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Abstract: Total organic carbon (TOC) is important geochemical data for evaluating the hydrocarbon
generation potential of source rocks. TOC is commonly measured experimentally using cutting and
core samples. The coring process and experimentation are always expensive and time-consuming. In
this study, we evaluated the use of three machine learning (ML) models and two multiple regression
models to predict TOC based on well logs. The well logs involved gamma rays (GR), deep resistivity
(RT), density (DEN), acoustic waves (AC), and neutrons (CN). The ML models were developed based
on random forest (RF), extreme learning machine (ELM), and back propagation neural network
(BPNN). The source rock of Paleocene Yueguifeng Formation in Lishui–Jiaojiang Sag was taken as
a case study. The number of TOC measurements used for training and testing were 50 and 27. All
well logs and selected well logs (including AC, CN, and DEN) were used as inputs, respectively, for
comparison. The performance of each model has been evaluated using different factors, including
R2, MAE, MSE, and RMSE. The results suggest that using all well logs as input improved the TOC
prediction accuracy, and the error was reduced by more than 30%. The accuracy comparison of ML
and multiple regression models indicated the BPNN was the best, followed by RF and then multiple
regression. The worst performance was observed in the ELM models. Considering the running time,
the BPNN model has higher prediction accuracy but longer running time in small-sample regression
prediction. The RF model can run faster while ensuring a certain prediction accuracy. This study
confirmed the ability of ML models for estimating TOC using well logs data in the study area.

Keywords: machine learning; geochemical analysis; well log data; source rock; Lishui–Jiaojiang Sag

1. Introduction

Resource potential is a basic parameter for evaluating whether a hydrocarbon-bearing
block has commercial exploitation value [1]. Evaluation of resource potential requires
geochemical test data, which can directly reflect the hydrocarbon generation potential [2,3].
Total organic carbon (TOC) is an important parameter of geochemical data to evaluate
resource potential. To obtain accurate TOC, research mainly relies on direct measurement
of cutting and core samples. Due to the deep depth of the target development layer,
the formation pressure is high, indicating that the difficulty and cost of cutting and core
samples collection are generally high [4]. Meanwhile, direct measurement of core samples
in the laboratory is expensive. As a result, the difficulty of direct TOC measurement affects
exploration and development of oil and gas in deep layers.

Well logs can reflect the physical properties of the rocks in the target interval. Due
to the different physical properties, such as gamma radioactivity, resistivity, and density
between organic-rich rocks and other surrounding rocks, logging information can effec-
tively distinguish source rocks. TOC prediction methods based on logging parameters are
increasingly used. A variety of different TOC prediction methods and empirical formulas
have been established by many researchers through fitting actual measured TOC with
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logging information. Beers [5] first established the relationship between gamma logging
and TOC and calculated the TOC of the target interval. Schmoker [6] proposed a TOC
prediction technology using density logging, and the technology has been applied to TOC
prediction of shale until now. Mendelson and Toksoz [7] first used the multiple regression
method to establish the relationship between multiple logging parameters and TOC with
a correlation coefficient. Autric and Dumesnil [8] established a prediction relationship
between acoustic transit time and TOC and found that physical properties of source rocks
affected the prediction accuracy. The accuracy of empirical formulas to predict TOC cannot
be guaranteed when applied in other study areas according to their study. Passey et al. [9]
proposed the ∆logR technique, which takes into account the changes in resistivity and
porosity of source rocks before and after hydrocarbon generation and realizes effective
unification of geological processes and TOC for the first time. However, the ∆logR tech-
nique cannot be applied to TOC prediction of highly mature organic-rich rocks. Kamali
and Mirshady [10] extended the ∆logR technique by using the neuro-fuzzy method so
that the technique can also be applied to TOC prediction of gas-producing source rocks.
Passey et al. [11] extended the ∆logR technique to include the TOC of highly mature organic-
rich rocks in the prediction range. Hu et al. [12], Wang et al. [13], and Zhao et al. [14]
calculated TOC using superposition between resistivity and neutron porosity logs. How-
ever, the huge differences in the maturity of source rocks and the background value of TOC
content in different regions have a significant effect on the prediction results [13,14]. Since
no linear or non-linear relationship occurs between TOC and various logging parameters,
there are differences in petrol-physical properties in different study areas [15,16]. Many
empirical formulas have different prediction performances in different research areas.

ML is a specific branch of artificial intelligence and is a method of empowering ML
to do things that cannot be completed by direct programming [17]. ML is applied with
great success in various industries, such as engineering [18–23], medicine [24–29], econ-
omy [30–32], and environmental and geospatial modeling [33–35]. ML has been applied to
macroscopic features of target rocks, such as seismic facies classification [36–40] and logging
lithofacies classification [41–43]. ML has demonstrated outstanding performance in these
areas. An important aspect observed in recent research is that ML can learn and adapt to
the dynamics of reservoir conditions, such as formation and depositional environment [44],
while making use of geophysical data for lithology identification [45,46], porosity, and
permeability [47–53]. With the development of ML from shallow learning to deep learn-
ing, deep learning has also been successfully applied to image-based, geoscience-related
issues [54,55], such as seismic facies classification [40], lithology classification [56,57], min-
eral recognition [58], and carbonate rock recognition [59,60]. Current deep learning is a
data-hungry technology. There are many problems in the real world, including in the
medical field and oil and gas exploration, which are associated with an insufficient amount
of labeled data [61]. The performance of deep learning in the above fields is not good [61].
In recent years, ML has been applied to TOC prediction, and the prediction results are ideal.
TOC prediction mainly uses neural networks [16,44,62–65], extreme learning machine
(ELM) [62,66,67], support vector machines [4,68], and decision trees [15,69,70]. Different
machine learning algorithms have different operations and kernel functions. Therefore, the
results obtained from different algorithms are quite different [63,71,72]. As a result, the
choice of algorithm directly affects the accuracy of TOC prediction using ML.

The Lishui–Jiaojiang Sag is an important petroliferous basin in the East China Sea
Basin [73,74]. Previous studies have shown that the Lishui–Jiaojiang Sag has excellent
migration and storage capacity [75–78]. Basic research on source rocks is seriously lacking
because the cost of core sampling and laboratory analysis of TOC is generally high. The
ambiguity of the organic matter abundance in the source rocks severely restricts the oil
and gas exploration process in the Lishui Sag. TOC prediction based on well logs is very
important for Lishui–Jiaojiang Sag. In this paper, the source rock of Paleocene Yueguifeng
Formation in the Lishui–Jiaojiang Sag is taken as the main research object. Three ML algo-
rithms (random forest, extreme learning machine, and back propagation neural network)
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are used for predicting TOC (target variable). Two well combinations of logging parameters
are used as input. This study aims to: (1) establish the multiple regression and ML models
of TOC prediction; (2) compare the performance of ML and multiple regression models of
TOC prediction; (3) compare the performance of models of TOC prediction using different
logging parameters; and (4) determine the best TOC prediction method for the study area.

2. Geological Setting and Stratigraphy

The Lishui–Jiaojiang Sag is located in the western Taipei Depression (see Figure 1a),
which is located in the East China Sea Shelf Basin; the sag faces the Yushan Uplift to the
north, the Fuzhou Sag and the Minjiang Sag to the east, which is separated by the Yandang
Uplift, and the Minjiang Uplift to the west and south (see Figure 1b) [73,75]. Tectonically,
the sag lies at the convergence of the Eurasian, Pacific, and Philippine plates. NE-trending
segmental faults control the morphology of the basin and have the characteristics of
north–south blocks, east–west zoning, and an overall northeast–southwest distribution.
The Lishui–Jiaojiang Sag is divided into different structural units (such as the Lishui
Western Subsag, the Lingfeng Ridge, and the Lishui Eastern Subsag) by the Lingfeng low
bulge [78,79].
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(b) Structural units of the Lishui–Jiaojiang Sag (modified after [51]).

2.1. Tectonic

The Lishui–Jiaojiang Sag is a Cenozoic single-fault sag superimposed on a residual
Mesozoic basin [78,80]. From the end of the late Cretaceous to the early Tertiary, the
Lishui–Jiaojiang Sag experienced four tectonic evolution phases, including a rift stage (late
Cretaceous to Paleocene), a post-rift depression stage (early Eocene to late Eocene), an
uplift stage (late Eocene to late Miocene), and a regional subsidence stage (late Miocene to
Quaternary), which were affected by the changes in the subduction direction of the western
Pacific plate and rifting [75,76].
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2.2. Stratigraphy

The stratigraphic column of the Lishui–Jiaojiang Sag is divided into late Cretaceous,
Paleogene, Neogene, and Quaternary strata from bottom to top. Oil and gas in Lishui
Sag have been mainly discovered in Paleocene strata (see Figure 2) [75,78]. The main
source rock is the lower Paleocene Yueguifeng Formation (E1y). The main object of this
study is the lower Paleocene Yueguifeng (E1y) Formation [73,80]. The lithology of the
Paleocene Yueguifeng Formation (E1y) is dominated by gray and dark gray mudstone and
silty mudstone interspersed with thin layers of light gray calcium-bearing siltstone, fine
sandstone, and a small number of thin layers of fine calcareous sandstone. The Lauguifeng
Formation includes two sets of coarse–fine–coarse composite sedimentary cycles. The
descending cycle is dominated by dark brown and dark brown mudstone mixed with light
gray and off-white fine-medium-grained sandstone. The upper cycle consists of light gray,
gray, dark gray, dark gray mudstone, and light gray fine-medium-grained sandstone nearly
equal-thickness interbedded, sandwiched by thin layers of light gray, gray siltstone, and
two layers of black coal. The overall deposition thickness is 125–400 m.

Energies 2022, 15, x FOR PEER REVIEW 5 of 26 
 

 

 
Figure 2. Stratigraphic units of the Paleocene in the Lishui Sag (modified after [51]). 

3. Materials & Methods 
In order to test the accuracy of the log multivariate fitting model and the ML models 

in TOC prediction, only 77 source rock samples were collected in the Lishui–Jiaojiang Sag. 
These 77 samples were derived from three wells (well A, well B, and well C) in different 
areas of the Lishui–Jiaojiang Sag. All samples were derived from the lower Paleocene 
Yueguifeng Formation. 

  

Figure 2. Stratigraphic units of the Paleocene in the Lishui Sag (modified after [51]).



Energies 2022, 15, 9480 5 of 25

3. Materials & Methods

In order to test the accuracy of the log multivariate fitting model and the ML models
in TOC prediction, only 77 source rock samples were collected in the Lishui–Jiaojiang Sag.
These 77 samples were derived from three wells (well A, well B, and well C) in different
areas of the Lishui–Jiaojiang Sag. All samples were derived from the lower Paleocene
Yueguifeng Formation.

3.1. Geochemical Analysis

Each source rock sample was crushed to 80 meshes and acidified with dilute hydrochlo-
ric acid (HCl) to remove inorganic carbon. The TOC measurement was conducted by using
the C/S analyzer CS-580A. The pretreatment of samples for pyrolysis analysis is the same
as the TOC analysis. Rock-Eval pyrolysis analysis was conducted using a Rock-Eval-II.
Before the Rock-Eval pyrolysis analysis, the Rock-Eval-II was calibrated with standard
samples from the geochemical laboratory; samples were put into the Rock-Eval analyzer
for testing. The measured parameters include TOC, S1, S2, and maximum pyrolysis yield
temperature (Tmax). Hydrogen index (HI) was calculated by TOC and S2.

3.2. Log Series Selection and Well Log Models

ML is the process of inferring correlations by continuously learning from input data,
which can influence the accuracy of the model. In general, the more feature parameters
are supplied, the more thoroughly the objectives are characterized and more accurately
the predictions are obtained. If the selected feature parameters are weakly correlated with
the target, the system may learn the wrong functional relationship. The prediction may
have a larger deviation. Therefore, before performing ML prediction model, the feature
parameters should be screened to ensure that these parameters can more accurately describe
the characteristics of the target.

Numerous studies have been conducted to clarify the connection between logging
settings and TOC. Studies have shown that organic matter has varying degrees of linear
correlation with gamma rays (GR), deep resistivity (RT), density (DEN), acoustic waves
(AC), and neutrons (CN) [5,6,8,9].

GR logging could record gamma radioactivity during rock formations. The higher
the reflectivity of the rock formation, the stronger the GR logging response [5]. Strongly
radioactive organic-rich mudstone is abundant in radioactive thorium, potassium, and
uranium elements, meaning that the organic-rich mudstones generally have high GR values.

Density logs could reflect the volume density of the formation based on the assumed
formation density and drilling fluid density [6,8]. The density of sand and mudstone is
generally 2~2.7 g/cm3, and the density of organic-rich stratum is usually lower than that
of surrounding rocks. The density of solid organic matter is close to that of water (around
1.0 g/cm3). Organic-rich stratum will produce organic matter pores after hydrocarbon
generation and expulsion, and the density will be further reduced. Therefore, density logs
can be used to indirectly estimate TOC concentrations.

Neutron logs may identify the degree of scattering of exposed neutrons in the forma-
tion, which, afterwards, reflects the formation’s porosity. Organic matter is directly related
to the hydrogen atoms and porosity of the rock [14]. Therefore, when the TOC of stratum
increases, the values of CN increase. AC logs could measure the response of the rock mass
near the borehole to the artificial elastic wave field to achieve the purpose of detecting the
properties of the target formation (porosity, longitudinal and transverse wave velocity, etc.).

AC logging is mainly a logging tool for determining lithology, porosity, and fluid
type [10,12]. Previous studies have shown that the acoustic transmission time of organic-
rich source rocks is significantly shorter. Resistivity logs record the fluid resistivity in the
formation and then calculate the true resistivity of the formation [9,11]. The response of
TOC is not sensitive to resistivity logs. However, after the mature source rocks generation
and expelling hydrocarbons, the resistivity will increase significantly due to the presence
of hydrocarbon compounds. Therefore, the TOC content of the source rock section can
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be indirectly reflected according to the change in the relative resistivity of the source
rock section.

Different study areas have different geological conditions, and the relationship be-
tween logging parameters and TOC is also different. Figure 3 shows the visual relationship
between the logging parameters and the measured TOC. It shows that, as AC, CN, GE,
and RT fluctuate positively, TOC also fluctuates in a corresponding positive direction.
When DEN fluctuates negatively, TOC also fluctuates positively. This is consistent with the
physical principles of logging. However, the visualization law cannot show a quantitative
correlation between the individual logging parameters and the TOC. A simple linear re-
gression technique was used to determine the sensitivity of TOC to log data. During this
process, a key metric (correction factor) labeled R2 was used to investigate the effect of
different logs on the true TOC value. R2 represents the proportion of population variance
explained by the model.
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Figure 3 shows that the TOC of the Yueguifeng Formation source rock has a better
response in DT and CN logging. With the increase in TOC, the logging response increases,
showing an obvious positive correlation, with R2 of 0.45 and 0.60, respectively. DEN log-
ging was negatively correlated with TOC to a certain extent, with an R2 of 0.24. However,
there was no obvious correlation between TOC and GR and RT. In addition, the Pearson
correlation coefficient was used to analyze the sensitivity of TOC to logging data. Table 1
shows that the measured TOC has a good correlation with AC, CN, and DEN, and the
R values of the measured TOC value and AC, CN, and DEN are 0.67, 0.77, and −0.49,
respectively. There was no obvious correlation between the measured TOC and GR and RT.
The linear regression analysis results are basically consistent with the Pearson correlation
coefficient analysis results. The sensitivity of the corresponding log and the comprehen-
siveness of the feature description will affect the performance of the model. Therefore,
two feature parameter sets, HXC (including all well logs) and HX (including AC, CN, and
DEN), were selected. HXC has high comprehensiveness feature description of TOC. HX
and TOC have a high correlation. The accuracy of prediction results with different feature
parameter sets has been compared to obtain the optimal combination as input.

Table 1. Data of Pearson’s correlation coefficients.

R AC CN DEN GR RT TOC

AC 1 0.85133 −0.68255 −0.09409 −0.16529 0.67236
CN 1 −0.61136 −0.06937 −0.08279 0.77855

DEN 1 0.04474 0.1027 −0.49961
GR 1 0.42611 0.00713
RT 1 0.1442

TOC 1

It has been pointed out that, if there are two or more uncorrelated independent
variables that have a good correlation with the dependent variable, the results of multiple
regression are usually better than the results of university analysis, and the multiple
regression equation can be based on the correlation of each dataset [7]. Matrix calculation
is obtained. The supposed multivariate prediction model is as follows:

TOC =
A×AC + B×CN + C×GR + D× RT + E

DEN
+ F (1)

A, B, C, D, E, F, are all constants. Entering the combination of characteristic parameters
and TOC into ORIGIN and using regression statistics to obtain two multivariate fitting
equations as follows:

TOC =
0.004×AC + 15.703×CN− 4.13113

DEN
+ 1.7546 (2)

TOC =
0.03826×AC + 12.48936×CNL + 0.00327×GR + 0.0473× LLD− 7.18502

DEN
+ 1.85181 (3)

3.3. ML Methods

In this study, three ML algorithms were used to predict the TOC of source rocks in
the Lishui–Jiaojiang Sag, and 77 log parameter combinations and corresponding measured
TOC values were used as input dataset and test set to build and test the prediction model.
Three ML algorithms include extreme learning machine (ELM), back propagation neural
network (BPNN), random forest (RF).

3.3.1. Method of BPNN

BPNN is the most basic neural network, and its output results are propagated forward,
and the error is propagated by back propagation [81]. BPNN models can have one or more
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hidden layers [82,83]. Taking two hidden layers as an example, the forward propagation
operation process is roughly as follows: the input value is xn = i1 = O1, and the output
value is y. After linear combination with the weight matrix in the middle, the input i2 of
the hidden layer 1 is obtained, and, in the hidden layer 1, the input i2 is activated with the
activation function to obtain the output O2, and then it can be known that i2 = W1·O1. Let
f(x) is the activation function, O2 = f(i2). Then, similarly, the weight from hidden layer 1 to
2 is W2, the input of hidden layer 2 is i3 = W2·O2, and the output is O3 = f(i3). The output
y = W3·O3 obtained from the hidden layer 2 to the output layer can also be written as
y = f(w3f(w2f(w1o1))) [10,81,83–85]. At this time, the loss function will be used to further
process y. Generally, our loss function takes O4 = 1/2(L−y)2, where L is the label of the
training set [86]. If the desired output cannot be obtained in the output layer, then turn
to back propagation. The error signal is returned along the original connection path, and
the weight of each neuron is modified to minimize the error signal [10,44,84]. The weight
update of each neuron can be calculated by the formula shown in Equation (5).

∆W1 = (y− L)
((

WT
2

[
WT

2 · f′(i3)
])
· f′(i2)

)
OT

1 (4)

∆W2 = (y− L) · f′(i4) ·WT
3 · f′(i3) ·OT

2 (5)

∆W3 = (y− L) · f′(i4) ·OT
3 (6)

Finally, the update of the weight w can be completed by bringing the sample into
the continuous forward. BPNN is widely used in pattern recognition, classification, data
mining, and other disciplines [10,26,87,88]. The study found that BPNN has excellent
performance in nonlinear mapping, and the flexible network structure ensures the accuracy
of model prediction [86,89]. However, BPNN has a slow learning speed and is prone to fall
into local minima [62,85].

3.3.2. Method of ELM

Extreme learning machine (ELM) was first proposed by Huang Guangbin in 2004 [90].
Extreme learning machine is to improve the back propagation algorithm (backward prop-
agation, BP) to improve learning efficiency and simplify the setting of learning parame-
ters [91,92]. The back propagation algorithm uses the gradient algorithm (back propagation).
ELM adopts random selection of input layer weights and hidden layer deviations, and out-
put layer (see Figure 4) weights are calculated and analyzed according to Moore–Penrose
generalized inverse matrix theory by minimizing the loss function of the training error
term and the output layer weight norm [93] as follows:

y =
L

∑
i=1

βiG(aix + bi) (7)

X is the input data, β is the output weight, G(x) is the feature map or activation
function (activation function) [91,92,94]. The main operation steps of ELM are divided into
three steps: (1) randomly assign node parameters; (2) calculate the output matrix of the
hidden layer; (3) solve for output weights. The core of the ELM algorithm is to use the least
squares method to solve the output weights to minimize the error function [90,92,95]. The
weight value can be obtained by the following system of equations.

min
β
‖Hβ− T‖ (8)

By solving the least squares problem, the hidden layers’ output weights are imple-
mented as follows:

∧
β =

(
HTT

)−1
HTT (9)
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Figure 4. Schematic diagram of ELM.

The model can be established by using the weight value and the hidden layer deviation
and make a prediction of the target value. The study found that ELM can make predictions
on small sample data with fewer feature parameters. It can maintain high prediction
accuracy set generalization [65].

3.3.3. Method of RF

RF is an ensemble learning algorithm [96,97]. The understanding of random forest
can be divided into “random” and “forest”: “random” refers to random sampling of data
and random sampling of features, mainly reflected in Bagging; its full name is Bootstrap
aggregation [96,98]. It is a kind of sampling method for replacement [99]. The “forest”
refers to the use of multiple freely growing CART decision trees to form a “forest” [100]. The
core of the RF is the regression tree (ntree: the default value is 500 trees) and the number
of branches (mtry: the default value is 1/3 of the total number of features) [101]. The
principle of RF operation (see Figure 5) is (1) based on the Bagging ensemble framework,
sampling n training samples randomly and with replacement each time from the original
samples, performing T rounds of sampling to obtain T training sets, (2) using the T training
sets, train T CART decision trees independently and combine T CART decision trees into
a strong learner. The core of a single CART decision tree lies in the recursive growth
process. Assuming the input dataset Xc, according to the segmentation method of the p-th
eigenvalue V as Sp, v, the input formula can be expressed as:

Sp,v:XL =
{

xp>V|x ∈ Xc
}

; XR =
{

xp ≤ V|x ∈ Xc
}

(10)

where XL and XR are two subsets of the dichotomy [73,74]. During the learning process,
the CART decision tree obtains a nested IFELESE logic chain through stepwise recursive
bisection segmentation [73,75]. This logical chain is stored and displayed using a binary
tree structure [78]. Then, for the prediction problem, the prediction variance is used to
optimize the segmentation method [72,73,79]. The prediction variance (variance) can be
written as:

vari(X) =
∑
ÎX
(y(x)− E(y|x ∈ X ))2

‖X‖ (11)
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After fully recursive optimal growth, the entire input space is divided into L mutually
exclusive subspaces. Inputting the sample x’ into the tree structure, its predicted value can
be written as:

E
(
y
∣∣x = x′

)
=

n
∑

i=1
yi × I(xi ∈ XL)

n
∑

i=1
I(xi ∈ XL)

(12)

(3) In the end, Bagging will assemble all T CART decision tree prediction results in an
equal weight manner to establish an integrated prediction result [96,102,103]. The resulting
function can be written as:

H(x) =
1
T

T

∑
T=1

Em(x) (13)

To be consistent with the logging prediction model, two kinds of characteristic pa-
rameter combinations, HXC and HX, were selected. The data combination of 50 ran-
domly selected well logging data and measured geochemical data were used as a training
set for the ML algorithm to build a prediction model. The remaining 27 data combina-
tions were used as the test set to test the performance of the three prediction models.
The ML algorithm modeling and TOC prediction in this study were conducted using
MATLAB2019 software.

3.4. Evaluation Criteria

In this study, R2, MAE, MSE, and RMSE have been selected to evaluate the performance
of prediction models. The mean absolute error (MAE) reflects the average of the absolute
errors between the predicted and observed values [69]. Mean squared error (MSE) is the
most commonly used regression loss function and is calculated by summing the squares
of the distances between the predicted and true values [15]. The root mean square error
(RMSE) represents the sample standard deviation of the difference between the predicted
and observed values (called residuals) [4]. The RMSE is used to describe the degree of
dispersion of the samples.
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4. Results and Discussion
4.1. TOC and Source Rock Study from Geochemical Analyses

The TOC concentrations of the study area showed high values, ranging from 0.2%
to 3.34%, with an average value of 1.6% (Table 2). There are some differences among
the wells. The TOC concentration of well B (Jiaojiang Depression) is the highest, ranging
from 1.88% to 3.34%, with an average of 2.63%. The TOC concentration in well C (the
Lishui Eastern Subsag) is lower, ranging from 0.2% to 2.89%, with an average of 1.57%.
The TOC of well A (the Lishui Western Subsag) is the lowest, ranging from 0.35% to
1.58%, with an average of 0.74%. The TOC of well A (the Lishui Western Subsag) is the
lowest, ranging from 0.35% to 1.58%, with an average of 0.74%. The hydrogen index of
Yueguifeng showed high values, ranging from 7.14 mg HC/g TOC to 390.64 mg HC/g TOC,
with an average of 100.94 mg HC/g TOC. The HI of well B (Jiaojiang Depression) is the
highest, ranging from 158.51 mg HC/g TOC to 388.68 mg HC/g TOC, with an average of
323.67 mg HC/g TOC. The HI of well A (the Lishui Western Subsag) is lower, ranging from
34 to 247.5 mg HC/g TOC, with an average of 102.82 mg HC/g TOC. The HI of well C (the
Lishui Eastern Subsag) is the lowest, ranging from 17.14 to 100 mg HC/g TOC, with an
average of 56.01 mg HC/g TOC. The total distribution of hydrocarbon generation potential
(S1 + S2) in Yueguifeng Formation is ranging from 0.05 mg HC/g TOC to 12.51 mg HC/g
TOC. The S1 + S2 of well A (the Lishui Western Subsag) is low, ranging from 3.2 mg HC/g
TOC to 12.51 mg HC/g TOC, with an average of 8.96 mg HC/g TOC. The S1 + S2 of well B
(Jiaojiang Sag) is the highest, ranging from mg HC/g TOC to 3.34 mg HC/g TOC, with an
average of 8.96 mg HC/g TOC. The S1 + S2 of well C (the Lishui Eastern Subsag) is next,
ranging from 0.05 mg HC/g TOC to 3.98 mg HC/g TOC, with an average of 1.45 mg HC/g
TOC (see Table 2).

Table 2. Results from geochemical Rock-Eval/TOC analysis with calculated parameters from
Yueguifeng Formation.

Well Depth (m) TOC
S1 S2 Pg HI Tmax

(mg/g TOC) (mg/g TOC) S1 + S2 S2/TOC ◦C
(mg/g TOC)

A

2701 0.55 0.12 0.88 1 159.42 438
2707 1.09 0.22 1.19 1.41 109.17 444
2720 1.58 0.27 2.11 2.38 133.54 434
2721 0.4 0.12 0.99 1.11 247.5 442

2916.6 0.99 0.02 0.48 0.5 48 454
2917 0.88 0.02 0.3 0.32 34 452
2940 0.73 0.89 0.77 1.66 105.48 430
2960 0.7 0.23 0.96 1.19 137.14 428
3079 0.35 0.02 0.18 0.2 34 451
3092 0.47 0.02 0.31 0.33 65.96 451
3099 0.37 0.02 0.21 0.23 56.76 453

B

2356.5 3.34 0.13 11.72 11.85 350.9 438
2362.5 2.99 0.33 11.68 12.01 390.64 441
2395.5 1.88 0.22 2.98 3.2 158.51 438
2401.5 2.42 0.23 7.21 7.44 297.93 440
2422.5 2.59 0.42 8.57 8.99 330.89 443
2425.5 2.12 0.37 7.21 7.58 340.09 440
2434.5 3.18 0.15 12.36 12.51 388.68 440
2488.5 2.88 0.14 7.48 7.62 259.72 440
2495 2.42 0.22 9.2 9.42 380.17 438

2506.5 2.65 0.34 9.12 9.46 344.15 441
2518.5 2.51 0.51 8 8.51 318.73 440
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Table 2. Cont.

Well Depth (m) TOC
S1 S2 Pg HI Tmax

(mg/g TOC) (mg/g TOC) S1 + S2 S2/TOC ◦C
(mg/g TOC)

C

3576 0.97 0.21 0.45 0.66 46.39 451
3577.5 1.61 0.55 1.28 1.83 79.5 458
3586.5 1.24 0.33 0.66 0.99 53.23 452
3595.5 1.71 0.36 0.98 1.34 57.31 461
3604.5 1.86 0.21 1.16 1.37 62.37 458
3607.5 1.87 0.38 1.24 1.62 66.31 459
3630.5 1.48 0.17 0.61 0.78 41.22 460
3640 0.68 0.02 0.19 0.21 27.94 470

3640.05 0.7 0.01 0.12 0.13 17.14 479
3640.8 1.29 0.13 0.83 0.96 64.34 466
3641.6 2.4 1.08 1.98 3.06 82.5 470
3641.7 0.83 0.05 0.21 0.26 25.3 478
3642.7 2.17 0.11 1.08 1.19 49.77 466
3643 0.53 0.03 0.21 0.24 39.55 472

3643.6 0.2 0.01 0.04 0.05 20 471
3643.7 0.64 0.03 0.16 0.19 25 476

3643.79 0.58 0.03 0.18 0.21 31.03 452
3645.8 1.14 0.17 0.6 0.77 52.63 465
3646 1.11 0.1 0.62 0.72 55.86 469

3646.4 1.11 0.11 0.6 0.71 54.05 466
3646.95 1.69 0.14 0.55 0.69 32.54 463

3647 1.04 0.13 0.6 0.73 57.69 462
3647.09 1.54 0.38 0.83 1.21 53.9 461
3647.2 0.93 0.1 0.36 0.46 38.71 471

3647.25 1.74 0.37 0.71 1.08 40.8 470
3647.42 1.49 0.12 0.6 0.72 40.27 468
3647.5 1.24 0.1 0.62 0.72 50 462
3647.5 1.23 0.11 0.74 0.85 60.16 463

3647.81 1.57 0.16 0.67 0.83 42.68 465
3648.16 0.21 0.03 0.21 0.24 100 455
3688.5 1.84 0.29 1.54 1.83 83.7 448
3702 0.88 0.16 0.32 0.48 36.36 458

3712.5 1.16 0.15 0.6 0.75 51.72 471
3724.5 0.57 0.07 0.26 0.33 45.61 461
3739.5 1.91 0.88 1.47 2.35 76.96 455
3745 1.49 0.52 1.21 1.73 81.21 456

3751.5 2.26 1.27 1.87 3.14 82.74 457
3755 2.77 1.32 2.01 3.33 72.56 457

3769.5 1.99 1.3 1.3 2.6 65.33 455
3772.5 2.49 1.38 2.43 3.81 97.59 454
3775.5 2.21 2.05 1.93 3.98 87.33 453
3784.5 2.77 1.08 1.68 2.76 60.65 446
3793.5 2.06 1.25 1.25 2.5 60.68 457
3793.5 2.64 1.03 1.61 2.64 60.98 451
3795 1.93 0.99 1.22 2.21 63.21 453
3795 2.18 1.01 1.25 2.26 57.34 455

3796.5 1.9 0.94 1.15 2.09 60.53 459
3796.5 2.55 1.21 2.4 3.61 94.12 458
3813 1.4 0.2 0.68 0.88 48.57 457
3852 2.73 0.89 1.61 2.5 58.97 464
3883 2.86 1.27 1.83 3.1 63.99 447
3888 2.89 1.52 2.15 3.67 74.39 456
3903 1.47 0.13 0.58 0.71 39.46 455

3910.5 1.48 0.37 0.61 0.98 41.22 453
3913.5 0.91 0.28 0.43 0.71 47.25 455

S1: volatile hydrocarbon (HC) content, mg HC/g rock. S2: remaining HC generative potential, mg HC/g rock.
HI: hydrogen index = S2 × 100/TOC, mg HC/g TOC. Pg: potential for hydrocarbon generation = S1 + S2 (mg/g).
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The type of organic matter has been classified according to the van Krevelen plot of
whole rock hydrogen index (S2/TOC× 100) and TMAX shown in Figure 6. The intersection
diagram shows that the source rock kerogen of the Yueguifeng Formation is dominated by
type II, with a small amount of type I and type III kerogen. Type II kerogen is dominated
by type II2, and type II2 kerogen accounts for only about 15%. The type of kerogen in well
A is dominated by type II2, with a small amount of type I and type III kerogen. The type
of kerogen in well B is dominated by type II1, with a small amount of type II2 kerogen.
The kerogen type of well C is dominated by type II2, with a small amount of type I and
type III kerogen. At the same time, the high degree of thermal evolution of the source
rock in well C results in a low hydrogen index. The distribution of each well reflects the
heterogeneity of kerogen. Based on the above geochemical evaluation, the source rocks of
the Yueguifeng Formation have objective hydrocarbon generation potential. The source
rocks mainly generate oil with a small amount of gas.
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4.2. TOC Quantification from Multiple Regression Models

After using two logging multiple regression models to predict the TOC of the Yueguifeng
Formation source rock in the Lishui–Jiaojiang Sag (see Table 3), R2, MAE, MSE, and RMSE
have been calculated to evaluate the performance of the two models (see Table 4). The
calculation results show that the R2 of the multiple regression model using the HXC is 0.63
(see Figure 7). The values of MAE, MSE, and RMSE are 0.39, 0.24, and 0.49, respectively.
The R2 of the multiple regression model using the HX is 0.60. The values of MAE, MSE,
and RMSE are 0.41, 0.26, and 0.51, respectively. The R2 of the multiple regression model
using the HX is 0.60 (see Figure 7). The values of MAE, MSE, and RMSE are 0.41, 0.26, and
0.51, respectively. The R2 of the multiple regression model using the HXC is higher than
the R2 of the multiple regression model using the HX. Error values calculated by MAE,
MSE, and RMSE also reflect the lower prediction error of the multiple regression model
using the HXC. The analysis shows that the accuracy of the multiple regression model
using the HXC is significantly higher than that of the multiple regression model using
the HX, but the performance is limited, which is also consistent with previous analysis.
The relationship between TOC and various logging parameters is not a simple linear or
nonlinear relationship, and the internal functional relationship is complex. Simple linear
correlation analysis does not confirm whether low correlation parameters are helpful for
establishment of predictive models.



Energies 2022, 15, 9480 14 of 25

Table 3. Results of TOC prediction from multiple regression.

Well Depth (m)
TOC Prediction

% Multiple Regression
HXC HX

A

2701 0.55 0.77 0.55
2707 1.09 0.92 0.68
2720 1.58 0.89 0.59
2721 0.4 0.93 0.51

2916.6 0.99 0.96 0.82
2917 0.88 0.91 0.81
2940 0.73 0.61 0.6
2960 0.7 0.8 0.71
3079 0.35 0.91 0.9
3092 0.47 0.8 0.81
3099 0.37 1.3 1.36

B

2356.5 3.34 3.16 3.11
2362.5 2.99 2.91 2.96
2395.5 1.88 2.44 2.62
2401.5 2.42 1.59 1.68
2422.5 2.59 2.61 2.79
2425.5 2.12 2.5 2.62
2434.5 3.18 2.27 2.52
2488.5 2.88 2.4 2.84
2495 2.42 1.87 2.16

2506.5 2.65 1.91 2.14
2518.5 2.51 1.97 2.15

C

3576 0.97 1.35 1.39
3577.5 1.61 1.35 1.41
3586.5 1.24 1.43 1.44
3595.5 1.71 2.19 2.37
3604.5 1.86 1.37 1.54
3607.5 1.87 1.84 2.01
3630.5 1.48 1.16 1.25
3640 0.68 1.21 1.01

3640.05 0.7 1.29 1.09
3640.8 1.29 1.24 1.06
3641.6 2.4 0.94 1.09
3641.7 0.83 0.99 1.1
3642.7 2.17 1.29 1.48
3643 0.53 1.17 1.34

3643.6 0.2 1.25 1.29
3643.7 0.64 1.26 1.27
3643.79 0.58 1.26 1.27
3645.8 1.14 1.43 1.5
3646 1.11 1.16 1.18

3646.4 1.11 1.05 1.11
3646.95 1.69 1.43 1.54

3647 1.04 1.43 1.54
3647.09 1.54 1.35 1.47
3647.2 0.93 1.24 1.34
3647.25 1.74 1.24 1.34
3647.42 1.49 1.18 1.27
3647.5 1.24 1.17 1.26
3647.5 1.23 1.17 1.26
3647.81 1.57 1.21 1.32
3648.16 0.21 1.25 1.35
3688.5 1.84 1.41 1.59
3702 0.88 1.5 1.71
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Table 3. Cont.

Well Depth (m)
TOC Prediction

% Multiple Regression
HXC HX

C

3712.5 1.16 0.89 0.87
3724.5 0.57 1.31 1.33
3739.5 1.91 2.24 2.18
3745 1.49 2.16 2.15

3751.5 2.26 2.37 2.2
3755 2.77 2.7 2.1

3769.5 1.99 2.1 1.91
3772.5 2.49 2.13 1.8
3775.5 2.21 2.06 1.69
3784.5 2.77 2.21 2.06
3793.5 2.06 1.96 1.8
3793.5 2.64 2.02 1.89
3795 1.93 2.35 2.24
3795 2.18 2.2 2.06

3796.5 1.9 2.04 1.87
3796.5 2.55 2.06 1.89
3813 1.4 1.46 1.27
3852 2.73 3.24 3.1
3883 2.86 2.88 2.14
3888 2.89 3.55 2.25
3903 1.47 1.97 2.19

3910.5 1.48 1.19 0.91
3913.5 0.91 1.27 1.29
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Table 4. Mean error values of different methods.

Method RF BPNN ELM Multiple Regression
Parameter HXC HX HXC HX HXC HX HXC HX HXC HX HXC HX HXC HX

Type Training Tested Training Tested Training Tested Tested

R2 0.97 0.97 0.65 0.49 0.91 0.84 0.70 0.53 0.88 0.82 0.66 0.57 0.63 0.60
MAE 0.03 0.03 0.39 0.56 0.22 0.26 0.37 0.47 0.23 0.28 0.42 0.45 0.39 0.41
MSE 0.02 0.02 0.26 0.45 0.07 0.26 0.23 0.43 0.10 0.12 0.27 0.33 0.24 0.26

RMSE 0.15 0.15 0.51 0.67 0.26 0.51 0.48 0.66 0.31 0.35 0.52 0.57 0.49 0.51
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4.3. TOC Quantification Using ML Methods

After using three ML test models to predict the TOC of the Yueguifeng Formation
source rock in the Lishui–Jiaojiang Sag (see Table 5). R2, MAE, MSE, and RMSE were
calculated to evaluate the performance of the models(see Table 4). In terms of the RF model
using the HXC, the R2 of the training result is 0.97 (Figure 8). The MAE, MSE, and RMSE of
the training results are 0.03, 0.02, and 0.15 (Table 4), respectively. The R2 of the test results
is 0.65 (Figure 8). The MAE, MSE, and RMSE of the test results are 0.39, 0.26, and 0.61
(Table 5), respectively. In terms of the RF model using the HX (Figure 9), the R2 of the
training result is 0.97. The MAE, MSE, and RMSE of the training results are 0.03, 0.02, and
0.15 (Table 5), respectively. The R2 of the test results is 0.49 (Figure 9). The MAE, MSE, and
RMSE of the test results are 0.56, 0.45, and 0.67 (Table 5), respectively.
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Table 5. Results of TOC prediction from ML.

Core
Data

Training Dataset Prediction
Core
Data

Tested Dataset Prediction
RF BPNN ELM RF BPNN ELM

HXC HX HXC HX HXC HX HXC HX HXC HX HXC HX

0.99 0.99 0.99 0.71 1.11 0.75 0.82 1.40 0.70 0.70 1.30 1.22 1.02 1.07
0.88 0.88 0.88 0.75 0.92 0.74 0.78 2.73 2.77 1.88 2.72 2.77 2.73 2.81
0.47 0.47 0.47 0.65 0.92 0.66 0.42 2.86 2.77 2.77 2.84 2.82 2.73 2.42
3.34 3.34 3.34 3.24 3.22 3.26 2.79 2.89 2.77 2.65 3.32 2.86 3.02 2.56
2.99 2.99 2.99 2.83 2.96 3.01 2.90 1.47 1.91 1.87 1.27 2.94 2.12 2.53
1.88 1.88 1.88 1.64 2.50 1.90 2.68 1.48 1.61 1.16 0.93 1.00 1.02 0.92
2.59 2.59 2.59 2.76 3.07 2.46 3.01 0.91 0.57 1.84 0.52 1.48 1.05 1.13
3.18 3.18 3.18 3.12 3.13 2.73 2.84 0.73 0.47 0.47 0.41 0.72 0.36 0.44
2.88 2.88 2.88 3.16 2.87 2.80 3.15 0.55 0.47 0.47 0.60 0.75 0.22 0.44
2.65 2.65 2.65 2.30 2.72 2.29 2.44 1.09 0.47 0.47 0.81 0.79 0.58 0.52
2.51 2.51 2.51 2.24 2.58 2.03 2.36 1.58 0.47 0.47 0.70 0.71 0.36 0.44
0.97 0.97 0.97 0.80 1.11 1.05 1.34 0.35 0.99 0.99 0.55 1.47 1.01 0.96
1.61 1.61 1.61 1.51 1.51 1.08 1.39 0.37 0.97 0.97 0.70 1.48 0.90 1.30
1.24 1.24 1.24 1.34 1.64 1.61 1.47 2.12 2.59 2.59 3.03 3.04 2.77 2.92
1.86 1.86 1.86 1.36 1.41 1.43 1.44 2.42 2.65 1.24 2.05 2.50 2.29 2.35
1.87 1.87 1.87 1.53 2.42 1.89 2.33 2.42 2.59 3.18 1.78 2.11 1.62 1.99
0.68 0.68 0.68 0.55 0.68 0.59 0.81 1.71 2.51 3.18 2.72 2.97 2.30 2.68
0.7 0.7 0.70 0.76 1.20 0.88 0.89 1.48 0.83 0.88 0.88 1.27 1.49 1.22
2.4 2.4 2.40 2.23 1.74 1.51 2.33 1.29 1.23 1.11 0.86 1.10 0.80 0.95

0.83 0.83 0.83 0.98 1.40 1.36 1.05 0.40 0.70 0.47 0.50 0.76 0.08 0.36
2.17 2.17 2.17 2.07 2.31 1.33 1.39 0.70 0.47 0.47 0.61 0.69 0.21 0.54
0.531 0.531 0.53 0.87 0.53 0.53 0.53 1.49 1.91 2.51 1.99 2.58 2.18 2.36
0.2 0.2 0.20 0.21 0.20 0.21 0.22 2.26 1.91 1.91 2.17 2.82 2.44 2.45

0.64 0.58 0.64 0.63 0.63 0.62 1.18 1.11 1.11 0.20 0.95 1.31 0.80 1.10
0.58 0.58 0.64 0.53 0.53 0.56 1.18 1.54 1.04 2.17 1.26 1.55 1.32 1.40
1.14 1.14 1.14 1.26 1.77 1.30 1.51 1.24 1.23 1.23 1.11 1.27 1.21 1.16
1.11 1.11 1.11 0.99 1.12 0.89 0.99 0.21 1.49 0.53 1.23 1.36 1.28 1.27
1.69 1.04 1.04 1.30 1.67 1.41 1.50
1.04 1.04 1.04 1.30 1.67 1.01 1.50
0.93 0.93 0.93 1.22 1.39 1.24 0.91
1.74 0.93 0.93 1.22 1.39 1.24 1.25
1.49 1.49 1.49 1.15 1.29 1.21 1.17
1.23 1.23 1.23 1.11 1.27 1.21 1.16
1.57 1.57 1.57 1.13 1.34 1.30 1.24
1.84 1.84 1.84 1.39 1.31 1.45 1.47
0.88 0.88 0.88 0.96 1.40 0.88 0.90
1.16 1.16 1.16 0.69 1.36 0.89 0.85
0.57 0.57 0.57 0.77 1.24 0.56 0.58
1.91 1.91 1.91 1.81 1.95 1.81 1.90
2.77 2.77 2.77 2.83 2.77 2.62 2.33
1.99 1.99 1.99 2.09 2.32 1.99 2.03
2.49 2.49 2.49 2.15 2.17 2.23 1.87
2.21 2.21 2.21 2.08 2.05 2.04 1.74
2.77 2.77 2.77 2.13 2.32 2.39 2.21
2.06 2.06 2.06 1.91 2.29 2.00 1.90
2.64 2.64 2.64 2.36 2.29 2.04 2.46
1.93 1.93 1.93 2.16 1.98 2.02 2.41
2.18 2.18 2.18 2.14 2.32 2.49 2.22
1.9 1.9 1.90 2.05 2.36 2.18 1.99

2.55 2.55 2.55 2.09 2.44 2.25 2.03
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In terms of the BP model using the HXC, the R2 of the training result is 0.91 (Figure 8).
The MAE, MSE, and RMSE of the training results are 0.22, 0.07, and 0.26 (Table 5), respec-
tively. The R2 of the test results is 0.70 (Figure 8). The MAE, MSE, and RMSE of the test
results are 0.37, 0.24, and 0.48 (Table 5), respectively. In terms of BP model using the HX, the
R2 of the training result is 0.84 (Figure 9). The MAE, MSE, and RMSE of the training results
are 0.26, 0.26, and 0.51 (Table 5), respectively. The R2 of the test results is 0.53 (Figure 9).
The MAE, MSE, and RMSE of the test results are 0.47, 0.43, and 0.66 (Table 5), respectively.

In terms of the ELM model using the HXC, the R2 of the training result is 0.88
(Figure 8). The MAE, MSE, and RMSE of the training results are 0.23, 0.10, and 0.31
(Table 5), respectively. The R2 of the test results is 0.65 (Figure 8). The MAE, MSE, and
RMSE of the test results are 0.42, 0.27, and 0.52 (Table 5), respectively. In terms of the ELM
model using the HX, the R2 of the training result is 0.82 (Figure 9). The MAE, MSE, and
RMSE of the training results are 0.28, 0.12, and 0.35 (Table 5), respectively. The R2 of the
test results is 0.57 (Figure 9). The MAE, MSE, and RMSE of the test results are 0.45, 0.33,
and 0.57 (Table 5), respectively.

The error comparison analysis of the training data and test data obtained using three
different ML methods has been carried out. It shows that the R2 of the training results
of all ML methods is greater than 0.8, regardless of which combination was used. The
values of MAE, MSE, and RMSE are ideal. It indicates that the models using the three
ML methods have strong stability and are very accurate for re-prediction of input data.
However, the three ML methods performed differently in terms of the accuracy of the test
results. The prediction accuracy of the ELM model using the HX is the highest, followed
by the BPNN model and is the lowest in the RF model. This may be because ELM is
different from the back propagation algorithm of the neural network, and the output layer
weights are calculated by generalized inverse matrix theory. This allows ELM to ensure a
certain prediction accuracy with fewer training parameters. The core of the RF algorithm
is random sampling with replacement. The RF model has a poor learning effect on the
target because of the lesser feature input using the HX. It leads to the lowest prediction
accuracy of the RF model. The BPNN model using the HXC has the highest prediction
accuracy, and the ELM and RF perform about the same. This verifies that the difference
in the core algorithm affects the accuracy of the prediction again. At the same time, the
dimension and nature of the input data and the matching degree of the algorithm will also
affect the prediction accuracy. Compared with ELM and RF, BPNN has a simpler structure
and simpler operation. This advantage makes BPNN potentially more accurate when
dealing with low-latitude data. It also shows that advanced ML algorithms do not always
perform better.

The accuracy of ML models using two different parameter combinations has been
compared. The average R2 of the ML model using the HXC is 0.67. The average MAE,
MSE, and RMSE are 0.4, 0.25, and 0.5, respectively. The average R2 of the ML models using
the HX is 0.53. The average MAE, MSE, and RMSE are 0.49, 0.40, and 0.63, respectively.
It shows that the accuracy of different ML models using HXC is significantly higher than
those using HX, which is related to the completeness of feature information. The HX has the
highest correlation with the expected value but provides no sufficient feature information,
resulting in a weakening of the information transfer process of the conditional entropy and
a decrease in the prediction accuracy. Although the two additional logging parameters
are not highly correlated with the expected value, they supplement more characteristic
information of the expected value and improve the prediction performance. Therefore,
more parameter inputs that can describe the characteristics of the target value are beneficial
to the prediction of the target value.

In terms of running time, the RF model has the shortest running time, followed by
the ELM model, and the BPNN model has the longest running time (see Figure 10). The
running time of the RF model using HXC parameters is 0.24 s. The running time of the RF
model using HX parameters is 0.288 s. The running time of the ELM model using HXC
parameters is 1.031 s. The running time of the ELM model using HX parameters is 1.022 s.
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The running time of the BP model using HXC parameters is 2.601 s. The running time of
the BP model using the HX parameter is 2.505 s. The ELM model and BP model running
time display fewer feature parameters that have faster running times. The less feature
parameter input, the less model computation time, but the predictions will be even worse,
while the RF model run time shows different characteristics: the more feature parameters,
the faster the run time. This may be due to the fact that random sampling of samples is
more complicated because there are fewer feature parameters. In the final integration of
the prediction results, the RF model using the HX parameter requires more computation
time. Considering the prediction accuracy and running time, the BPNN model has higher
prediction accuracy but longer running time in small-sample regression prediction. The RF
model can run faster while ensuring a certain prediction accuracy. According to the run
time comparison, the RF model is much faster than the BPNN model, which indicates that
RF should be chosen as the better option if processing speed is important.
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This study also found that the prediction accuracy of the training set was significantly
higher than that of the test set. All models exhibit varying degrees of overfitting. Possible
reasons are: (1) the number of training samples is insufficient, resulting in a gap in the
feature extraction and distribution simulation of the expected value by each ML algorithm;
(2) since the purpose of this research is to test the universality of different regions, there
are a great deal of well logging data. There must be uncontrollable human error, resulting
in low prediction accuracy. However, in general, the correlation between the measured
value and the predicted value of the BPNN test set still reaches 70%, and it still has a good
application prospect. However, the generalized TOC prediction model in the study area
seems to need more data supplementation and in-depth research. We believe that the
prediction model will perform better with more data.

4.4. Compare between Multiple Regression and ML

The predicted values of each model using the better parameters (HXC) were compared.
Figure 11 shows that the ML prediction accuracy is significantly higher than the multiple
regression model. The results suggest that the prediction accuracy of the BPNN model is
10% higher than that of the multiple regression model. It also indicates the importance of
feature parameters. When there are enough feature parameters, the more comprehensive
the description of the target value, the better the prediction performance of the ML model.
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5. Conclusions

In this study, the authors established ML models and multiple regression models for
TOC prediction with logging parameters and made a comparison of the prediction effect of
each model. The datasets including all available well logs and TOC core measurements
conducted in Lishui–Jiaojiang Sag served as necessary data for constructing the models.
The ML models were developed based on random forest (RF), extreme learning machine
(ELM), and back propagation neural network (BPNN). The performance of each model has
been evaluated using different factors, including R2, MAE, MSE, and RMSE. Based on the
above results, the following conclusions can be drawn:

1. The TOC content of the source rocks in Yueguifeng Formation is relatively high,
with an overall distribution of 0.2–3.34%. The S1 + S2 is generally distributed in the
range of 0.5 mg HC/g TOC to 12.51 mg HC/g TOC. The type of kerogen is mainly
type II. The source rocks of Yueguifeng Formation have good hydrocarbon genera-
tion potential.

2. The correlations between each logging parameter and TOC were evaluated through
linear regression method and Pearson correlation coefficient analysis. The results
indicate that the TOC of Yueguifeng Formation source rock has a better response in
DEN, DT, and CN logging. The performance of each model using all well logs and
selected well logs shows that each model with all well logs as input performed much
better than the models with selected well logs.

3. In terms of accuracy, the results of error analysis show that each ML model with all
well logs as input performed much better than the multiple regression models. In
addition, it can be concluded that the BPNN model outperforms the other ML models.
According to the run time comparison, the RF model is much faster than the BPNN
model, which indicates that RF should be chosen as the better option if processing
speed is important. This study confirmed the ability of ML models for building an
efficient model for estimating TOC from readily available borehole logs data in the
study area.
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