions (SOSC) [25] holds.
In addition to the above typical RNNs, two projection neural networks with reduced model
complexity (RDPNNs) for solving NOPs were proposed in [26], where RDPNNs were
proved to be globally convergent to the points satisfying the reduced optimality condition,
under the condition that the Hessian matrix of the associated Lagrangian function is
positive definite at each KKT point.

In this paper, a novel RNN-based NOP solver (RNN-NOPS) is proposed for solving
the EHB force allocation of EVs. It will be shown that an RNN-NOPS is not only able to
solve NOPs with constraints fully met and optimality guaranteed, but also suitable for a
wide category of timely industrial applications. The distinctive contributions of this paper
are summarized as follows:

• It is proved that, given the constraint violated, the only equilibrium at the origin of
the constraint mapping space Rm is globally asymptotically stable in the Lyapunov
sense, ensuring that all the RNN-NOPS’s state variables are able to reach the feasible
region from the outside. This property only requires a first-order partial derivative of
the NOP, whose verification costs less computation compared to existing methods.

• The RNN-NOPS’s equilibria are designed to hold the KKT condition and, therefore,
the valid local minima of the NOP can be obtained.

• The comparative studies in the simulation section show the advantages of the RNN-
NOPS for solving the problem under different braking processes with guaranteed con-
straints and optimality, compared with the existing optimization-solving approaches
discussed in [16].

• The RNN-NOPS is based on the neural network model with parallel structure, which
is competent for industrial applications where real-time solutions are required. RNN-
NOPS is not only able to solve NOPs with constraints fully met and optimality guar-
anteed, but also suitable for a wide category of timely industrial applications.

The remainder of this paper is organized as follows. In Section 2, the background
of RNN-based optimization approaches and the EHB force allocation problem are briefly
introduced. In Section 3, the mechanism and theoretical properties of the RNN-NOPS are
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discussed in detail. The results of algorithmic comparative studies on EHB force allocation
problem are presented in Section 4, followed by the conclusion given in Section 5.

2. Background and Problem Formulation
2.1. RNN-Based Optimization

Consider the following nonlinear optimization problem (NOP) [17]:

min f (x)
s.t. cj(x) ≤ 0, j = 1, ..., m

xi ≥ 0, i = 1, ..., n
(1)

where x = [x1, ..., xn]
T is the decision variable vector, f : Rn → R , cj : Rn → R , f and all

cj are assumed to be twice differentiable.
Given the Lagrangian function of the NOP of the form:

L(x, y) = f (x) +
m

∑
j=1

yjcj(x) (2)

where y = [y1, ..., yj, ..., ym]
T is the Lagrangian multiplier vector. If x∗ is a local optimal

point, then there exists y∗ ∈ Rm such that (x∗, y∗) is a Karush–Kuhn–Tucker (KKT) point
satisfying [22,27]. 

∇ f (x∗) +
m
∑

j=1
∇cj(x∗)y∗j = 0

cj(x∗)y∗j = 0
cj(x∗) ≤ 0
y∗j ≥ 0, x∗i ≥ 0

(3)

where ∇cj(x∗) and ∇ f (x∗) are the gradients of the functions cj(x) and f (x) at x = x∗,
y = y∗.

Definition 1. Let x∗ satisfy all the constraints in Equation (1) and J(x∗) is a set of index j with
cj(x∗) = 0. If the gradients ∇cj(x∗) with j ∈ J(x∗) are linearly independent, then x∗ is called
regular point [28].

Lemma 1. Consider the NOP in Equation (1) with the Lagrangian function in Equation (2).
Suppose that x∗ is a regular point of the NOP in Equation (1), x∗ is a strict local minimum of the
NOP if (i) there exists y∗ such that (x∗, y∗) satisfies KKT conditions in Equation (3); (ii) for any
d 6= 0, d ∈ Rn such that∇cj(x∗)

Td = 0 for every j ∈ J(x∗) , it follows that [28]:

dT [∇2 f (x∗) + ∑
j

y∗j∇2cj(x∗)]d > 0 (4)

(iii) y∗ satisfies the strict complementary assumption given by:

y∗j > 0, ∀j ∈ J(x∗) (5)

The conditions (i), (ii) and (iii) in Lemma 1 are called second-order sufficient conditions
(SOSC).

In [28], the following augmented Lagrangian function is defined:

Lc(x, y) = f (x) +
m

∑
j=1

y2
j cj(x) +

c
2

m

∑
j=1

(yjcj(x))
2 (6)
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where c is a positive penalty parameter. A Lagrange-type neural network is then con-
structed as:

dxi
dt

= −∇xi Lc(x, y), i = 1, ..., n (7a)

dyj

dt
= 2yjcj(x), j = 1, ..., m (7b)

It is easy to show that, under SOSC, (x∗, y∗) is a strict local minimum of the augmented
Lagrangian function. Furthermore, the neural network modeled in Equation (7a,b) is locally
asymptotically stable at its local minimum.

Remark 1. The discussions in Equations (6) and (7b) describe a generalized framework for designing
RNNs. It should be addressed that the augmented Lagrangian function determines both the dynamics
of KKT pairs and the stability of the RNN in Equation (7a,b) in a Lyapunov sense. By reasonably
constructing the penalty function or the regulating rule, the KKT points could correspond to the
largest invariant set in LaSalle’s invariance principle [28,29] and the dynamics of the designed RNN
are able to globally converge to the KKT pairs.

Further in [17], an RNN for solving NOP was proposed with the following state
equations:

d
dt

(
x
y

)
= λ

(
−x + (x)+ −∇ f (x+)−∇c(x+)y+

−y + y+ + c(x+)

)
(8)

with the output equation:
v = x+ (9)

Given that (i) ∇2
xL(x, y∗) is positive semidefinite on Rn

+, (ii) ∇2
xL(x∗, y∗) is posi-

tive definite, (iii) for initial point z(t0) = (x(t0), y(t0)), ∇2
xL(x, y) is positive definite on

Rn
+ × S0, where L(x, y) = f (x) + yTc(x) is the Lagrangian function,

S0 =
{

y ∈ Rm
∣∣∣y = (y0(t) + et0−ty(t0))

+, t ∈ [t0, ∞)
}

and y0(t) is the second state tra-
jectory of Equation (8) with zero initial point. Then it was proved that the output trajectory
of the network converges to the optimal solution of the NOP.

In [16], an RNN was proposed for nonlinear convex programming and regarded as an
extended projection neural network (EPNN) based on the model proposed in [30]. EPNN’s
state space equations are given as:

d
dt

(
x
y

)
=

(
−x + (x− α(∇ f (x) +∇c(x)y))+

−y + (y + αc(x))+

)
. (10)

It was proved that the solution of Equation (10) converges to a KKT point under the
conditions that the objective function is convex and all constraint functions are strictly
convex, or the objective function is strictly convex and the constraint function is convex. In
fact, [16] has provided with a generalized projection network framework and it is possible
to develop EPNN-like NOPS with mild requirements on the NOP’s convexity.

In practice, the above RNN-based optimization solving methods are hardware-implementable
by using very large-scale integrated circuit chips, characterized with powerful parallel
process functions, More importantly, these optimization solvers can be widely used in
networked autonomous vehicles, power grids, communication systems, and the Internet of
Things (IoT) infrastructures [31] for solving optimal engineering design issues.

2.2. EHB Force Allocation Problem Formulation

Consider a front-wheel-drive (FWD) pure electric vehicle on level ground, whose
acting forces are shown in Figure 1, where Fresis is the resistance, including aerodynamic
drag and rolling resistance, Treg is the regenerative braking torque on the front axle, while
Tf f and Tr f denote frictional braking torque on the front and rear axle, respectively. Fb f
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and Fbr are the tire-ground braking forces acting on the front and rear axles, respectively,
and for the corresponding tire-ground braking torques Tb f and Tbr, we have:

Tb f = Treg + Tf f ; Tbr = Tr f ; Fb f =
Tb f

r
; Fbr =

Tbr
r

. (11)
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Meanwhile, for Treg, we have:

Treg = Fregr (12)

where r is the wheel radius and Freg is the regenerative braking force. The braking forces
Fb f and Fbr can then be written as [32]:

Fb f max =
φG(Lb + zhg)

L
(13)

Fbr max =
φG(La − zhg)

L
(14)

where Fb f max and Fbr max are the maximum braking forces acting on front and rear axles,
respectively; φ is the tire-ground adhesion coefficient, z is the braking rate given by:

z =
a
g

(15)

where a is the deceleration of the vehicle, g denotes the gravitational acceleration (9.8 N/kg).
We can then express the deceleration a as:

a =
g(Fb f + Fbr + Fresis)

G
. (16)

with G the weight of vehicle and Fresis the resistance including air drag and force of friction.
In order to ensure the stability and the braking safety of the vehicle, the regulation

(ECE-R13) established by the United Nations Economic Commission [33,34] suggests that
the adhesion coefficients should satisfy the following relationships [32]:

φ f ≥ φr (17)

for z ∈ [0.15, 0.8], and

φ f , φr ≤
z + 0.07

0.85
(18)

for z ∈ [0.1, 0.61], where φ f and φr are the adhesion coefficients of front wheels and rear
wheels, respectively.

Since electric motors features a wider operational range with higher efficiency com-
pared to internal combustion engine, the conventional variable transmissions are not
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necessarily required. Then, in this paper, considering EV’s physical properties and braking
safety, we formulate the EHB force allocation as the following NOP:

min f (x)
s.t. cj(x) ≤ 0 j = 1, ..., 11

(19)

where x = [Freg, Ff f ]
T , f (x) = 1

1+F2
reg

with constraints as:



c1(x) = Fb f − Fb f max; c2(x) = −Fb f ;
c3(x) = Fbr − Fbr max; c4(x) = −Fbr;
c5(x) = φr − φ f ; (z ∈ [0.15, 0.8])
c6(x) = φ f − z+0.07

0.85 ; (z ∈ [0.1, 0.61])
c7(x) = φr − z+0.07

0.85 ; (z ∈ [0.1, 0.61])
c8(x) = Treg − Treg max; c9(x) = ωm −ωm max;
c10(x) = −Freg; c11(x) = −Ff f ;

(20)

where ωm and Pm are the motor rotational speed and the motor power, bounded by ωm max
and Pm max, respectively.

The vehicle model is employed from the EV model in ADVISOR (Advanced Vehicle
Simulator) software, where the RNN-NOPS is implemented as the braking strategy embed-
ded in the vehicle control module. Important parameters of the considered vehicle given in
ADVISOR are listed in Table 1, other parameters can also be found in the software. In this
paper, the vehicle model is employed from the pure EV specified in ADVISOR, which is
shown in Figure 2.

Table 1. Parameters of the considered vehicle.

Symbol Meaning Quantity

mv Vehicle mass 1144 kg
mc Vehicle cargo mass 136 kg
hg Height of the vehicle center of mass 0.5 m
L Wheelbase 2.6 m
La Longitudinal distance from the mass center to the front axle 1.04 m
Lb Longitudinal distance from the mass center to the rear axle 1.56 m
r Wheel radius 0.282 m
FA Frontal area 2 m2

Cd Coefficient of aerodynamic drag 0.335
f Coefficient of rolling resistance 0.009
igb Ratio of the single speed transmission 2.9362
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3. RNN-NOPS Design

In this section, the design of RNN-NOPS is presented in detail. It will be shown that
the RNN-NOPS is capable of driving the state variable that violates the constraints to
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converge to the feasible region with sufficient number of iterations, and KKT conditions
hold at RNN-NOPS’s equilibria. Then the EHB force allocation problem will be confirmed
to be solvable by using the RNN-NOPS.

3.1. Formulation of RNN-NOPS

In this section, the generalized framework of the RNN-NOPS is described as follows.
Considering the NOP in Equation (1) with the Lagrangian function in Equation (2), the
RNN-NOPS can be modelled by the following state equations:

.
xi = −λ1

{
∂ f (x)

∂xi
+

m

∑
k=1

∂ck(x)
∂xi

[
yk + (ck(x))

+
]}

(21a)

.
yk = λ2

{
−yk +

[
yk + (−2 · sign(ck(x)) + 1) ·

(
−sign(yk)− (ck(x))

+
)]+}

(21b)

with: {
xi(0) ∈ R, i = 1, ..., n
yk(0) ∈ R, k = 1, ..., m

(21c)

where xi(0) and yk(0) are the initial values of xi and yk, respectively, with the state vector x
defined as:

x = (xi, ..., xn)
T (22)

yk is the Lagrange multiplier corresponding to the constraint ck(x), (xi)
+ = max{0, xi},

(ck(x))
+ = max{0, ck(x)}, and sign(·) is the sign function, λ1 and λ2 are the positive

learning rates.

Remark 2. Because of the nonlinearity in Equation (21b), the stability of yk can be analyzed
piece-wisely as follows:

For ck(x) > 0:
Equation (21b) can be expressed as:

.
yk = λ2

{
−yk + [yk + sign(yk) + ck(x)]

+
}

(23)

If yk > 0, Equation (23) becomes:

.
yk = λ2(1 + ck(x)) > 0 (24a)

Equation (24a) indicates that yk → ∞ as t→ ∞ .
If yk = 0, Equation (23) can be written as:

.
yk = λ2ck(x) > 0 (24b)

yk will then move away from the origin yk = 0 and go to infinity as time t→ ∞ .
If yk < 0, Equation (23) is of the form:

.
yk = λ2

{
−yk + [yk − 1 + ck(x)]

+
}

= λ2

{
−yk + [−(|yk|+ 1) + ck(x)]

+
} (24c)

In this case, yk will move toward yk = 0.
The above analysis shows that, when the constraint ck(x) is violated with ck(x) ≥ 0, the

corresponding yk either goes to infinity (yk ≥ 0) or converges to 0 (yk < 0).
For ck(x) = 0:
Equation (21b) becomes:

.
yk = λ2

{
−yk + [yk − sign(yk)]

+
}

(25)
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and then Equation (25) can be written as:

.
yk = λ2

[
−yk + (yk − 1)+

]

=


−λ2 < 0, yk > 1
−λ2yk < 0, 0 < yk ≤ 1
0, yk = 0
λ2 > 0, −1 ≤ yk < 0
−λ2yk > 0, yk < −1

(26a)

According to Lyapunov theory [35], Equation (26a) means that, with a selected Lyapunov
function Vyk = 0.5y2

k , we have:
.

Vyk = yk
.
yk < 0 (26b)

for yk 6= 0 , and
.

Vyk = 0 if and only if yk = 0 , therefore yk can then asymptotically converge to
zero.

Similarly, for ck(x) < 0, Equation (21b) can be written as:

.
yk = λ2

{
−yk + [yk − 3sign(yk)]

+
}

=


−3λ2 < 0, yk > 3
−λ2yk < 0, 0 < yk ≤ 3
0, yk = 0
3λ2 > 0, −3 ≤ yk < 0
−λ2yk > 0, −∞ ≤ yk < −3

(27)

Using Lyapunov stability theory, we can easily prove that, when the constraint ck(x) < 0, yk
asymptotically converges to zero. �

Assumptions 1. For the NOP given by Equation (1), the following assumptions are made: (i)
The partial derivative of objective f (x) with respect to xi,

∂ f (x)
∂xi

, is bounded for all i; (ii) When x
is out of the feasible region with ca(x) > 0, there always exists xi making ∂ca(x)/∂xi 6= 0 holds,
i = 1, ..., n.

Based on the Assumptions 1, we have Proposition 1 as follows:

Proposition 1. Consider the RNN-NOPS in Equation (21a–c) for solving the constrained NOP in
Equations (1) and (2). If, a system state is out of the feasible region with the a th constraint violated,
that is, ca(x) > 0, after sufficient number of iterations, RNN-NOPS will drive x to move to the
feasible region satisfying dca(x)

dt < 0, ensuring that all the constraints are within the feasible region.

Proof. Firstly, assuming that, at some sub-region of the state space, the a th constraint is
violated, that is, ca(x) > 0. According to Remark 2, if the corresponding ya we have

.
ya > 0;

for other constraints with ck(x) ≤ 0, after sufficient number of iterations, yk = 0. Then
according to Equation (21a), any constraints ck(x) satisfying ck(x) ≤ 0, have no effect on
the updates on xi. Therefore, after sufficient number of iterations, Equation (21a) becomes:

.
xi = −λ1

{
∂ f (x)

∂xi
+

m
∑

k=1

[
∂ck(x)

∂xi

(
yk + (ck(x))

+
)]}

= −λ1

{
∂ f (x)

∂xi
+ ∂ca(x)

∂xi

[
ya + (ca(x))

+
]} (28)

Since ∂ f (x)
∂xi

is assumed to be bounded, when the violated constraint ca(x) > 0 makes
.
ya > 0, ya will continuously increase such that, after a large number of iterations, the
following inequality is held:∣∣∣∣∂ca(x)

∂xi

[
ya + (ca(x))

+
]∣∣∣∣� ∣∣∣∣∂ f (x)

∂xi

∣∣∣∣ (29)
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then we have:
.
xi ≈ −λ1

∂ca(x)
∂xi

[
ya + (ca(x))

+
]

(30)

Equation (30) means that all xi will move approximately along the negative gradi-
ent direction of ca(x), which is similar to gradient descent approach, and the positive
λ1

[
ya + (ca(x))

+
]

in Equation (28) can be regarded as updating step size. From Assump-
tions 1, ∃xi making ∂ca(x)/∂xi 6= 0 holds, and then

.
xi

∂ca(x)
∂xi

≈ −λ1

(
∂ca(x)

∂xi

)2[
ya + (ca(x))

+
]
< 0, i = 1, ..., n (31)

Adding n equations of Equation (31) for i = 1, ..., n, we obtain:

dca(x)
dt =

n
∑

i=1

[ .
xi(

∂ca(x)
∂xi

)
]

≈ −λ1
n
∑

i=1

{(
∂ca(x)

∂xi

)2[
ya + (ca(x))

+
]}

< 0
(32)

Equation (32) means that there exists a time t0, with t > t0, we have ck(x) ≤ 0. �

Remark 3. It is seen from Proposition 1 that the RNN-NOPS proposed in this paper has the
following remarkable robustness and convergence properties:

(i) If the state variable vector is out of the feasible region with some constraint violated
(ca(x) > 0), the RNN-NOPS is capable of continuously increasing the values of the corresponding
Lagrangian multipliers (the state variables) such that, after a number of iterations with the large
variable step sizes, the changing rate of the violated constraints becomes negative (ca(x) > 0). This
process is named as the “constraint recovering process”;

(ii) After all constraints are valid within the feasible region, the RNN-NOPS drives all
Lagrangian multipliers to converge to zero (yk = 0) in the Lyapunov sense. Then the original
constrained optimization, as specified in Equation (1), behaves as an unconstrained optimization.
This process can be considered as the “objective optimizing process”.

3.2. KKT Condition and Convergence Analysis

In this section, two theorems regarding RNN-NOPS’s convergence and optimality are
presented.

Theorem 1. Consider the RNN-NOPS in Equation (21a–c) for solving the constrained NOP in
Equations (1) and (2). If (x, y) is an equilibrium of the RNN-NOPS, (x, y) is a KKT point of the
optimization problem.

Proof. Let (x∗, y∗) be a KKT point, from Equation (3) we have:
∇ f (x∗) +

m
∑

k=1
∇ck(x∗)y∗k = 0

ck(x∗)y∗k = 0
y∗k ≥ 0
ck(x∗) ≤ 0

(33)

where x∗i ≥ 0 is included in ck(x∗) ≤ 0.
Given (x, y) is an equilibrium with

.
xi =

.
yk = 0, according to Remark 2,

.
yk = 0 is met

only if ck(x) ≤ 0, then given
.
yk = 0 we have ck(x) ≤ 0, that is the 4th KKT condition in

Equation (33) is met.
According to Remark 2, when ck(x) ≤ 0, yk is only stable at yk = 0, so given

.
yk = 0,

yk = 0 is obtained, that is the 3rd KKT condition in Equation (33) is satisfied.
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Given (x, y) is an equilibrium,
.
xi = 0 for all i, then Equation (21a) yields:

λ1

{
∂ f (x)

∂xi
+

m
∑

k=1

[
∂ck(x)

∂xi

(
yk + (ck(x))

+
)]}

= λ1

[
∂ f (x)

∂xi
+

m
∑

k=1

(
∂ck(x)

∂xi
yk

)]
= 0

(34)

that is, the 1st KKT condition in Equation (33) is satisfied.
Finally, from cj(x) ≤ 0 along with Remark 2, yj is stable only if yj = 0, then yj = 0 and

cj(x)yj = 0, that is, the 2nd KKT condition in Equation (33) holds.
Thereby, the proof is finished. �

Remark 4. Based on the Lyapunov theory along with Assumptions 1, the convergence of RNN-
NOPS is ready to be investigated. Firstly, a constraint mapping variable w = [w1, ..., wk, ..., wm]

T

is defined with wk = (ck(x))
+, then wk = 0 given ck(x) ≤ 0; and according to Remark 2, yk is

stable only if yk = 0 and ck(x) ≤ 0.

For a constraint recovering process, there is single equilibrium 0 at the space Rm

where w locates. 0 can be seen as the mapping of the whole feasible region, therefore for
the upcoming objective optimizing process, w is stable at w = 0. Then, the theorem on
RNN-NOPS’s convergence is given as follows:

Theorem 2. For a whole solving process of RNN-NOPS consisting of one constraints recovering
process and one objective optimization process, on the basis of Assumptions 1, when there is one
constraint ca(x) > 0, 0 in Rm where w locates is asymptotically stable.

Proof. Consider a Lyapunov function V:

V =
1
2

wTw (35)

where w = [w1, ..., wk, ..., wm]
T, wk = (ck(x))

+, we have V ≥ 0 and V is radically un-
bounded. When the state vector x is within the feasible region Ω = {x|ck(x) ≤ 0, k = 1, ..., m},
w is stable at Rm space equilibrium 0 and V = 0, V reaches its minimum value. Then we
have:

V =
1
2

m

∑
k=1

w2
k (36)

and
.

V =
m

∑
k=1

wk
dwk
dt

(37)

where
.

V is the sum of m terms, wk = 0 when cj(x) ≤ 0. Only if there is ca(x) > 0, there

could be wa
.

wa 6= 0, and in this case we also have wa = ca(x) and
.

wa =
dca(x)

dt . That is, the

value of
.

V is determined by ca(x) and its corresponding multiplier ya:

.
V = wa

.
wa = ca(x)

dca(x)
dt

(38)

According to Proposition 1, ca(x) > 0 makes its corresponding ya keeps increasing
until sufficiently large, making Equation (38) hold, that is dca(x)

dt < 0, then we have:

.
V = ca(x)

dca(x)
dt

< 0 (39)

Therefore, equilibrium 0 in Rm space where w locates is globally asymptotically stable.
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Thereby, the proof is finished. �

Remark 5. The convergence properties discussed in the above are based on Assumptions 1, where the
first condition could be easily realized by properly constructing the objective function. For example,
if f (x) = 1

F2
reg

instead of f (x) = 1
1+F2

reg
, the ∂ f (x)/∂xi → ∞ when Freg = 0. The second

condition in the Assumptions 1 is also mild and valid for the optimization problem formulated in
Equations (19) and (20).

3.3. Analysis of the NOP to Be Solved

In this section, the EHB force allocation problem in NOP form is verified to fit As-
sumptions 1.

Remark 6. The partial derivatives of f (x) and cj(x), j = 1, ..., m with respect to Freg and
Ff f are given in Table 2. Substituting the parameters’ values, it is seen that the denominator
of ∂ f (x)/∂Freg is always positive and the numerator is bounded, and that ∂ f (x)/∂Ff f = 0.
Meanwhile, for any ck(x), ∂ f (x)/∂Freg and ∂ f (x)/∂Ff f are not equal to 0 at the same time. For
example, ∂c5(x)/∂Freg = ∂c5(x)/∂Ff f = 0 if and only if La − hgz = −

(
Lb + hgz

)
, and there is

no solution for z. Therefore, conditions in Assumptions 1 are all satisfied. It is also worth noting
that the only exception, c9(x), is always satisfied with the driving cycle not exceeding the operating
limit of the vehicle, therefore c9(x) has no effect on the update of state variables.

Table 2. First order partial derivative of the objective function and constraints with respect to xi.

∂ f (x)/∂Freg ∂c1(x)/∂Freg ∂c2(x)/∂Freg ∂c3(x)/∂Freg ∂c4(x)/∂Freg ∂c5(x)/∂Freg

− 2Freg

(F2
reg+1)

2 1 −1 −1 1 − L
G(La−hgz)

− L
G(Lb+hgz)

∂c6(x)/∂Freg ∂c7(x)/∂Freg ∂c8(x)/∂Freg ∂c9(x)/∂Freg ∂c10(x)/∂Freg ∂c11(x)/∂Freg

L
G(Lb+hgz)

− L
G(La−hgz)

1 0 −1 0

∂ f (x)/∂Ff f ∂c1(x)/∂Ff f ∂c2(x)/∂Ff f ∂c3(x)/∂Ff f ∂c4(x)/∂Ff f ∂c5(x)/∂Ff f

0 1 −1 −1 1 − L
G(La−hgz)

− L
G(Lb+hgz)

∂c6(x)/∂Ff f ∂c7(x)/∂Ff f ∂c8(x)/∂Ff f ∂c9(x)/∂Ff f ∂c10(x)/∂Ff f ∂c11(x)/∂Ff f

L
G(Lb+hgz)

− L
G(La−hgz)

0 0 0 −1

4. Simulations and Discussion

In this section, the comparative study of the EHB force allocation problem is carried
out under both predefined braking process and standard driving cycle. The aforementioned
extended projection neural network (EPNN) [16] is implemented as comparison.

4.1. Learning Performance Evaluation

In this section, EHB force allocation strategies are conducted in the EV under a de-
signed braking process, with the initial speed set as 18 m/s, the acceleration set as −1 m/s2

in 1–4 s,−2 m/s2 in 4–7 s and−3 m/s2 in 7–10 s, and the EV is stationary at the 10th second.
By doing this, the strategy can be validated under various velocities and braking rates.

The simulation step is set as 0.1 s. At every simulation step, RNN-NOPS and EPNN
are aligned 5 × 104 iterations to make sure the training is sufficient. The learning rates
of RNN-NOPS are set as λ1 = λ2 = 0.04, as for EPNN, α = 0.42, yk are all initialized
as 0. Freg and Ff f are initialized as −100, respectively, making c5(x) > 0 at some steps
with z ∈ [0.1, 0.61], so that the training process of all networks must take constraints
into consideration.

The speed of the designed braking process and the EV’s actual speed with RNN-NOPS
are shown in Figure 3, where it is shown that the vehicle speed under control of RNN-NOPS
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follows the target speed with delay and the overall trends are consistent. Speed following
results with EPNN are similar.
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Take 2 representative constraints, c5(x) and c6(x) as examples, their 59 training
trajectories (representing 59 training sample times considering c5(x) and c6(x)) at first
5 × 104 iterations of RNN-NOPS and EPNN are shown in Figure 4. It is seen that c5(x) is
often positive at initial iterations, representing φr exceeds φ f . Since the braking ratio is
fixed at every step, according to Equation (20), increasing φ f is the feasible way to recover
the violated c5(x), which means c6(x) must be increased. From Figure 4b,d, it is seen that
negative c6(x) is increased but within its feasible range, indicating that all the algorithms
effectively find a way to recover violated constraints.
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Figure 4. c5(x) and c6(x) ’s trajectories of (a), (b) RNN-NOPS and (c,d) EPNN, respectively.

Overall results during the designed braking process are shown in Table 3, where it is
shown that all the constraints are perfectly obeyed by both algorithms. With regard to the
overall regenerative energy, RNN-NOPS recovers 6.77% more energy than EPNN.
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Table 3. Overall results under the designed braking process in terms of regenerative energy and
constraint violation.

RNN-NOPS EPNN

Overall regenerative energy (J) 5.3954 × 104 5.0532 × 104

Overall constraint violation 0 0

4.2. Braking Performance Evaluation

It is found that for both strategies, the braking time is from 1.3 s to 10.9 s. The braking
results are shown in Figure 5, where the following observations can be seen:
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Figure 5. Braking performance of RNN-NOPS and EPNN in terms of adhesion utilization in (a,b),
respectively; torque allocation in (c,d), respectively; power allocation in (e,f), respectively.

(i) Adhesion utilization results of RNN-NOPS and EPNN are shown in Figure 5a,b,
respectively. When z = 0.1, (z + 0.07)/0.85 = 0.2; when z = 0.15, (z + 0.07)/0.85 is about
0.2588. Then from Equation (20), given (z + 0.07)/0.85 < 0.2588, c5(x) is not involved in
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the NOP and φr > φ f is allowed; and when (z + 0.07)/0.85 < 0.2, c6(x) and c7(x) are not
considered and φ f , φr > (z + 0.07)/0.85 is allowed.

The c5(x) is not involved in 1.3–5.0 s, so it is seen from Figure 5a,b that φr > φ f during
this time. The difference is that in this case, φr of RNN-NOPS is much lower than that of
EPNN, indicating that RNN-NOPS decreases torque consumed by friction on the rear axle
and brings more energy on the front axle for possible regeneration.

The z is higher in 5.1–10.9 s, when c5(x), c6(x) and c7(x) are all involved. EPNN
concentrates more torque on front axle at this time.

(ii) Torque allocation results of RNN-NOPS and EPNN are shown in Figure 5c,d,
respectively. It is seen that Treg ≤ Treg max holds for both algorithms, Tf f and Treg are close
in both pictures. However, in 1–4 s, Treg of EPNN is almost 0, while that of RNN-NOPS is
much higher. This is because EPNN tends to allocate more braking force/torque to the rear
axle, where all energy is dissipated by friction of hydraulic braking. This result explains
the different regenerative energy of both algorithms.

(iii) Power allocation results of RNN-NOPS and EPNN are shown in Figure 5e,f,
respectively. It is seen that, as the braking process tends to complete, the rotational speed of
the motor decreases, which makes the energy available for regeneration decrease. At this
time, EPNN concentrates more torque on front axle but does not regenerate much more
energy than RNN-NOPS. This is verified by the results in Table 3.

4.3. Performance under Standard Driving Cycle

In this section, the comparative study with a few existing RNN algorithms for solving
NOPs is conducted under a standard driving cycle, which reflects the practical environment
and the driver’s behavior.

SC03 Supplemental Federal Test Procedure (SFTP) is a testing cycle proposed by the
Environmental Protection Agency (EPA) in 2007, and it is chosen as the testing cycle in this
section. The simulation step size is set as 1 s, where 1 × 104 iterations are allocated for both
algorithms. The learning rates of RNN-NOPS are selected as λ1 = λ2 = 0.32, and α = 2 in
EPNN. Other settings are similar to Section 4.1.

The speed-following results are shown in Figure. 6, where the speed of SC03 and
speed under control of RNN-NOPS are shown in Figure 6a, and the speed-following error
is shown in Figure 6b. It is seen that SC03 is well-followed.
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The trajectories of c5(x) and c6(x) are shown in Figure 7, where the results of RNN-
NOPS are illustrated in Figure 7a,b, and those of EPNN are shown in Figure 7c,d. The
first 600 iterations of RNN-NOPS and 8000 iterations of EPNN are given, respectively.
In Figure 7a,c, 13 training trajectories representing 13 sample times with z ∈ [0.15, 0.8]
considering c5(x), are given, respectively. In Figure 7a,c, 34 training trajectories representing
34 sample times with z ∈ [0.1, 0.61] considering c6(x), are given, respectively. Initial c5(x)
is sometimes violated, and finally the trajectories are all stable at valid negative values for
both algorithms, indicating reliable learning performance.
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Figure 7. Trajectories during training process of RNN-NOPS and EPNN under SC03 cycle in terms of
constraint 5 in (a,c), respectively, and constraint 6 in (b,d), respectively.

Finally, the overall results in terms of regenerative energy and constraint violation are
shown in Table 4, where it is seen that all constraints are obeyed for both algorithms. Yet
the overall regenerative energy of RNN-NOPS is 15.39% more than that of EPNN.

Table 4. Results of algorithms under SC03 in terms of regenerative energy and constraint violation.

RNN-NOPS EPNN

Overall regenerative energy (J) 1.3822 × 105 1.1978 × 105

Overall constraint violation 0 0

5. Conclusions

In this paper, an RNN-NOPS has been proposed and applied for EHB force allocation
of EVs. The RNN-NOPS has been designed to ensure that the state variables converge
to the feasible region and the equilibria meet KKT conditions of the NOP. The network’s
update consists of two processes dealing with constraints and the objective function,
respectively. It is reported that the overall regenerative energy of RNN-NOPS is 15.39%
more than that of the method for comparison under SC03 cycle. The main benefits of the
proposed RNN-NOPS are threefold: (1) The RNN-based method with parallel computation
is suitable for timely industrial applications; (2) Guaranteed optimality can be obtained
by RNN-NOPS with the constraints met, with a requirement on the first-order partial
derivative of the NOP; (3) The simulation results of the EHB force allocation problem
under different braking processes have demonstrated the excellent performance of the
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RNN-NOPS regarding the convergence, braking safety, regenerative energy, etc. Yet the
limitation of RNN-NOPS is that the solving result is sensitive to parameters setting; not
all constraints are satisfied before convergence with an inappropriate learning rate. The
further work on RNN-based NOP-solving models aims at broadening the application scope
with reduced model complexity and less sensitivity to parameters.
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