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Abstract: Optimal power flow is one of the fundamental optimal operation problems for power
systems. With the increasing scale of solar energy integrated into power systems, the uncertainty of
solar power brings intractable challenges to the power system operation. The multi-objective optimal
power flow (MOOPF) considering the solar energy becomes a hotspot issue. In this study, a MOOPF
model considering the uncertainty of solar power is proposed. Both scenarios of overestimation and
underestimation of solar power are modeled and penalized in the form of operating cost. In order
to solve this multi-objective optimization model effectively, this study proposes a clustering-based
multi-objective differential evolution (CMODE) which is based on the main features: (1) extending
DE into multi-objective algorithm, (2) introducing the feasible solution priority technique to deal
with different constraints, and (3) combining the feasible solution priority technique and the merged
hierarchical clustering method to determine the optimal Pareto frontier. The simulation outcomes
on two cases based on the IEEE 57-bus system verify the reliability and superiority of CMODE over
other peer methods in addressing the MOOPF.

Keywords: optimal power flow; uncertainty; differential evolution; hierarchical clustering; Pareto frontier

1. Introduction

Optimal power flow (OPF) is a typical operation problem of power systems. The
traditional OPF usually focus on minimizing the overall operating cost of thermal power
generators. However, thermal power generators release massive pollutants during oper-
ation. Therefore, emission reduction has become one of the most notable hotspot issues.
Under this background, power systems need to minimize the emission of pollutants while
operating economically, which is also the purpose of the studied multi-objective optimal
power flow (MOOPF).

MOOPF is a highly nonconvex and nonlinear multi-objective problem, especially
with the valve-point effects of thermal generators. Linear programming [1] and dynamic
programming [2] are representative classical methods for addressing the problem, but
they are vulnerable to the issue of stagnation when applied to complicated problems [3].
Furthermore, they generally need to transform multiple objectives into one, so they cannot
handle all the objectives at the same time and provide a group of compromise solutions
when solving multi-objective problems.

Intelligent methods, as the most favorite approach in recent years, can optimize mul-
tiple objectives simultaneously without transforming these objectives. Moreover, they
do not impose any form of restriction on the problem. In order to solve the MOOPF,
Pulluri et al. [4] raised the ability of different evolution through a combination of eigen-
vector and binomial crossovers and self-adaptive parameter strategy. El-Sattar et al. [5]
proposed a multi-objective Jaya algorithm to deal with this issue. Chen et al. [6] introduced
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nonlinearly-adjusted coefficient, adaptive-adjusted map factor and penalty function into
pigeon-inspired algorithm and combined a sorting rule to solve the problem. Naderi
et al. [7] combined fuzzy strategy, differential evolution and self-adaptive particle swarm
optimization to address the problem. Reddy [8] employed a multi-objective differential
evolution to enhance the solving reliability and efficiency for MOOPF. Abbasi et al. [9]
integrated an effective initialization method and differential evolution into harmony search.
Biswas et al. [10] combined the feasible solution technology with classical decomposition
based multi-objective evolutionary algorithm to address this complex problem.

In solving practical complex multi-objective engineering problems such as the MOOPF,
achieving the optimal Pareto frontier (PF) is one of the most difficult issues. In order to
solve this issue, Xiong et al. [11] proposed an improved correction strategy by combining
the slope and the crowding distance to obtain a better PF. Warid et al. [12] presented a
quasi-oppositional Jaya and used an external elitist repository to produce a well-distributed
PF. Shi et al. [13] combined some diversity maintaining strategies to obtain a smooth PF.
Hua et al. [14] proposed a clustering-based environment selection to address the issue.
Li et al. [15] adopted the reinforcement learning to guide the agents toward a better PF.
Zhang et al. [16] raised a non-dominated improved multi-objective teaching-learning-based
optimization by introducing an adaptive teaching factor and a non-dominated ranking
method based on crowding distance to find the best PF.

Solar photovoltaic (PV) power can help power systems achieve the purpose of energy
saving and emission reduction significantly [17–19]. Nevertheless, with the increasing
scale of PV power, its stochastic output [20,21] brings many challenges to the operation of
power systems. Moreover, this strong uncertainty also makes the MOOPF more complex
and the optimal PF is harder to be searched. In order to achieve a good PF for a complex
multi-objective problem, the clustering-based technique is a workable way. The clustering-
based technique, such as partitioning-based clustering, grid-based clustering, model-based
clustering and density-based clustering, can scan solutions and help them approach a better
PF. However, these clustering techniques also have some weaknesses [14]. For instance, the
model-based clustering is complex and takes a long time. The grid-based clustering cannot
be employed independently. The partitioning-based clustering needs to set up the cluster
centers in advance. The density-based clustering is more likely to choose the individuals in
the crowded regions, but some individuals in the sparse regions may be better.

In contrast with the above clustering-based techniques, the merging hierarchical
clustering-based technique [22] does not require assumptions about the distribution of
individuals. It also does not require the number of clusters to be set in advance. Inspired
by the potential of the merging hierarchical clustering-based technique, we propose a
multi-objective optimization algorithm named CMODE by hybridizing it with differential
evolution (DE) and apply the resultant CMODE to the MOOPF considering the uncertainty
of PV power in this work. Firstly, we extend DE to adapt to the multi-objective problem.
Secondly, to address the MOEED reliably, we adopt the feasible solution priority technique
to process different constraints. Thirdly, we incorporate the merging hierarchical clustering-
based technique and the feasible solution priority technique to select compromise solutions
to acquire the optimal PF.

The main contributions of this study are concluded below:
(i) A MOOPF model with the PV power uncertainty is presented. A method based on

overestimating and underestimating the PV power output is introduced to processing the
uncertainty.

(ii) A multi-objective method named CMODE is developed to solve the MOOPF
model. Some approaches including fuzzy decision technique, feasible solution priority
technique and merging hierarchical clustering are integrated into CMODE to raise its
solving performance.

(iii) In order to test the usefulness of CMODE, two cases based on the IEEE 57-bus
system are conducted. Furthermore, three advanced methods are selected to compare
with CMODE.
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The rest structure can be summarized as below. Section 2 introduces the studied
MOOPF and the calculation of stochastic PV power. Section 3 briefly reviews the DE and
the merged hierarchical clustering. Section 4 provides the proposed CMODE. Section 5
gives the testing results and Section 6 summarizes the conclusions and future work.

2. Mathematical Model of the Studied MOOPF

MOOPF is a complex optimization problem, mainly by adjusting some control vari-
ables to minimize the optimization objectives of power system while satisfying the operat-
ing constraints [23]. The optimization objectives of the studied MOOPF can be described
as below:

Minimize : Y(p, o) = [E(p, o), C(p, o)] (1)

subject to
{

g(p, o) ≤ 0
h(p, o) = 0

(2)

where p and o are the vectors of control and state variables, respectively; Y(p, o) means the
objective functions; E(p, o) means the total emission; C(p, o) means the total operating cost;
g(p, o) means the set of inequality constraints; h(p, o) means the set of equality constraints.

The group of control variables is used to control the system power flow and it can be
described as below:

p =
{

PG2, PG3, . . . , PGNG , VG1, VG2, . . . , VGNG , T1, T2, . . . , TNtr

}
(3)

where PGm and VGm are the active power and voltage of generator on bus m, respectively;
Tm is the tap of mth transformer; NG and Ntr are the number of generators and tap-regulated
transformers, respectively.

The group of state variables is used to define the system state and it can be described
as below:

o =
{

PG1, VLB1, VLB2, . . . , VLBNLB , QG1, QG2, . . . , QGNG , SL1, SL2, . . . , SLNL

}
(4)

where PG1 is the active power of generator at swing bus; VLBm is the voltage of mth load
bus; QGm is the reactive power of generator on bus m; SLm is the line loading of mth branch;
NLB and NL are the number of load buses and branches, respectively.

2.1. Inequality and Equality Limits

(1) Generator limits

Qmin
Gm ≤ QGm ≤ Qmax

Gm (5)

Vmin
Gm ≤ VGm ≤ Vmax

Gm (6)

Pmin
Gm ≤ PGm ≤ Pmax

Gm (7)

where Qmin
Gm and Qmax

Gm are the upper and lower reactive power limit of the mth generator,
respectively; Vmin

Gm and Vmax
Gm are the upper and lower voltage limit of the mth generator,

respectively; Pmin
Gm and Pmax

Gm are the upper and lower active power limit of the mth generator,
respectively.

(2) Transformer limits

Tmin
m ≤ Tm ≤ Tmax

m (8)

where Tmin
m and Tmax

m are the upper and lower limit of the mth transformer, respectively.

(3) Operation limits

Vmin
Bm ≤ VBm ≤ Vmax

Bm (9)
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SLm ≤ Smax
Lm (10)

where VBm is the voltage on bus m; Vmin
Bm and Vmax

Bm are the upper and lower voltage limit of
the mth bus, respectively; Smax

Lm is the upper limit of the capacity of branch m.

(4) Power balance limits

PGm = VBm

NB

∑
n=1

VBn[Bmn sin(δm − δn) + Gmn cos(δm − δn)] + PLm (11)

QGm = VBm

NB

∑
n=1

VBn[Gmn cos(δm − δn)− Bmn sin(δm − δn)] + QLm (12)

where δm is the voltage angle on bus m; Bmn and Gmn are the susceptance and conductance
between buses m and n, respectively; NB is the number of buses; PLm and QLm are the
active and reactive load demand on bus m, respectively.

2.2. Operating Cost of Stochastic PV Power
2.2.1. Power Model of PV Power Plants

The power output of a PV power plant PV varies with the solar irradiance RI , and the
output power is calculated as below:

PV(RI) = PS(RI/RI.std) (13)

where RI.std is the stands for the solar irradiance under the normal condition; PS is the rated
power of PV power plant.

In addition, the solar irradiance generally obeys the Lognormal probability density
function F(RI), as given below [24]:

F(RI) = exp

[
−(ln(RI)− ϕ)2

2γ2

]
/RIγ

√
2π (14)

where ϕ and γ are the mean and standard deviation in Lognormal probability density
function, respectively.

The distribution of SI obtained by running 12,000 Monte Carlo scenes under ϕ = 5.2
and γ = 0.6 is illustrated in Figure 1.
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2.2.2. Total Operating Cost of PV Power Plants

The output forecasting of a PV power plant has both possibilities of underestimation
and overestimation [16]. Thus, in addition to the direct cost, the total operating cost also
contains the cost for underestimation and overestimation scenarios.

The direct cost CVdm(PVm) is given by:

CVdm(PVm) = vdPVm (15)

where PVm is the estimated power of mth PV power plant; vd is the direct cost factor.
The reserve cost CVrm(PVm) due to the underestimation is given by:

CVrm(PVm) = vr

Nn−

∑
n=1

[(PVm − Pn−) fn−] (16)

where vr is the reserve cost factor; Pn− is the active power lower than PVm; fn− is the
relative frequency of Pn−; Nn− is the number of Pn−.

The penalty cost CVpm(PVm) due to the overestimation is given by:

CVpm(PVm) = vp

Nn+

∑
n=1

[(Pn+ − PVm) fn+] (17)

where vp is the penalty cost factor; Pn+ is the active power higher than PVm; fn+ is the
relative frequency of Pn+; Nn+ is the number of Pn+.

Thus, the total cost CV of NV PV power plants is given by:

CV =
NV

∑
m=1

(
CVdm(PVm) + CVrm(PVm) + CVpm(PVm)

)
(18)

2.3. Total Operating Cost of Thermal Generators

Thanks to the valve point effect, the operating curve of the thermal generator is highly
nonlinear. The total operating cost CT of NT thermal generators is as below:

CT =
NT

∑
m=1

{
ηmP2

m + µmPm + αm +
∣∣∣lm × sin

[
km ×

(
Pm − Pmin

m

)]∣∣∣} (19)

where Pm and Pmin
m are the output and min power of mth thermal generator, respectively;

ηm, µm and αm are the operating cost factors of mth thermal generator; lm and km are the
valve-point effect factors of mth thermal generator.

2.4. Total Emission of Thermal Generators

The pollutant gases emitted by the thermal generators vary with their power outputs.
The total emission ET is as below:

ET =
NT

∑
m=1

[
emP2

m + dmPm + cm + um exp(gmPm)
]

(20)

where em, dm, cm, um and gm are the emission factors of mth thermal generator.

2.5. Optimization Objectives of the Studied MOOPF

The purpose of the studied MOOPF considering the PV uncertainty is to minimize
both the overall emission and operating cost, which is as below:

Minimize : [ET , CT + CV ] (21)
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2.6. Operation Indicators

Two indicators including the total line power losses Ploss and voltage deviations VD
are employed to measure the operation quality.

Ploss =
NL

∑
L=1

GL(mn)

[
V2

Bn − 2VBnVBm cos(δn − δm) + V2
Bm

]
(22)

VD =
NB

∑
m=1
|1−VBm| (23)

where NL is the number of branches; GL(mn) is the conductance of branch L connecting
buses m and n.

3. Differential Evolution and Merged Hierarchical Clustering
3.1. Differential Evolution

DE is an advanced intelligent method that mainly contains four operators [25–28].
(1) Initialization. The optimization process starts from an initial population Init_pop

with a set of individuals and each one is initialized as below:

x0
m,n = xmin

m,n + rand(0, 1)× (xmax
m,n − xmin

m,n ) (24)

where m ∈ [1, N], N means the population size; n ∈ [1, D], D means the problem scale;
rand(0, 1) is a random value between 1 and 0; xmin

m,n and xmax
m,n mean the lower and upper

limits, respectively.
Therefore, the initial population can be expressed as below:

Init_pop =
{

xG
1 , xG

2 , . . . , xG
N

}
(25)

where G means the iteration counter.
(2) Mutation. It is to generate a mutant vector vG

m from the target individual xG
m by:

vG
m = xG

r1 + F(xG
r2 − xG

r3) (26)

where F is the scaling factor; xG
r1, xG

r2 and xG
r3 are three random distinct individuals.

(3) Crossover. Its intention is to combine xG
m and vG

m to produce a new vector uG
m by:

uG
m,n =

{
vG

m,n, if n = nrand or rand(0, 1
)
≤ CR

xG
m,n, otherwise

(27)

where nrand is a random integer within [1, D]; CR denotes the crossover rate.
(4) Selection. Its purpose is to select those superior individuals for the next iteration.

Therefore, the more advantageous individual in xG
m and uG

m is retained, as shown below:

xG+1
m =

{
uG

m, if Y(uG
m) ≤ Y(xG

m)
xG

m, otherwise
(28)

where Y(·) means the fitness value.

3.2. Merged Hierarchical Clustering

In the merged hierarchical clustering, all points in a search space are treated as clus-
ters [22]. These clusters are merged consecutively by a specific conjunction standard until
they are grouped to one or the number of clusters reaches the predetermined value. The
dendrogram of the merged hierarchical clustering is shown in Figure 2. The line between
two different points means that they are merged into a new cluster by a special linkage.
In order to divide the solutions as evenly as possible into the desired number of groups,
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we use the Ward’s linkage [29] as the conjunction criterion. The Ward’s linkage maximizes
the distance index τ(m, n) between different clusters, and minimizes the τ(m, n) within the
same cluster. The calculation of the τ(m, n) is as below:

τ(m, n) = ‖Um −Un‖2

√
2NUmNUn/(NUm + NUn) (29)

where ‖·‖2 means Euclidean distance; Um and Un mean the centers of the cluster m and
the cluster n, respectively; NUm and NUn mean the total numbers of points in the clusters
m and n, respectively.
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Here, we employ a bi-objective optimization problem to illustrate. Firstly, all points are
treated as a single cluster and the τ(m, n) between every two points is calculated. Secondly,
two points that have the smallest τ(m, n) are selected to merge into a new cluster. For
instance, suppose τ(A, B) is the smallest, then A and B will be assigned into a new cluster
G and the new cluster center is as below:

Ug =

(
∑

NUg
m Y∗1 (xm)

NUg
,

∑
NUg
m Y∗2 (xm)

NUg

)
(30)

For robust clustering, all objective values need to be normalized, as given below:

Y∗j (xm) =
(

Yj(xm)−Ymin
j

)
/
(

Ymax
j −Ymin

j

)
(31)

where Y∗j (·) means the jth normalized objective value; Ymax
j and Ymin

j are the maximum
and minimum values of the jth objective value.

This process will repeat until the terminal condition is met, i.e., the required number
of the clusters is satisfied. As shown in Figure 1, different layers contain different clusters.
For example, layer 1 contains five clusters, i.e., C, D, E, F and G, while layer 6 just contains
one cluster K, so we can obtain the required number of clusters by setting the terminal
condition.

4. Clustering-Based Multi-Objective Differential Evolution
4.1. Framework of CMODE

The flowchart of CMODE is shown in Figure 3. Firstly, a random population named
Parent is first created and the fitness and the constraint violation values of each member
in Parent are evaluated. Secondly, a population named Child is generated by crossing the
target individuals and the mutant vectors. Next, the Parent and the Child are combined
and the top N individuals are selected to become the new Parent. After that, the merged
hierarchical clustering is performed on feasible solutions to achieve the PF. The above steps
are executed until the stopping condition is met.



Energies 2022, 15, 9489 8 of 21

Energies 2022, 15, x FOR PEER REVIEW 8 of 21 
 

 

For robust clustering, all objective values need to be normalized, as given below: 

( ) ( )( ) ( )* min max min=j m j m j j jY x Y x Y Y Y− −  (31) 

where ( )*
jY   means the jth normalized objective value; max

jY  and min
jY  are the maxi-

mum and minimum values of the jth objective value. 
This process will repeat until the terminal condition is met, i.e., the required number 

of the clusters is satisfied. As shown in Figure 1, different layers contain different clusters. 
For example, layer 1 contains five clusters, i.e., C, D, E, F and G, while layer 6 just contains 
one cluster K, so we can obtain the required number of clusters by setting the terminal 
condition. 

4. Clustering-Based Multi-Objective Differential Evolution 
4.1. Framework of CMODE 

The flowchart of CMODE is shown in Figure 3. Firstly, a random population named 
Parent is first created and the fitness and the constraint violation values of each member 
in Parent are evaluated. Secondly, a population named Child is generated by crossing the 
target individuals and the mutant vectors. Next, the Parent and the Child are combined 
and the top N individuals are selected to become the new Parent. After that, the merged 
hierarchical clustering is performed on feasible solutions to achieve the PF. The above 
steps are executed until the stopping condition is met. 

 
Figure 3. The flowchart of CMODE for the MOOPF problem.  Figure 3. The flowchart of CMODE for the MOOPF problem.

4.2. Feasible Solution Priority Technique

In order to select the solutions that satisfy different constraints, we employ the feasible
solution priority technique to address the problem. The technique uses a violation index
υ(x) to judge the feasibility of solutions, as given below [30]:

υ(x) =
NW

∑
w=1

Iw(x)
Imax
w

/
NW

∑
w=1

1
Imax
w

(32)

where NW means the number of constraints; Iw means the violation of the wth constraint;
Imax
w means the maximum value of Iw.

For two different solutions xm and xn, xm is preferable to xn according to the follow-
ing criteria.

(1) Criterion 1: if υ(xm) = 0 and υ(xn) 6= 0.
(2) Criterion 2: if υ(xm) = 0, υ(xn) = 0, and Y(xm) ≤ Y(xn).
(3) Criterion 3: if υ(xm) 6= 0, υ(xn) 6= 0, and Y(xm) ≤ Y(xn).

4.3. Merged Hierarchical Clustering-Based Determination of PF

Since the number of feasible solutions may exceed the required value N, we propose
to application of the merged hierarchical clustering to select superior solutions to form the
PF, as shown in Algorithm 1.

We first combine the Parents of two adjacent generations to form a set U, and execute
the fast non-dominated sort [31] on U to rank its members into different fronts. If the total
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amount of members in U is equal to N, then all the members are selected to form the PF.
Otherwise, if the total number members in U is higher than N, and the solutions in the first
K fronts are less than N while the solutions in the first (K + 1) fronts are higher than N, then
we first retain all the solutions in the first K fronts in the PF. For the rest solutions, we make
up them from the (K + 1) front by using the merged hierarchical clustering.

In addition, to avoid the situation that some clusters contain no members while some
clusters contain four or more members, we use the adjusting strategy in [14] to assign
solutions to different clusters. In this way, the members in different clusters are distributed
relatively evenly, which make the PF more uniform.

Algorithm 1: Merged hierarchical clustering-based determination of PF

Input: (gen − 1)th Parent and genth Parent
Output: PF
1: Combine the (gen − 1)th Parent and the genth Parent to for a set U.
2: Rank the solutions in U by executing the fast non-dominated sort

% PFK means the solutions in the first K fronts of U
% |PFK| means the capacity of PFK

3: if |PFK| = N then
4: PF = U, break
5: else
6: Select the rest R (|R| = (N − |PFK|)) solutions from the (K + 1) front of U with the merged
hierarchical clustering
7: PF = PFK ∪ R
8: end if

4.4. The Determination of the Best Compromise Solution

The fuzzy decision technique is usually employed to extract the best compromise
solution based on an index ζ(xm) [25]:

ζ(xm) =
NM

∑
j=1

ζ j(xm)/
N

∑
m=1

NM

∑
j=1

ζ j(xm) (33)

where NM means the number of objectives.
The best compromise solution has the highest ζ(xm). In Equation (32), the calculation

of ζ j(xm) is as below:

ζ j(xm) =


1 Yj(xm) ≤ Ymin

j
Ymax

j −Yj(xm)

Ymax
j −Ymin

j
Ymin

j ≤ Yj(xm) ≤ Ymax
j

0 Yj(xm) ≥ Ymax
j

(34)

5. Simulation Results
5.1. Study Cases

CMODE is implemented to two different IEEE 57-bus systems and the systems’ data
are shown in Table 1. In the basic IEEE 57-bus system, seven thermal generators are
connected to buses 1, 2, 3, 6, 8, 9 and 12 and bus 1 is the balancing node [32].

In order to study the effect of PV power plants on the system, we built a modified
IEEE 57-bus system with three PV plants, as shown in Figure 4. In the modified IEEE
57-bus system, four thermal generators connected to buses 1, 3, 8 and 12 are retained, and
the other three thermal generators connected to buses 2, 6 and 9 are replaced by three PV
power plants. The parameters of these three PV power plants are presented in Table 2 and
their available power is shown in Figure 5.
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Table 1. The system information.

Items
Case1
IEEE 57-Bus System

Case2
Modified IEEE 57-Bus System

Quantity Details Quantity Details

Buses 57 - 57 -
Branches 80 - 80 -

Thermal
generators 7

Buses: 1 (Balancing
Node), 2, 3, 6, 8, 9
and 12

4 Buses: 1 (Balancing
Node), 3, 8 and 12

PV
power plant 0 - 3 Buses: 2, 6 and 9

Transformer 17
Branches: 19, 20, 31, 35,
36, 37, 41, 46, 54, 58, 59,
65, 66, 71, 73, 76, 80

17
Branches: 19, 20, 31, 35,
36, 37, 41, 46, 54, 58, 59,
65, 66, 71, 73, 76, 80

System load - 1250.8 MW,
336.4 MVAr - 1250.8 MW,

336.4 MVAr

Load bus 50 Allowable voltage
range: [0.94–1.06] 50 Allowable voltage

range: [0.94–1.06]
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Table 2. The parameters of the three solar photovoltaic plants.

Plant RI.std
(W/m2)

Rated Power
(MW)

The Parameters in
Probability Density
Function

Cost Factors ($/MW)

PV1
1000 100

ϕ = 5.2; γ = 0.6
vd = 1.7; vr = 3.1; vp = 1.5PV2 ϕ = 5.1; γ = 0.58

PV3 ϕ = 5; γ = 0.62
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5.2. Simulation Settings

Since the true optimal PF of the MOOPF is unavailable, the indicator Hypervolume
(HV) is generally used to compare different algorithms. HV is described as below [33]:

HV(RP, PF) =
PF
∪

x∈PF
ϑ(RP, x) (35)

where RP is the reference point (1, 1); ϑ is the hypercube size enclosed by RP and x. This
indicator can reflect an algorithm’s convergence and diversity. The higher the HV, the
better the performance.

In order to test the workability of CMODE in tackling the MOOPF problem considering
the uncertainty of PV power, it is compared with three peer methods, i.e., NSGA-II [34],
CA-MOEA [14] and GrEA [35]. Their parameters settings are listed in Table 3. To ensure
the fairness, 30 independent trials were executed and the termination condition for each
trial is FEsmax = 4× 104.

Table 3. Parameters settings of CMODE and other rivalries.

Method Parameter Settings

CMODE N = 200; FG
m = 0.1 + 0.9·rand; CRm = rand

NSGA-II N = 200; mutation factor PM = 1/D; crossover factor PC = 1
crossover parameters DM = 20, DC = 20

CA-MOEA N = 200; PC = 1; PM = 1/D; DM = 20; DC = 20

GrEA N = 200; PC = 1; PM = 1/D; DM = 20; DC = 20;
the number of divisions in each objective DIV = 45
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5.3. Comparison of HV Results and Statistical Analysis

Table 4 shows, in both two cases the CMODE is the best one since its mean HV values
are all higher than other methods. Although the standard deviation values of HV of
CMODE are not the least.

Table 4. Comparison of HV results.

Algorithm Case 1 Case 2
Mean Std. Mean Std.

CMODE 0.07347 8.53 × 10−3 0.08413 7.67 × 10−3

NSGA-II 0.07241 5.99 × 10−3 0.07176 5.34 × 10−3

CA-MOEA 0.06316 6.03 × 10−3 0.07912 5.00 × 10−3

GrEA 0.07288 5.09 × 10−3 0.07719 9.45 × 10−3

Table 5 provides the outcomes of Wilcoxon’s rank-sum test between CMODE and its
rivalries at the 0.05 confidence level to reveal the statistical difference. The null hypothesis
is that there is no significant difference between CMODE and the compared algorithms.
The significance level is 0.05, and the hypothesis is rejected if the p-value is less than or
equal to 0.05, i.e., there is a significant difference between the two algorithms compared.
If the p-value is greater than 0.05, the hypothesis is accepted, i.e., there is no significant
difference between CMODE and the compared algorithms. The signs “+” and “≈”represent
that CMODE is signally superior or similar to its rivalries. Although MODE is statistically
similar to NSGA-II and GrEA in case 1, the R+ value is higher than the R− value. In the
case 2, CMODE is the best. Overall, the comparison indicates that CMODE outperforms
its rivalries.

Table 5. R−, p-value for the HV values of CMODE and other rivalries.

CMODE vs. Case R+ R− p-Value Sign

NSGA-II
Case 1 248 217 7.50 × 10−1 ≈
Case 2 450 15 0.80 × 10−5 +

CA-MOEA
Case 1 432 33 4.10 × 10−5 +
Case 2 373 92 3.85 × 10−3 +

GrEA
Case 1 241 224 8.61 × 10−1 ≈
Case 2 361 104 8.20 × 10−3 +

5.4. Comparison of PF

We define the PF with the highest HV as the best PF, and conversely the PF with the
lowest HV as the worst PF. The best and worst PF curves of all methods in these two cases
are graphed in Figures 6 and 7, respectively. In Figure 6a, the points of GrEA are more
dispersed than CMODE, indicating it has a better diversity, but its convergence is inferior
to CMODE. In Figure 6b, GrEA and CA-MOEA have a rich diversity and the convergence
of NSGA-II is poor, the diversity and convergence of CMODE are in the mid. In Figure 7a,
the diversity of CMODE is the best. In Figure 7b, CMODE has a richer diversity and the
convergence of GrEA is the worst.
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The difference between the best PF and the worst PF offered by CMODE is illustrated
in Figure 8. In Figure 8a, the convergence in two scenarios is almost the same, but the best
PF has a richer diversity signally. In Figure 8b, the diversity of the best PF is better than the
worst signally.
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5.5. Comparison of Solutions

Tables 6 and 7 give the results of three scenarios including the best compromise
solution, the best cost solution, and the best emission offered by all methods in these two
cases, respectively. Table 6 shows that in the three scenarios, GrEA offers the minimum cost
41,810.32857 $/h and CMODE yields the minimum emission 1.08585 t/h. With regard to
the best compromise solution, according to the operation indicators, NSGA-II acquires the
best one and CMODE is slightly better than CA-MOEA and GrEA. Table 7 indicates that
the minimum cost is 30,778.96877 $/h and the minimum emission is 0.97188 t/h, where
both data are provided by CMODE. For the best compromise solution of COMDE, the
power loss is 14.92952 MW and the voltage deviation is 0.97206 p.u., which are slightly
better than GrEA. Overall, CMODE can provide highly competitive solutions in these two
cases. Moreover, the detail solutions offered by CMODE are provided in Tables A1 and A2
in the appendix.

Table 6. The comparison of part of solutions in case 1.

Method Situation Cost ($/h) Emission (t/h) Ploss (MW) VD (p.u.)

CMODE
Best Comp 42,378.25740 1.29978 14.39902 1.08593
Best Cost 41,829.54006 1.60733 15.44529 1.17172
Best Emission 45,553.66027 1.08585 16.51269 1.13773

NSGA-II
Best Comp 42,514.14538 1.28064 14.29878 1.06271
Best Cost 41,835.31986 1.70183 16.62134 1.05436
Best Emission 45,562.55097 1.08711 17.78190 1.05475

CA-
MOEA

Best Comp 42,300.31554 1.49821 14.64055 1.12854
Best Cost 41,829.85245 1.73326 16.56421 1.15373
Best Emission 46,741.88170 1.18792 19.42758 1.10973

GrEA
Best Comp 42,095.55055 1.39710 15.70217 1.19019
Best Cost 41,810.32857 1.74843 16.72726 0.93812
Best Emission 46,334.09802 1.09455 18.51497 0.92364

Table 7. The comparison of part of solutions in case 2.

Method Situation Cost ($/h) Emission (t/h) Ploss (MW) VD (p.u.)

CMODE
Best Comp 31,510.96410 1.15458 14.92952 0.97206
Best Cost 30,778.96877 1.51445 16.06183 0.99820
Best Emission 34,763.02046 0.97188 18.75483 0.93152

NSGA-II
Best Comp 31,878.11249 1.10791 14.73706 1.20800
Best Cost 30,960.60974 1.32659 16.33062 1.28074
Best Emission 34,584.57320 0.97317 17.36800 1.23202

CA-
MOEA

Best Comp 31,363.89771 1.18054 14.38301 1.17212
Best Cost 30,860.00681 1.43874 16.46837 1.11257
Best Emission 34,804.96768 0.97553 17.17602 1.18253

GrEA
Best Comp 31,528.49233 1.16682 16.37542 1.15121
Best Cost 30,858.11783 1.58188 19.11846 1.10638
Best Emission 34,888.15443 0.97865 17.70621 1.02394

In order to further verify the reliability of the solutions, the bus voltages of all the
three scenarios in these two cases are graphed in Figures 9 and 10, respectively. Figures
9a and 10a present the generator bus voltage plots, i.e., voltage control variables plots.
Figures 9b and 10b present the load bus voltage plots, i.e., voltage state variables plots.
In Figures 9 and 10, all the bus voltages are within the limits, further indicating the
effectiveness of CMODE in achieving feasible solutions in different scenarios. In both two
cases, the voltages of buses 18, 25, 29 and 51 are closer to the upper boundary, indicating
that overvoltage may occur in these buses. This is mainly because these buses are closer
to the power sources. On the other hand, the voltages of 20, 34 and 57 are closer to the
lower boundary, indicating that insufficient reactive power may occur in these buses and
the main reason is that these buses are far away from the power sources.



Energies 2022, 15, 9489 15 of 21Energies 2022, 15, x FOR PEER REVIEW 16 of 21 
 

 

  
(a) Generator bus voltages. (b) Load bus voltages. 

Figure 9. The bus voltages in the three solution scenarios obtained by CMODE for case 1. 

  
(a) Generator bus voltages. (b) Load bus voltages. 

Figure 10. The bus voltages in the three solution scenarios obtained by CMODE for case 2. 

  
(a) Active output power. (b) Total emissions. 

Figure 9. The bus voltages in the three solution scenarios obtained by CMODE for case 1.

Energies 2022, 15, x FOR PEER REVIEW 16 of 21 
 

 

  
(a) Generator bus voltages. (b) Load bus voltages. 

Figure 9. The bus voltages in the three solution scenarios obtained by CMODE for case 1. 

  
(a) Generator bus voltages. (b) Load bus voltages. 

Figure 10. The bus voltages in the three solution scenarios obtained by CMODE for case 2. 

  
(a) Active output power. (b) Total emissions. 

Figure 10. The bus voltages in the three solution scenarios obtained by CMODE for case 2.

In addition, the active power outputs (as shown in Figure 11a) of thermal generators
and PV power plants and the corresponding emissions (as shown in Figure 11b) and
operating costs (as shown in Figure 11c) provided by CMODE in the three scenarios for
cases 1 and 2. Since the operating cost of PV power plants is relatively low and they do
not emit polluting gases, so both the operating cost and emission in case 1 are consistently
higher than those in case 2. To be specific, the introduction of PV power plants can reduce
the total operating cost by 26.42% for the best cost solution scenario. On the other hand,
the introduction of PV plants can also reduce the total emission by 10.50% for the best
emission solution scenario. This is also the main reason for the massive use of solar
energy. Tables 6 and 7 also indicate that the PV power can reduce the operating cost and
emission significantly.
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6. Conclusions and Future Work

A MOOPF model considering the solar uncertainty is constructed, and a method
CMODE is developed to better address the MOOPF model. The effectiveness of CMODE
is validated by comparing the simulation outcomes with other methods in two cases.
According to the results of HV, it is clear that the PFs offered by CMODE are overall better.
From the results of the best solutions of three scenarios in these two cases, CMODE also
provides competitive feasible solutions. With the penetration of PV power plants in power
system, the operating cost and the emission are reduced by 26.42% and 10.50%, respectively.
Therefore, the solar PV power brings significant economic and environmental benefits.

In this work, only the PV power uncertainty is considered. In future work, we
plan to consider the PV self-consumed electricity and use prediction methods to obtain
a more accurate and effective PV power model. Furthermore, we intend to consider
more uncertainties including wind and loads in the MOOPF model. Moreover, some
techniques such as reinforcement learning and hybridization will be integrated to further
boost CMODE.
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and editing, G.X. and X.F.; supervision, G.X.; funding acquisition, H.C. All authors have read and
agreed to the published version of the manuscript.



Energies 2022, 15, 9489 17 of 21

Funding: This research was funded by the National Natural Science Foundation of China, grant
number 52167007, the Natural Science Foundation of Guizhou Province, grant number QiankeheBasic-
ZK[2022]General121, the Innovation Foundation of Guizhou University Institute of Engineering
Investigation & Design Co., Ltd., grant number GuiDaKanCha[2022]03, and the Open Project Program
of Fujian Provincial Key Laboratory of Intelligent Identification and Control of Complex Dynamic
System, grant number 2022A0008.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

OPF Optimal power flow
MOOPF Multi-objective OPF
PF Pareto frontier
PV Photovoltaic
HV Hypervolume
p, o Control/state variables
g(p, o), h(p, o) Inequality/equality constraints
QGm, PGm, VGm Reactive power/active power/voltage of generator bus
Tm Tap setting of the mth transformer
VBm, δm Voltage/voltage angle of bus
Pmin

Gm , Pmax
Gm Upper/lower active power limit of the mth generator

Qmin
Gm , Qmax

Gm Upper/lower reactive power limit of the mth generator
Vmin

Gm , Vmax
Gm Upper/lower voltage limit of the mth generator bus

Vmin
Bm , Vmax

Bm Upper/lower voltage limit of the mth load bus
SLm Active power of the mth branch
Tmin

m , Tmax
m Upper/lower tap limit of the mth transformer

Smax
Lm Upper limit of the capacity of the mth branch

Bmn, Gmn Susceptance/conductance between buses m and n
PLm, QLm Active/reactive load demand on the mth bus
Pm Output power of the mth generator
PVm, PS Estimated/rated power of the mth PV power plant
RI.std Solar irradiance under the normal condition
ϕ, γ Mean/standard deviation of Lognormal probability density function
vd, vr, vp Direct/reserve/penalty cost factor
Pn−, Pn+ Active power lower/higher than PVm
fn−, fn+ Relative frequency of Pn−/Pn+
Nn−, Nn+ The number of discrete pillars in Pn−/Pn+
NV , NT , NLB, NB, NL, Ntr The number of PV plants/thermal generators/load

buses/buses/branches/tap-regulated transformers
lm, km Valve-point effect factors of the mth thermal generator
ηm, µm, αm Operating cost factors of the mth thermal generator
em, dm, cm, um, gm Emission factors of the mth thermal generator
Ploss, VD Total line power losses/voltage deviations



Energies 2022, 15, 9489 18 of 21

Appendix A

Table A1. Best solutions offered by CMODE in case 1.

Case 1 Min Max Best Comp Best Cost Best
Emission

Variable

PTG1 (MW) 0 575.88 186.3772 148.6171 223.4129
PTG2 (MW) 30 100 100.0000 93.6162 100.0000
PTG3 (MW) 42 140 70.8060 43.9203 140.0000
PTG4 (MW) 30 100 99.8049 99.8664 100.0000
PTG5 (MW) 165 550 364.2674 425.0176 287.8140
PTG6 (MW) 30 100 100.0000 96.7985 99.9572
PTG7 (MW) 123 410 343.9435 358.4092 316.1286
V1 (p.u.) 0.95 1.1 1.0493 1.0533 1.0470
V2 (p.u.) 0.95 1.1 1.0443 1.0456 1.0449
V3 (p.u.) 0.95 1.1 1.0441 1.0453 1.0457
V6 (p.u.) 0.95 1.1 1.0563 1.0462 1.0429
V8 (p.u.) 0.95 1.1 1.0575 1.0424 1.0480
V9 (p.u.) 0.95 1.1 1.0323 1.0277 1.0295
V12 (p.u.) 0.95 1.1 1.0306 1.0437 1.0400
T19 (p.u.) 0.90 1.10 0.9759 0.9864 1.0058
T20 (p.u.) 0.90 1.10 1.1000 1.0354 1.0652
T31 (p.u.) 0.90 1.10 0.9580 0.9952 1.0279
T35 (p.u.) 0.90 1.10 1.0059 1.0155 0.9929
T36 (p.u.) 0.90 1.10 0.9655 0.9359 0.9724
T37 (p.u.) 0.90 1.10 1.0472 1.0311 0.9682
T41 (p.u.) 0.90 1.10 0.9860 0.9923 0.9732
T46 (p.u.) 0.90 1.10 0.9485 0.9738 0.9507
T54 (p.u.) 0.90 1.10 0.9260 0.9170 0.9249
T58 (p.u.) 0.90 1.10 0.9922 0.9830 1.0198
T59 (p.u.) 0.90 1.10 0.9731 0.9567 0.9621
T65 (p.u.) 0.90 1.10 0.9746 0.9616 1.0190
T66 (p.u.) 0.90 1.10 0.9430 0.9636 0.9000
T71 (p.u.) 0.90 1.10 1.0269 0.9983 1.0310
T73 (p.u.) 0.90 1.10 1.0412 1.0067 0.9675
T76 (p.u.) 0.90 1.10 0.9000 1.0132 1.0535
T80 (p.u.) 0.90 1.10 1.0484 1.0409 1.0417
QTG1
(MVAr) −140 200 52.1131 61.7561 27.0031

QTG2
(MVAr) −17 50 28.0585 20.3215 37.9586

QTG3
(MVAr) −10 60 26.9675 41.2500 24.8212

QTG4
(MVAr) −8 25 12.7597 4.6859 −2.4807

QTG5
(MVAr) −140 200 52.3377 12.5234 50.0058

QTG6
(MVAr) −3 9 5.2316 8.1439 6.4411

QTG7
(MVAr) −150 155 54.2682 83.7349 97.1273

Objective
Emission
(t/h) 1.2998 1.6073 1.0859

Cost ($/h) 42,378.2574 41,829.5401 45,553.6603
Operation
indicator

VD (p.u.) 1.0859 1.1717 1.1377
Ploss (MW) 14.3990 15.4453 16.5127
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Table A2. Best solutions offered by CMODE in case 2.

Case 2 Min Max Best Comp Best Cost Best
Emission

Variable

PTG1 (MW) 0 575.88 185.1707 132.3190 235.7068
PPV1 (MW) 0 100 100.0000 100.0000 99.7895
PTG2 (MW) 42 140 80.9551 51.1500 140.0000
PPV2 (MW) 0 100 100.0000 100.0000 100.0000
PTG3 (MW) 165 550 360.4079 433.4232 289.8099
PPV3 (MW) 0 100 100.0000 100.0000 100.0000
PTG4 (MW) 123 410 339.1958 349.9696 304.2488
V1 (p.u.) 0.95 1.1 1.0166 1.0226 1.0109
V2 (p.u.) 0.95 1.1 1.0128 1.0190 1.0081
V3 (p.u.) 0.95 1.1 1.0240 1.0155 1.0214
V6 (p.u.) 0.95 1.1 1.0390 1.0365 1.0374
V8 (p.u.) 0.95 1.1 1.0472 1.0507 1.0555
V9 (p.u.) 0.95 1.1 1.0195 1.0220 1.0278
V12 (p.u.) 0.95 1.1 1.0236 1.0277 1.0406
T19 (p.u.) 0.90 1.1 1.0382 1.0077 0.9963
T20 (p.u.) 0.90 1.1 0.9816 0.9998 1.0451
T31 (p.u.) 0.90 1.1 1.0515 1.0510 0.9962
T35 (p.u.) 0.90 1.1 1.0412 0.9847 1.0599
T36 (p.u.) 0.90 1.1 0.9137 0.9595 0.9000
T37 (p.u.) 0.90 1.1 0.9975 0.9760 0.9929
T41 (p.u.) 0.90 1.1 0.9784 0.9857 1.0127
T46 (p.u.) 0.90 1.1 0.9733 0.9496 0.9693
T54 (p.u.) 0.90 1.1 0.9114 0.9109 0.9005
T58 (p.u.) 0.90 1.1 0.9608 0.9420 0.9773
T59 (p.u.) 0.90 1.1 0.9623 0.9402 0.9293
T65 (p.u.) 0.90 1.1 0.9550 0.9766 0.9586
T66 (p.u.) 0.90 1.1 0.9648 0.9585 0.9395
T71 (p.u.) 0.90 1.1 0.9644 0.9970 0.9782
T73 (p.u.) 0.90 1.1 1.0470 0.9901 1.0281
T76 (p.u.) 0.90 1.1 0.9827 0.9926 0.9920
T80 (p.u.) 0.90 1.1 0.9893 0.9876 0.9844
QTG1
(MVAr) −140 200 16.9478 36.1716 −12.7746

QPV1
(MVAr) −17 50 20.7363 38.8423 22.0496

QTG2
(MVAr) −10 60 38.8840 15.6417 16.3274

QPV2
(MVAr) −8 25 3.9737 −3.1597 −6.3003

QTG3
(MVAr) −140 200 60.3842 56.9724 79.0276

QPV3
(MVAr) −3 9 4.0140 3.5384 5.4230

QTG4
(MVAr) −150 155 90.3729 91.3263 147.6832

Objective

Emission(t/h) 1.1546 1.5145 0.9719
Cost ($/h) 31,510.9641 30,778.9688 34,763.0205
CT ($/h) 30,251.7905 29,519.7952 33,504.8575
CV ($/h) 1259.1736 1259.1736 1258.1630

Operation
indicator

VD (p.u.) 0.9721 0.9982 0.9315
Ploss (MW) 14.9295 16.0618 18.7548
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