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Abstract: In this paper, a bi-level energy management framework based on Conditional Value at Risk
(CVaR) and game theory is presented in the context of different ownership of multiple microgrid
systems (MMGS) and microgrid aggregators (MAs). The energy interaction between MMGS and
MAs can be regarded as a master–slave game, where microgrid aggregators as the leaders set the
differentiated tariff for each MG to maximize its benefits, and MMGS as the follower responds
to the tariff decision specified by the leader through peer-to-peer (P2P) energy sharing. The P2P
energy sharing of MMGS can be regarded as a co-operative game, employing asymmetric Nash
bargaining theory to allocate the co-operative surplus. The Conditional Value at Risk model was used
to characterize the expected losses by microgrid aggregators due to the uncertainties of renewable
energy resources. The Karush–Kuhn–Tucker conditions, Big-M method, and strong duality theory
were employed to transform the bi-level nonlinear model of energy management into a single-level
mixed integer linear programming model. The simulation results show that when MGs adopt the
P2P energy-sharing operation mode, the total operating cost of MMGS can be reduced by 7.82%.
The simulation results show that the proposed co-operative optimization framework can make
the multiple microgrid systems obtain extra benefits and improve the risk resistance of microgrid
aggregators.

Keywords: integrated energy system; risk value; P2P energy sharing; Stackelberg game; Nash
bargaining solution

1. Introduction

The mainstream direction of energy development in the world today is efficient, clean
and low-carbon [1]. With the maturity of distributed power generation technology in
recent years, distributed renewable energy generation has been developing rapidly [2].
A microgrid is an effective way to consume renewable energy, but the volatility and
intermittency of distributed power generation hinder its consumption [3].

The identity of microgrids has gradually changed from traditional consumers to pro-
ducers and sellers, and microgrids can not only trade electricity with distribution networks
but also between MGs [4]. Microgrids enhance the autonomy and consumption capacity
of MMGS and realize economic benefits through energy mutualization and co-operative
optimization control [5]. In recent years, many scholars have achieved fruitful results on the
economic operation of multi-microgrids and the benefit allocation problem. In [6], the au-
thor establishes a Nash bargaining model for the economic dispatch of multi-operator MGs
by day based on a co-operative game. The model not only enables each operator to obtain
the Pareto optimal cost but also minimizes the cost of MGs. In [7], the author proposes a co-
operative MMGS coordination optimization method based on an opportunity-constrained
planning method. This method builds a model to minimize the total cost of the system
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and considers the co-operative scheduling method among MGs, but does not conduct an
in-depth study of the co-operative conditions. In [8], the author proposes a mechanism of
MMGS formation co-operation and builds a MMGS coalition-type game model considering
the risk of power outage. In [9], the author establishes a co-operative game-theory-based
market buying and selling model for MMGS, and formulates real-time transaction settle-
ment rules based on the profits gained by MGs. Vehicle electrification is an irreversible
trend nowadays. After the cluster optimization management of EVs, EV clusters can
provide high-quality energy storage resources with larger capacity for the power system.
However, EVs differ significantly from traditional energy storage devices in terms of the
uncertainty of EV users’ vehicle behavior and the need to consider users’ charging needs.
The paper [10] proposes a machine learning approach for energy management considering
the advanced support vector machine for modeling and estimating the charging demand of
EVs. This approach can improve power quality and operation in renewable microgrids. The
P2P trading mechanism is a decentralized trading model for the distribution network side
of the market. The paper [11] proposes a secured management framework in the P2P energy
trading process. This method can effectively prevent systematic risks such as malicious
attacks in the P2P trading process. Social, technical, economic, environmental and political
factors need to be taken into account in the design of microgrid energy management. In
combination with energy storage technology, this “energy buffer” has been used to find the
best solution for energy management [12].

The interest game between MGs and the distribution network as different interest
holders brings a great challenge to the economic dispatch of MMGS. To reasonably allocate
the interests, formulating the game strategy of conflict and co-operation between multi-
interest holders is one of the key problems to be solved in economic dispatching, and
one of the important ways for decision-makers to win–win. The literature [13] refines the
operational constraints and interest game of MGs and a distribution network based on
the objective cascade analysis method, and realizes the decoupling and parallel solution
of the operation of the two. The paper [14] constructs a multi-buyer–multi-seller pattern
and builds a Stackelberg game demand–response model with operators and customers as
dominant and followers, respectively, which effectively improves the operator’s revenue
and customers’ electricity efficiency while enhancing the level of PV power sharing among
customer groups. In order to encourage each MG operator to participate in the power
trading of MMGS, the paper [15] proposed an internal tariff optimization model based
on the master–slave game and a two-stage optimization model of MMGS, which not
only reduces the net load-to-peak ratio of MMGS but also achieves the win–win economic
benefits for both MMGS operators and MG operators. The paper [16] equates the bargaining
transaction problem among multiple MG operators to a co-operative game optimization
model and uses the Nash bargaining solution to solve the MMGS power trading problem.

In [17], a P2P energy trading approach based on a dual-auction market is proposed, in
which each producer and consumer initiates trade requests among themselves by interact-
ing with limited information, taking into account historical trade decision information and
aiming at a maximum individual benefit. Unlike the auction-based P2P trading mechanism,
the multi-master–multi-slave game trading model is a “dynamic” game in which producers
and consumers can interact with each other in terms of decisions and behaviors. The au-
thors of [18] analyze the problem of seller price competition and buyer choice competition
in P2P transactions by using non-co-operative game theory and evolutionary game theory.
The authors of [19] propose a user-level autonomous scheduling model for distributed
market participants and a P2P trading mechanism that considers a multi-subject non-co-
operative game. However, a market trading model with flexible adjustment of purchase
and sale roles based on real-time prices remains to be studied in depth. In [20], the author
proposed an energy management strategy for a multi-microgrid, verified the interconnec-
tion and mutual benefit strategy through the multi-microgrid, and used Shapley value for
benefit allocation. However, in [14,16,17], the degree of contribution in the MG co-operation
process was not considered, and excessive preoccupation with the fairness of distribution
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tends to weaken the motivation of participants to cooperate. In [13–15,18,19], using a
non-co-operative game to solve the MG benefit allocation problem, the non-co-operative
game emphasizes individual rationality, resulting in the Nash equilibrium potentially not
existing.

The incorporation of the microgrid aggregator into the distribution network invest-
ment model has become an emerging business model to realize the win–win situation
of different interest subjects through the coupled decision-making role of the microgrid
aggregator and the distribution network operator. Therefore, in this paper, MAs were used
as an intermediary between the distribution network and MMGS, so that it can participate
in the decision of MMGS optimal dispatch. MAs can not only maintain the order of the
MG trading platform by setting the electricity tariff, but also earn profits through the price
difference.

The main innovation points of this paper can be summarized as:

• The master–slave game model can take into account the interest demands of each
participant, while the direct P2P energy-sharing behavior among MGs can reduce
the market power of leaders and improve social welfare. In terms of coalition cost
sharing, this paper proposes an allocation method that considers the contribution
of cooperation and adopts asymmetric Nash bargaining theory to allocate the co-
operation surplus to make the allocation result fairer and more reasonable.

• In the proposed energy management model, MAs integrate social welfare and risk
levels in order to determine price discrimination behavior for the whole process of
coordinated electricity trading.

The remaining pages of this article are organized as follows: Section 2 gives the
problem to be solved in this paper; the mathematical model of the system is given in
Section 3; Section 4 gives the bi-level optimization model based on the Stackelberg game
and its solution methodology; Sections 5 and 6 give the case studies and conclusion.

2. Problem Description

The energy management framework schematic of the multi-microgrids is shown in
Figure 1. The energy management problem of Figure 1 can be formulated into a master–
slave game, where the MA, as the leader of the Stackelberg game, can interact with the
distribution grid and MMGS for electric energy, and aims to maximize its own economic
benefit FMA, setting the trading tariff (πi,t

MG2MA,b, πi,t
MG2MA,s) for the MMGS. Each MG,

as a follower, aims to minimize the cost through the co-operation between surplus and
shortage MGs, and it feeds back the calculated optimal set of power purchase/sale plans
(Pi,t

MG2MA,b, Pi,t
MG2MA,s) to the upper layer based on the internal power prices issued by the

upper layer while satisfying its own constraints. The P2P energy sharing problem can be
formulated into a Nash bargaining problem, and the P2P trading tariffs π

ij,t
P2P are set based

on the contribution of each MG in the energy sharing process. Moreover, the CVaR is to be
taken into account when developing the optimal energy management scheme to resist the
uncertainty of renewable energy generation.
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Figure 1. Framework diagram for energy management. 
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Figure 1. Framework diagram for energy management.

3. System Modelling

In this section, we will model the various aspects of Figure 1, which are divided into
three main parts; namely, the calculation of CVaR, the modeling of MA and the modeling
of MMGS.

3.1. Caculation of the CVaR Value

The uncertainty of renewable energy sources and loads can lead to risky losses in
microgrid aggregators operations. The VaR and CVaR are commonly used risk management
methods, where CVaR can compensate for the shortcomings of VaR with tail risk [21,22].

f (G, y) is a loss function that is represented by a decision variable G and a random
variable y, with a probability function p(y). The probability of f (G, y) does not exceed a
given limit of α, and it can be expressed in the following form:

ψ(G, α) =
∫

f (G,y)≤α

p(y)dy (1)

where y :=
[
pWT, pPV, pEL] denotes the set of random vectors, including the wind power

output pWT, photovoltaic power output pPV, and electric load pEL. p(y) denotes the joint
probability density function. G =

[
gMG

1 , gMG
2 , · · · , gMG

M
]

denotes the set of decision vectors.
ψ(G, α) is a right continuous and non-decreasing function.
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For a given confidence level β, VaR and CVaR can be calculated as:

VaRβ(G) = min{α ∈ R : ψ(G, α) ≥ β} (2)

CVaRβ(G) =
1

1− β

∫
f (G,y)≥VVaR

β (G)

f (G, y)p(y)dy (3)

where β represents the confidence level, and VaRβ(G) and CVaRβ(G) are the value at risk
and the conditional value at risk in confidence level β.

However, the parsing expression of VaRβ(G) is difficult to obtain directly. Therefore,
it is more difficult to directly calculate the value of CVaR. Generally speaking, engineering
applications use the transformation function shown in (4) to estimate the value of CVaR:

Fβ(G, α) = α +
1

1− β

∫
[ f (G, y)− α]+p(y)dy (4)

where [ f (G, y)− α]+ denotes max{ [ f (G, y)− α], 0}.
Equation (4) is difficult to calculate directly. Similarly, the integration term of Equation

(4) is usually estimated by using the historical sample data of the random vectors y, or by
simulating the sample data through Latin hypercube sampling. Assuming that y1, y2, · · · ,
yN is a sample value of the random vector, the expression (4) can become the following
expression [23].

F̂β(G, α) = α +
1

N(1− β)

N

∑
o=1

[ f (G, yn)− α]+ (5)

where F̂β(G, α) is the estimated value of Fβ(G, α). There are a total of N samples and yn
denotes the n-th sample.

3.2. Microgrid Aggregator

In the emerging business model, the microgrid aggregator usually acts as an invest-
ment company between the grid company and MGs. A microgrid aggregator earns revenue
by providing quality services to multiple customers, with a greater focus on revenue and
market competitiveness. The microgrid aggregator is the leader of the Stackelberg game
and can interact with the grid and multiple microgrid systems. The microgrid aggregator
operates with the goal of maximizing its own economic benefits and the objective function
comprises the expected operating profit and the risk of loss. The MA problem is presented
in (6)–(11).

max
W
∑

w=1

N
∑

i=1

T
∑

t=1
τw
[
πt

MA2G,sPw,i,t
MG2MA,s − πt

MA2G,bPw,i,t
MG2MA,b + πi,t

MG2MA,bPw,i,t
MG2MA,b − πi,t

MG2MA,sPw,i,t
MG2MA,s

]
∆t + L

N
∑

i=1

(
αi − 1

1−β

W
∑

w=1
τwηw,i

)
(6)

s.t.
πmin

MG2MA,b ≤ πi,t
MG2MA,b ≤ πmax

MG2MA,b, ∀i ∈ N, ∀t ∈ T (7)

πmin
MG2MA,s ≤ πi,t

MG2MA,s ≤ πmax
MG2MA,s, ∀i ∈ N, ∀t ∈ T (8)

∑T
t=1 πi,t

MG2MA,b

T
≤ πi,ave

MG2MA,b, ∀i ∈ N (9)

∑T
t=1 πi,t

MG2MA,s

T
≤ πi,ave

MG2MA,s, ∀i ∈ N (10)

αi −
T
∑

t=1

[
πt

MA2G,sPw,i,t
MG2MA,s − πt

MA2G,bPw,i,t
MG2MA,b + πi,t

MG2MA,bPw,i,t
MG2MA,b − πi,t

MG2MA,sPw,i,t
MG2MA,s

]
≤ ηw,i, ∀w ∈W, ∀i ∈ N (11)

In the objective function (6), τw denotes the probability of occurrence of the scenario
w. πt

MA2G,s and πt
MA2G,b denote the tariff that the MA sells electricity to the grid and
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purchases electricity from the grid, respectively. πi,t
MG2MA,s and πi,t

MG2MA,b denote the tariff
that MG i purchases electricity from the MA and sells electricity to the MA at time slot t,
respectively. Pw,i,t

MG2MA,b and Pw,i,t
MG2MA,s denote MG i purchasing electricity from the MA and

selling electricity to the MA of the scenario w at time slot t. ηw,i denotes the VaR loss of MG
i of the scenario w. L is the preference factor of the MA.

In constraints (7) and (8), πmax
MG2MA,b and πmin

MG2MA,b denote the maximal limit and the
minimum limit of the electricity selling tariffs, respectively. πmax

MG2MA,s and πmin
MG2MA,s denote

the maximal limit and the minimum limit of the electricity purchasing tariff, respectively.
In constraints (9) and (10), πi,ave

MG2MA,b and πi,ave
MG2MA,s denote the limit of the average daily

electricity purchasing tariff and the average daily electricity selling tariff, respectively.

3.3. Multi-Microgrids

In response to MA tariff decisions, MG, as a prosumer, can participate in the peer-to-
peer energy sharing directly with neighborhoods, thereby reducing the amount of electricity
trading with MAs. The optimization goal of MMGS is to minimize its total operating costs:

minCMMGS = min
W
∑

w=1

N
∑

i=1

T
∑

t=1
τw
[
πi,t

MG2MA,bPw,i,t
MG2MA,b − πi,t

MG2MA,sPw,i,t
MG2MA,s + κi

MTPw,i,t
MT + κi

BESS

(
Pw,i,t

BESS,c + Pw,i,t
BESS,d

)
+ κi

ILPw,i,t
IL

]
∆t (12)

where κi
MT and κi

BESS represent the cost factor for the operation and maintenance of micro
gas turbine and battery electrical storage system. κi

IL represent the coefficient of compen-
sation cost for interruptible loads. Pw,i,t

BESS,c and Pw,i,t
BESS,d represent the charging power and

discharging power of the electric storage system, respectively.
The optimization model for followers has the following constraints:

3.3.1. Energy Balance Constraints

The electrical power balance constraint for each MG is shown below:

Pw,i,t
MG2MA,b + Pw,i,t

MT + Pw,i,t
BESS,d + Pw,i,t

WT + Pw,i,t
P2P = Pw,i,t

MG2MA,s + Pw,i,t
BESS,c + Pw,i,t

EL + ∑
j∈N\{i}

Pw,ij,t
P2P : λw,i,t

MMGS, ∀w ∈W, ∀i ∈ N, ∀t ∈ T (13)

where λw,i,t
MMGS is the Lagrange multiplier of the electrical power balance constraint.

3.3.2. Transmission Power Constraints

Transmission power constraints include power constraints on power purchase and sale
from the microgrid to the MA and power constraints on energy sharing with neighboring
microgrids:

∑
i∈N,j∈N\{i}

Pw,ij,t
P2P = 0 :λw,i,t

P2P , ∀w ∈W, ∀t ∈ T (14)

0 ≤ Pw,i,t
MG2MA,b ≤ uw,i,t

MG2MA,bPi,max
MG2MA,b : λw,i,t

MG2MA,b, ∀w ∈W, ∀i ∈ N, ∀t ∈ T (15)

0 ≤ Pw,i,t
MG2MA,s ≤ uw,i,t

MG2MA,sPi,max
MG2MA,s : λw,i,t

MG2MA,s, ∀w ∈W, ∀i ∈ N, ∀t ∈ T (16)

uw,i,t
MG2MA,b + uw,i,t

MG2MA,s ≤ 1, ∀w ∈W, ∀i ∈ N, ∀t ∈ T (17)

where Pi,max
MG2MA,b and Pi,max

MG2MA,s represent the upper limit of the power purchased and sold

by the MG i to the MA, respectively. uw,i,t
MG2MA,b and uw,i,t

MG2MA,s are binary variables indicating
that MG i under the scenario w is in the state of power purchase or power sale at time t,
respectively, with 1 if yes and 0 otherwise. λw,i,t

P2P , λw,i,t
MG2MA,b, and λw,i,t

MG2MA,s are the Lagrange
multipliers of the transmission power constraints.

3.3.3. Battery Energy Storage System Operating Constraints

The battery energy storage system operating constraints are shown below:

0 ≤ Pw,i,t
BESS,c ≤ uw,i,t

BESS,cPi,max
BESS,c : λw,i,t

BESS,c, ∀w ∈W, ∀i ∈ N, ∀t ∈ T (18)
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0 ≤ Pw,i,t
BESS,d ≤ uw,i,t

BESS,dPi,max
BESS,d : λw,i,t

BESS,d, ∀w ∈W, ∀i ∈ N, ∀t ∈ T (19)

uw,i,t
BESS,c + uw,i,t

BESS,d ≤ 1, ∀w ∈W, ∀i ∈ N, ∀t ∈ T (20)

Ei,min
BESS ≤ Ew,i,t

BESS ≤ Ei,max
BESS : λw,i,t

SOCmin
, λw,i,t

SOCmax
, ∀w ∈W, ∀i ∈ N, ∀t ∈ T (21)

Ew,i,t
BESS = Ew,i,t−1

BESS + ηi
BESS,cPw,i,t

BESS,c −
Pw,i,t

BESS,d

ηi
BESS,d

: λw,i,t
SOC1, ∀w ∈W, ∀i ∈ N, ∀t ∈ T (22)

Ew,i,t=0
BESS = Ew,i,t=24

BESS : λw,i
SOC2, ∀w ∈W, ∀i ∈ N (23)

where Pi,max
BESS,c and Pi,max

BESS,d represent the maximum charging power and maximum discharg-

ing power of BESS in the MG i, respectively. uw,i,t
BESS,c and uw,i,t

BESS,d are binary variables used
to restrict the charging and discharging behavior of the BESS from occurring within the
same time period. Ei,max

BESS and Ei,min
BESS represent the upper and lower limits of the stored elec-

trical energy of BESS, respectively. ηi
BESS,c and ηi

BESS,d denote the BESS charging efficiency

and discharging efficiency, respectively. λw,i,t
BESS,c, λw,i,t

BESS,d, λw,i,t
SOCmax

, λw,i,t
SOC1 and λw,i

SOC2 are the
Lagrange multipliers of the operating constraints of battery energy storage system.

3.3.4. Micro Gas Turbines Operating Constraints

The micro gas tuirbines operating constraints are shown below:

0 ≤ Pw,i,t
MT ≤ Pi,max

MT : λw,i,t
MT , ∀w ∈W, ∀i ∈ N, ∀t ∈ T (24)

Pw,i,t
MT = Pw,i,t−1

MT + Pw,i,t
ramping : λw,i,t

ramping, ∀w ∈W, ∀i ∈ N, ∀t ∈ T (25)

where Pi,max
MT and Pw,i,t

ramping denote the maximum value of gas turbine output power and

gas turbine ramping power in the i-th microgrid. λw,i,t
MT and λw,i,t

ramping are the Lagrange
multipliers of MT’s operating constraints.

3.3.5. Constraints on Interruptible Loads

The constraints of interruptible loads are shown below

0 ≤ Pw,i,t
IL ≤ µILPw,i,t

EL : λw,i,t
IL , ∀w ∈W, ∀i ∈ N, ∀t ∈ T (26)

where Pw,i,t
IL denotes the interruptible load power. λw,i,t

IL is the Lagrange multipliers of
interruptible loads constraint.

4. Bi-Level Optimization Model Based on Stackelberg Game and Solution
Methodology
4.1. Stackelberg Game

The leader MA and the followers MMGS belong to different interest parties, each of
which will show self-interest and optimize their internal operation by formulating electric
energy trading strategies according to their own status. The master–slave game problem is
a bi-level optimization problem.

For the leader MA, which seeks to maximize daily operating revenue:

maxFMA (27)

For the followers MMGS, which seek to minimize daily operating costs:

minCMMGS (28)

The expression (27) refers to problems (6)–(11), and expression (28) to problems (12)–
(26). The upper layer optimizes the problems (6)–(11) to set the tariff for trading with
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MMGS with the goal of MA maximizing its own revenue. The lower-level MMGS respond
to the tariffs set by the MA as the followers of the master–slave game. The tariffs set
by the MA for the slave side affect the tariffs of MMGS, while the tariffs of the follower
MMGS also affect the operating revenue of MA. The upper-level optimization problem
and the lower-level optimization problem influence and constrain each other until a Nash
equilibrium is reached.

4.2. Benefit Allocation Based on Nash Bargaining Theory

On the slave side, the objective function of multiple micro-grids is the lowest total
operating cost, and the payment cost/revenue of each MG also needs to be settled. A
reasonable benefit allocation mechanism determines the motivation of MG works to collab-
orate. Nash bargaining solution, as a branch of co-operative game, can effectively deal with
the problem of settling the operating costs of each MG. According to the Nash bargaining
game theory [6,13,14], the multi-MGs collaborative operation model is as follows:

max
N

∏
i=1

Cw,i
0

(
xw,i

0

)
− Cw,i

1

(
xw,i

1

)
− ∑

t∈T
∑
i∈N

j∈N\{i}

Pw,ij,t
P2P · π

ij,t
P2P


εw,i

(29)

s.t.
Cw,i

0

(
xw,i

0

)
− Cw,i

1

(
xw,i

1

)
− ∑

t∈T
∑
i∈N

j∈N\{i}

Pw,ij,t
P2P · π

ij,t
P2P ≥ 0 (30)

εw,i = e

Ew,i
supply

Ew,i
supply,max − e

−
Ew,i

recieve
Ew,i

recieve,max (31)

N

∑
i=1

εw,i = 1, ∀w ∈W (32)

Ew,i
supply = ∑

t∈T
∑
i∈N

j∈N\{i}

max
(

0, Pw,ij,t
P2P · ∆t

)
, ∀w ∈W (33)

Ew,i
recieve = −∑

t∈T
∑
i∈N

j∈N\{i}

min
(

0, Pw,ij,t
P2P · ∆t

)
, ∀w ∈W (34)

In (29), Cw,i
0

(
xw,i

0

)
and Cw,i

1

(
xw,i

1

)
denote the optimal operating cost of MMGS in

the non-co-operative mode and in co-operative mode, respectively. xw,i
0 and xw,i

1 denote
the decision variable vector of the non-co-operative mode and in co-operative mode,
respectively. In (30), π

ij,t
P2P represents the trading tariff. εw,i denotes the contribution factor

of the P2P energy sharing. The expression (30) is a constraint of Nash bargaining theory, the
significance of which indicates that the benefits of all participants in Nash bargaining are
enhanced. The expression (31) and (32) are the expressions for calculating the contribution
of co-operation and the constraints on the contribution. In (33) and (34), Ew,i

supply and Ew,i
recieve

denote the total electrical energy provided and the total electrical energy received when
each MG plays in P2P energy sharing mode, respectively.

The expressions (29)–(34) describe a nonconvex, nonlinear optimization problem.
To facilitate the solution, by taking a logarithmic transformation, expression (29) can be
equivalently converted to expression (35).

−minεw,i · ln

Cw,i
1

(
xw,i

1

)
+ ∑

t∈T
∑
i∈N

j∈N\{i}

Pw,ij,t
P2P · π

ij,t
P2P−Cw,i

0

(
xw,i

0

) (35)
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4.3. Solution Methodology

In the bi-level optimization model, there are bilinear terms in the upper-level model,
and the benefit allocation problem based on Nash bargaining theory in the lower-level
model belongs to the mixed integer nonlinear programming problem. There is a coupling
relationship between the upper-layer and the lower-layer model which is difficult to solve
directly. Using a heuristic algorithm to solve the above problem, the global optimal solution
usually cannot be found. Therefore, in this paper, by constructing the Lagrangian function
of the lower-level model and converting the lower-level model to the constraints of the
upper-level model based on the KKT complementary relaxation conditions of the lower-
level model, the converted single-level nonlinear model was achieved [12]. The Big-M
method was then used to linearize the nonlinear terms in the transformed single-layer
nonlinear model to form a single-layer equivalent mixed-integer linear programming
problem, as shown in Appendix A.

5. Case Study

In this section, the co-operative operation framework proposed in this paper will be
evaluated by comparing simulation experiments. In this paper, the Mosek, a commercial
solver, was used to solve the optimization problem in a Matlab environment on a PC with
an Intel i5 CPU and with 16 GB RAM.

5.1. Basic Parameters

The energy system studied in this paper consists of an MA and three MGs, where
the MA acts as an intermediate service provider and coordinates the energy transactions
between the grid and the MGs. Supported by the main grid, each MG acts as a prosumer,
consisting of WT, BESS and loads. Under the coordination of the MA, direct energy sharing
was available between all MGs to maintain the energy supply and demand balance.

Each MG consisted of a gas turbine, battery energy storage system, wind turbine
and other equipment. The technical parameters of the above equipment are shown in
Table 1, and the electrical load of each microgrid is shown in Figure 2. The Latin hypercube
sampling method was used to randomly generate 10,000 random wind speed scenarios,
and then the backward reduction technique was used to reduce the generated large number
of scenarios, and finally reduce the representative 10 scenarios. In this paper, the above
method was used to simulate the uncertainty of wind power generation, and 10 typical
scenarios of wind power generation in each microgrid are shown in Figure 3. The price of
electricity purchased by MA to the main grid and the price of electricity sold are shown in
Table 2.
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Table 1. Technical parameters of MG.

Item Parameter
Value

MG 1 MG 2 MG 3

MT
Pi,max

MT 2 MW 1 MW 4 MW
Pi,max

ramping 1 MW 0.5 MW 2 MW

BESS

Ei,max
BESS 8 MWh 6 MWh 10 MWh

SOCini 0.33 0.33 0.33
SOCmin 0.2 0.2 0.2
SOCmax 0.85 0.85 0.85
Pi,max

BESS,c 2.4 MW 1.8 MW 3 MW

Pi,max
BESS,d 2.4 MW 1.8 MW 3 MW

ηi
BESS,c 0.95 0.95 0.95

ηi
BESS,d 0.95 0.95 0.95

Interruptible load µIL 0.1 0.15 0.1

Power Interaction
Pi,max

MG2MA,b 10 MW 10 MW 10 MW

Pi,max
MG2MA,s 10 MW 10 MW 10 MW

Table 2. Time-of-use tariff for microgrid aggregators.

Time Period Selling Tariff Purchasing Tariff

Valley (1:00–7:00, 23:00–24:00) 350 CNY/MW 400 CNY/MW
Peak (7:00–10:00, 15:00–18:00, 21:00–23:00) 680 CNY/MW 790 CNY/MW

Flat (1:00–7:00, 23:00–24:00) 1120 CNY/MW 1200 CNY/MW

5.2. Impact of Parameter L on Electricity Sales Retail Price Decisions

The trading price between MA and MMGS depends on the MA’s attitude toward
the risk of loss. Consequently, it is necessary to study the effect of parameter L on the
decision-making behavior of electricity sales retail prices of the MA. In the experimental
simulation, the confidence level was set to 0.95 and the value of parameter L varied between
0.01 and 10.

Under this simulation condition, when the MGs did not participate in direct energy
P2P sharing, the results of the trading tariff between MA and MGs are shown in Figure 4.
When the MGs participated in energy P2P direct sharing, the results of the trading tariff
between the MA and MG are shown in Figure 5.

From Figures 4 and 5, it can be seen that when the parameter L increases, MA, in
order to reduce the risk loss, will achieve the purpose of suppressing the electricity trading
between MGs and MAs by widening the price difference between the purchase and sale of
electricity, so as to achieve the effect of reducing the risk loss. Specifically, in Figure 4, MA
offers a higher purchase price for MG3 to reduce MG3’s demand for electricity during peak
periods (18:00–20:00). As the L value increased from 0.01 to 10, the purchase price from MA
increased from 1252.93 CNY/MW to 1336.45 CNY/MW, and from 1252.93 CNY/MW to
1500 CNY/MW for MG1, MG2, and MG3, respectively. Similarly, in order to increase the
electricity consumption of MG1 and MG2 during the low electricity consumption hours
(21:00–24:00), MG1 and MG2’s electricity selling price to MA gradually reduced. As the
L value increased from 0.01 to 10, the selling price of electricity from MG1 and MG2 to
MA increased from 380 CNY/MW to 481.32 CNY/MW, and from 380 CNY/MW to 608.15
CNY/MW. In Figure 5, since MGs participating in energy P2P sharing may negotiate with
each other to respond to the trading tariff specified by the MA, the trading price difference
specified by MA for MGs varied insignificantly with L when MGs participated in P2P
energy sharing relative to Figure 4.
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It can be seen in Figures 4 and 5 that in some periods the tariffs for MGs can be higher
than the tariffs of the grid for the MA. The increase or decrease of the microgrid operator’s
cost in different time periods is essentially a game behavior with MA. Although the cost of
purchasing electricity from microgrids is not optimal in some time periods, the advantage
of the proposed model can be reflected by evaluating the set of tariffs through the total
transaction cost of the day. At the same time, the regulator can over-penalize the consumers
and favor the emergence of aggregator behavior by setting an average tariff constraint as
shown in expressions (5) and (6).



Energies 2022, 15, 9483 13 of 17

Energies 2022, 15, x FOR PEER REVIEW 12 of 18 
 

 

CNY/MW to 608.15 CNY/MW. In Figure 5, since MGs participating in energy P2P sharing 

may negotiate with each other to respond to the trading tariff specified by the MA, the 

trading price difference specified by MA for MGs varied insignificantly with L when MGs 

participated in P2P energy sharing relative to Figure 4. 

 
(a) MG1 

 
(b) MG2 

 
(c) MG3 

Figure 4. Electricity tariff between MA and MGs when P2P energy sharing is not allowed. 

 
(a) MG1 

Energies 2022, 15, x FOR PEER REVIEW 13 of 18 
 

 

 
(b) MG2 

 
(c) MG3 

Figure 5. Electricity tariff between MA and MGs when P2P energy sharing is allowed. 

It can be seen in Figures 4 and 5 that in some periods the tariffs for MGs can be higher 

than the tariffs of the grid for the MA. The increase or decrease of the microgrid operator’s 

cost in different time periods is essentially a game behavior with MA. Although the cost 

of purchasing electricity from microgrids is not optimal in some time periods, the ad-

vantage of the proposed model can be reflected by evaluating the set of tariffs through the 

total transaction cost of the day. At the same time, the regulator can over-penalize the 

consumers and favor the emergence of aggregator behavior by setting an average tariff 

constraint as shown in expressions (5) and (6). 

5.3. Impact of Parameter L on the Operating State of MMGS 

The sum of power purchased and the sum of power sold by MMGS and MA when 

the value of L varied from 0.01 to 10 is shown in Table 3. 

Analyzing Table 3, it can be seen that when MGs participate in energy sharing, MGs 

will meet their daily load demand by interacting with neighboring MGs for power, which 

in turn reduces energy transactions with retailers. In other words, the energy demand of 

MGs that do not participate in energy sharing with retailers is greater than the energy 

demand of participating MGs, because MGs participating in energy sharing can obtain 

energy from neighboring MGs. As L increased from 0.01 to 10, in response to risk aversion, 

the MG operator arranged battery storage system, gas turbine work, interruptible load 

work, and power interaction with the adjacent MGs to maintain power supply and de-

mand balance, instead of power purchase and sale processing with the MA. 

Table 3. Electric energy trading quantity of MGs and MA with different risk aversion factors. 

Risk Aversion 

Factor 

P2P Energy Sharing 

Mode between MGs 

Total Power Purchased by MGs from 

MA (MW)  

Total Power Sold by MGs from MA 

(MW) 

L = 0.01 
Yes 54.01 369.76 

NO 139.64 406.09 

L = 0.1 
Yes 54.19 380.14 

NO 132.26 405.77 

L = 1 
Yes 53.43 370.63 

NO 127.71 404.86 

Figure 5. Electricity tariff between MA and MGs when P2P energy sharing is allowed.

5.3. Impact of Parameter L on the Operating State of MMGS

The sum of power purchased and the sum of power sold by MMGS and MA when the
value of L varied from 0.01 to 10 is shown in Table 3.

Table 3. Electric energy trading quantity of MGs and MA with different risk aversion factors.

Risk Aversion Factor P2P Energy Sharing
Mode between MGs

Total Power
Purchased by MGs

from MA (MW)

Total Power Sold by
MGs from MA

(MW)

L = 0.01
Yes 54.01 369.76
NO 139.64 406.09

L = 0.1
Yes 54.19 380.14
NO 132.26 405.77

L = 1
Yes 53.43 370.63
NO 127.71 404.86

L = 10
Yes 50.23 350.32
NO 120.24 398.21



Energies 2022, 15, 9483 14 of 17

Analyzing Table 3, it can be seen that when MGs participate in energy sharing, MGs
will meet their daily load demand by interacting with neighboring MGs for power, which
in turn reduces energy transactions with retailers. In other words, the energy demand
of MGs that do not participate in energy sharing with retailers is greater than the energy
demand of participating MGs, because MGs participating in energy sharing can obtain
energy from neighboring MGs. As L increased from 0.01 to 10, in response to risk aversion,
the MG operator arranged battery storage system, gas turbine work, interruptible load
work, and power interaction with the adjacent MGs to maintain power supply and demand
balance, instead of power purchase and sale processing with the MA.

By further analysis of Table 3, it is obvious that MGs try to minimize the total operating
cost by interacting with neighboring MGs to meet the daily load demand, thus reducing the
energy trade with MA, and the P2P energy sharing in which MGs participate can promote
the local consumption of distributed energy, reduce the amount of electricity purchased
during peak periods and the amount of electricity sold during low periods, thus reducing
the peak and filling the valley. This will reduce the pressure on the power supply of the
grid.

Table 4 shows the operating cost of MMGS and its payment when MGs do not partici-
pate in P2P energy sharing, and when MGs participate in P2P energy sharing. It can be
observed that after participating in P2P energy sharing, the operating costs of MG1 and
MG2 increase, but the operating costs of MG3 decrease. The reason for this is that MG1
and MG2 preferentially transmit more idle power to MGs instead of selling it to MA. MG3
also gives some financial compensation to MG1 and MG2, and the compensation cost is
proportional to the energy it receives. As can be seen from Table 3, the comparison of the
operation costs of MGs in P2P mode (L = 0.01) reduced the total cost from CNY 37,659.68
to CNY 19,995.43, and achieved 46.9% cost saving. With the increase of L from 0.01 to 10,
the total costs not in or in P2P mode reduced from CNY 35,337.99 (not in P2P mode) to
CNY 19,124.74 (in P2P mode) when L = 10. Indeed, the “Transfer payment” is not enough
to cope with the increasing costs for MG1 and MG2. However, the MG3’s running costs
were significantly reduced, and the total running costs of the MMGS were also reduced.
This shows the advantage of MMGS using P2P energy sharing operation mode.

Table 4. Microgrid operating costs with different risk aversion factors (negative sign means benefits).

Risk Aversion Factor Items MG1 MG2 MG3 Total Cost

L = 0.01

Total cost not in P2P mode (CYN) −18,157.02 −14,762.25 70,578.95 37,659.68
O&M cost in P2P mode (CYN) −10,218.26 −10,878.88 41,092.57 19,995.43

Transfer payments of Nash bargaining (CYN) −13,708.70 −7143.23 20,851.92 0
Total cost in P2P mode (CYN) −23,926.96 −18,022.10 61,944.50 19,995.43

Benefit (CYN) −5769.94 −3259.85 −8634.45 −17,664.25
Shared Power (MWh) −10.84 −7.69 18.52 0

L = 0.1

Total cost not in P2P mode (CYN) −18,132.40 −14,747.67 69,875.03 36,994.96
O&M cost in P2P mode (CYN) −10,634.68 −10,247.81 40,714.18 19,831.69

Transfer payments of Nash bargaining (CYN) −12,629.04 −8187.94 20,816.98 0
Total cost in P2P mode (CYN) −23,263.73 −18,435.74 61,531.16 19,831.69

Benefit (CYN) −5131.33 −3688.07 −8343.87 −17,163.27
Shared Power (MWh) −10.63 −8.80 19.43 0

L = 1

Total cost not in P2P mode (CYN) −18,151.99 −14,773.03 69,746.12 36,821.10
O&M cost in P2P mode (CYN) −10,955.28 −9523.04 40,162.93 19,684.61

Transfer payments of Nash bargaining (CYN) −11,621.84 −10,471.39 22,093.23 0
Total cost in P2P mode (CYN) −22,577.12 −19,994.42 62,256.16 19,684.61

Benefit (CYN) −4425.13 −5221.39 −7489.96 −17,136.49
Shared Power (MWh) −10.17 −8.59 18.76 0

L = 10

Total cost not in P2P mode (CYN) −18,145.22 −16,360.33 69,843.54 35,337.99
O&M cost in P2P mode (CYN) −11,259.75 −9620.55 40,005.04 19,124.74

Transfer payments of Nash bargaining (CYN) −11,740.75 −9334.74 21,075.49 0
Total cost in P2P mode (CYN) −23,000.50 −18,955.29 61,080.53 19,124.74

Benefit (CYN) −4855.28 −2594.96 −8763.01 −16,213.25
Shared Power (MWh) −11.75 −6.32 18.06 0
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By considering the contribution of each MG in the energy-sharing process, the fairness
of benefit distribution can be ensured, and the distributed energy can be better consumed
locally by MGs through P2P energy sharing, which can significantly improve energy
utilization efficiency.

Another noteworthy point is that with the increase of the parameter L, MAs will
suppress the electric trading between MGs and MAs by raising the purchase price and
lowering the sale price in order to reduce the risk loss. MGs will inevitably increase the
behavior of P2P energy sharing in order to achieve the purpose of reducing the operation
cost. The distribution of fairness written in the manuscript does not mean absolute fairness;
here it means that the higher contribution of co-operation receives a higher benefit. The
co-operative contribution of each MG in the P2P energy sharing process can be obtained by
the calculation of expression (31).

6. Conclusions

In this paper, risk assessment and game theory were applied to a bi-level optimal
dispatch model of the microgrid aggregators and multi-microgrids system. The Karush–
Kuhn–Tucker conditions, Big-M method, and strong duality theory were employed to
transform the bi-level nonlinear model of energy management into a single-level mixed
integer linear programming model. The effectiveness of the proposed model and solution
method was verified by combining specific simulation cases and comparative analysis. The
following conclusions can be drawn:

1. The energy management framework based on the master–slave game proposed in
this paper can take into account the mutual influence of MAs and each MG’s decision,
which is in accordance with the actual interests of multiple subjects. The proposed
bi-level optimization model in this paper can effectively improve the ability of the
energy management system to cope with risks and improve the ability of the expected
benefits of MAs under different risk levels.

2. In the energy management framework proposed in this paper, the P2P energy sharing
mode among MGs has the advantage of reducing the cost of electricity. In the model
example of this paper, the cost of electricity consumption of MMGS was about 23%
lower than the cost in the non-co-operative mode with complete competition among
communities, thus achieving win–win co-operation.

3. In the energy management framework proposed in this paper, the MA can enhance
its ability to cope with risks to improve the expected revenue under different risk
aversion levels.

The limitations of the model in this paper are that the uncertainty on the load side was
not considered and the energy management strategy obtained in this paper does not take
into account more resources on the demand side. In future work, factors such as multiple
time scales and more demand-side flexibility resources will also be taken into account, and
case studies will be conducted on the IEEE 34 system.
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Appendix A

The process of converting a bi-level model to a single-level model is as follows.

max
W
∑

w=1

N
∑

i=1

T
∑

t=1
τw,i[πi,t

MG2MA,sPw,i,t
MG2MA,s − πi,t

MG2MA,bPw,i,t
MG2MA,b − κi

MTPw,i,t
MT − κi

ESS(Pw,i,t
ESS,c + Pw,i,t

ESS,d)− κi
ILPw,i,t

IL + λw,i,t
MMGS(Pw,i,t

EL − Pw,i,t
WT )

+λw,i,t
MG2MA,bPi,max

MG2MA,b + λw,i,t
MG2MA,sPi,max

MG2MA,s + λw,i,t
BESS,cPi,max

BESS,c + λw,i,t
BESS,dPi,max

BESS,d + λw,i,t
SOCmax

Ei,max
BESS + λw,i,t

SOCmin
Ei,min

BESS + λw,i,t
SOC1 · E

w,i,t
BESS

+λw,i,t
SOC2Ew,i,t=24

BESS + λw,i,t
MT Pi,max

MT + λw,i,t
rampingPw,i,t

MT + λw,i,t
IL Pw,i,t

EL ] + L
N
∑

i=1
(αi − 1

1−β

W
∑

w=1
πw,iηw,i)

(A1)

s.t. (7)–(11), (13)–(26),

λw,i,t
MMGS + λw,t

P2P = 0,∀w ∈W, ∀i ∈ N, ∀t ∈ T (A2)

λw,i,t
MMGS + λw,i,t

MG2MA,b ≤ πi,t
MG2MA,b, ∀w ∈W, ∀i ∈ N, ∀t ∈ T (A3)

− λw,i,t
MMGS + λw,i,t

MG2MA,s ≤ −πi,t
MG2MA,s, ∀w ∈W, ∀i ∈ N, ∀t ∈ T (A4)

− λw,i,t
MMGS + λw,i,t

BESS,c − ηi
BESS,cλw,i,t

SOC1 ≤ κi
BESS, ∀w ∈W, ∀i ∈ N, ∀t ∈ T (A5)

λw,i,t
MMGS + λw,i,t

BESS,d + λw,i,t
SOC1/ηi

BESS,d ≤ κi
E, ∀w ∈W, ∀i ∈ N, ∀t ∈ T (A6)

λw,i,t
SOCmin

+ λw,i,t
SOCmax

+ λw,i,t
SOC1 − λw,i,t+1

SOC1 = 0, ∀w ∈W, ∀i ∈ N, ∀t ∈ T (A7)

λw,i,t=24
SOCmin

+ λw,i,t=24
SOCmax

+ λw,i,t=24
SOC1 + λw,i

SOC2 = 0, ∀w ∈W, ∀i ∈ N (A8)

λw,i,t
MMGS + λw,i,t

IL ≤ κi
IL, ∀w ∈W, ∀i ∈ N, ∀t ∈ T (A9)

λw,i,t
MMGS + λw,i,t

MT ≤ κi
MT, ∀w ∈W, ∀i ∈ N, ∀t ∈ T (A10)

0 ≥ λw,i,t
MG2MA,b⊥Pw,i,t

MG2MA,b − Pi,max
MG2MA,b ≤ 0,∀w ∈W, ∀i ∈ N, ∀t ∈ T (A11)

0 ≥ λw,i,t
MG2MA,s⊥Pw,i,t

MG2MA,s − Pi,max
MG2MA,s ≤ 0,∀w ∈W, ∀i ∈ N, ∀t ∈ T (A12)

0 ≥ λw,i,t
ESS,c⊥Pw,i,t

ESS,c − Pi,max
ESS,c ≤ 0,∀w ∈W, ∀i ∈ N, ∀t ∈ T (A13)

0 ≥ λw,i,t
ESS,d⊥Pw,i,t

ESS,d − Pi,max
ESS,d ≤ 0,∀w ∈W, ∀i ∈ N, ∀t ∈ T (A14)

0 ≥ λw,i,t
SOCmax

⊥Ew,i,t
ESS − Ei

ESS,max ≤ 0,∀w ∈W, ∀i ∈ N, ∀t ∈ T (A15)

0 ≤ λw,i,t
SOCmin

⊥Ew,i,t
ESS − Ew,i,t

ESS,min ≥ 0,∀w ∈W, ∀i ∈ N, ∀t ∈ T (A16)

0 ≥ λw,i,t
IL ⊥Pw,i,t

IL − µi,t
ILPw,i,t

EL ≤ 0,∀w ∈W, ∀i ∈ N, ∀t ∈ T (A17)

0 ≥ λw,i,t
MT ⊥Pw,i,t

MT − Pi
MT,max ≤ 0, ∀w ∈W, ∀i ∈ N, ∀t ∈ T (A18)

0 ≤ Pw,i,t
MG2MA,b⊥µi,t

MG2MA,b − λw,i,t
MMGS − λw,i,t

MG2MA,b ≥ 0,∀w ∈W, ∀i ∈ N, ∀t ∈ T (A19)

0 ≤ Pw,i,t
MG2MA,s⊥− µi,t

MG2MA,s + λw,i,t
MMGS − λw,i,t

MG2MA,s ≥ 0,∀w ∈W, ∀i ∈ N, ∀t ∈ T (A20)

0 ≤ Pw,i,t
ESS,c⊥κi

ESS + λw,i,t
MMGS − λw,i,t

ESS,c + ηi
ESS,cλw,i,t

SOC1 ≥ 0,∀w ∈W, ∀i ∈ N, ∀t ∈ T (A21)

0 ≤ Pw,i,t
ESS,d⊥κi

ESS − λw,i,t
MMGS − λw,i,t

ESS,d − λw,i,t
SOC1/ηi

ESS,d ≥ 0,∀w ∈W, ∀i ∈ N, ∀t ∈ T (A22)

0 ≤ Pw,i,t
IL ⊥κi

IL − λw,i,t
MMGS − λw,i,t

IL ≥ 0,∀w ∈W, ∀i ∈ N, ∀t ∈ T (A23)
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