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Abstract: Nowadays, the high penetration of automation on smart grids challenges electricity com-
panies in providing an efficient distribution networks operation. In this sense, distribution system
reconfiguration (DSR) plays an important role since it may help solve real-time problems. This paper
proposes a methodology to solve the DSR problem using artificial immune systems (AIS) based on
a new, efficient, and robust approach. This new methodology, called Enhanced Artificial Immune
Systems (EAIS), uses the values of the currents in wires for intelligent mutations. The problem
is accomplished by a multi-objective optimization with fuzzy variables, minimizing power losses,
voltage deviation, and feeders load balancing. A comparison with other DSR solution methods is
presented. The method is compared with two other previously proposed methods with the help of
the 33-bus, 84-bus, and 136-bus distribution systems. Different scenarios are analyzed, including
the optimal location of the Distributed Generation (DG). The results show the applicability of the
proposed algorithm for the simultaneous solution of DSR and location or dispatch of DGs.

Keywords: distribution system reconfiguration; artificial immune systems; fuzzy logic; distributed
generation

1. Introduction

Distribution networks usually have a weakly meshed system. This arrangement
allows for a more straightforward and simple operation and protection system design. The
connection with other feeders enables the reconfiguration of changing the state of a set of
switches normally closed (NC) or normally opened (NO).

Distribution systems support many possible configurations depending on the number
of switches and available circuits. These configurations could modify the values of the
current, voltage, and system electrical losses. Therefore, reconfiguration is a way to reduce
electrical losses and improve the voltage drop of the final consumer.

With distribution grid automation, real-time reconfiguration studies are essential for
planning, with the purpose of maintaining high-quality service at the lowest possible
cost. Several papers on distribution system reconfiguration (DSR) with a multi-objective
approach are available with the primary objective of reducing electrical power losses.
Evolutionary algorithms are the most used. In [1,2], the reconfiguration problem was
resolved using a genetic algorithm (GA). In [3–5], algorithms based on Artificial Immune
Systems (AIS) were used, whereas algorithms based on Particle Swarm Optimization (PSO)
were developed in [6–9].

In a GA, two main operators, crossover and mutation, are used. In AIS, the main oper-
ator, called hypermutation, is used, whose probability of mutation is inversely proportional
to the affinity; this characteristic allows for studying the proposal of this work. In [10],
a GA was used for the reconfiguration of photovoltaic sets to optimize the power of the
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panels. An improved algorithm based on the Immune Genetic Algorithm (IGA), which
is a fusion algorithm combining genetic GA with AIS, was proposed in [11] to solve the
problem of low thermoelectric conversion efficiency in thermoelectric power generation.

Other evolutionary algorithms have used heuristic and meta-heuristic harmony
search [12] and the runner-root algorithm [13]. Other heuristics used include mixed-integer
quadratic programming (MIQP) [14–16]. In previous works, branch current information
was used to support the search for the optimal solution. This information could be em-
ployed to improve the search quality as it will be treated in this work.

Reducing losses was the primary DSR optimization objective in [13–15,17], whereas [12]
focused on voltage security. In [15,17], loss reduction was approached as a mono-objective
problem. In [18], three heuristic methods based on branch exchange were proposed for
distribution system reconfiguration, which provided the effective harmonic reduction in
the grid.

Several papers have proposed a multi-objective approach for DSR solutions. Tech-
niques based on non-dominant Pareto solutions were used in [3,6], and methods based
on fuzzy logic were used in [13,19]. The fuzzy logic-based approach returns a unique
solution in a multi-objective optimization problem unlike non-dominant Pareto solutions,
which offer a set of viable solutions. A solution set could not be appropriated situation
for real-time applications where the decision rests on the professionals in charge of the
operation distribution center, because they must choose one of these solutions to apply on
system. This task usually is not easy.

In [20], an efficient and optimally coordinated operation of volt-var control (VVC)
devices, a DSR, and a smart photovoltaic inverter (PVSI) for energy savings were proposed.

In [21], the measurements obtained from the phasor measurement units (PMUs) were
used to solve the DSR hourly. In [22], an improved algorithm based on marine predators
was proposed for the simultaneous optimization of DSR with the integration of DGs.

This paper proposes a novel method based on Enhanced Artificial Immune Systems
(EAIS) for solving the DSR problem. The EAIS algorithm is an improvement of the algo-
rithm used in [3]; however, substantial improvements are proposed in the AIS approach
and multi-objective analysis using fuzzy logic. Improvements are also included in terms of
modeling, which allow the simultaneous application of the location or dispatch of DGs.
It could also allow electrical current values from the PMUs to be added to the algorithm
information. In the EAIS, the mutation probability is estimated proportionally to the
branch current, improving the efficiency and AIS advantages regarding local and global
search capacity. Higher convergence speed and lower computational costs are additional
improvements.

The motivation of this paper is to contribute to the state of the art by proposing
an algorithm that is suitable for use in real-time operation, using the information of the
electrical currents in the branches in distribution systems and considering DGs.

In Section 6, two AIS-based methods were developed in MATLAB (using the same
computer). Identical tools were employed to calculate the power flow and other auxiliary
programs, avoiding software, hardware, and programming level dependence to compare
all methods objectively. In addition, the search results were more efficient, avoiding
overloading configurations that could lead to power flow lack convergence.

The contributions of this work are as follows:
1. The hypermutation proposed in the EAIS algorithm uses the current information of

the buses, reducing the search space and improving its efficiency; it could also be used in
other evolutionary algorithms such as GA. This advantage enables the methodology to be
used for bulk distribution systems in real time, including the analysis of load curves for
essential periods.

2. The proposed modeling is robust, enabling users to consider the reconfiguration
and the dispatch or location of the DGs simultaneously.

3. The multi-objective approach with fuzzy logic is easy to apply and provides robust
results in real-time operation.
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4. The proposed EAIS algorithm reduces the computation time compared to the AIS
algorithm, improving the applicability in Smart Grids.

This work is organized as follows: Section 2 describes the artificial immune system
heuristic to find the solution to the reconfiguration system distribution problem, Section 3
explains how fuzzy logic is used to develop a strategy to handle the multiple objectives
problem; Section 4 shows the power flow algorithm and graph theory used to solve the
objective functions, Section 5 describes the proposed algorithm, and Section 6 shows the
case studies. Finally, Section 7 presents the conclusion about the work.

2. Artificial Immune Systems

The Artificial Immune System (AIS) is a paradigm of artificial intelligence inspired by
metaphors of the immunological system of vertebrates. This algorithm was chosen due
to its robustness and efficiency in combating foreign attacks. Furthermore, this system
works in a decentralized, parallel, and adaptive way, which is desirable in finding solu-
tions to complex problems and artificial intelligence [3]. The AIS uses the principles and
patterns observed in immunological systems. These characteristics are applied to solve
mathematical problems. One of the characteristics is the robustness, which is expressed
in its tolerance to disturbances in individual components that can perform complex tasks
when acting together [23].

The AIS is an evolutionary algorithm based on the Clonal Principle [23]. The principal
operator used in this principle is called hypermutation. This operator has two steps:
cloning antibodies proportional to their affinity, and mutation inversely proportional to
their affinity. Due to this, cloning directs the local search, and mutation directs the global
search. Through this strategy, the AIS obtains an optimal balance between both search
aspects. In [24], the AIS was used to solve the problem in distribution systems of charging
electric vehicles. In [3], the AIS was proposed to solve the problem of distribution system
reconfiguration using graph theory and Prim algorithm. In [25,26], algorithms based on AIS
were developed for the DSR solution, and [27] presented two approaches based on AIS, the
Copt-aiNet (Artificial Immune Network for Combinatorial Optimization) and Opt-aiNet
(Artificial Immune Network for Optimization) algorithms, for solving the DSR problem.

This paper proposes using an algorithm based on AIS with adaptations to the mutation
process to search for a multi-objective DSR problem. Section 5 details the flowchart of the
proposed algorithm based on artificial immune systems and details the new hypermutation
mechanism to improve this search in DSR problems.

3. Fuzzy Logic

In contrast to the called crisp values sets based on the classical Boolean Logic, fuzzy
sets may take truth values between 0 and 1. Furthermore, when linguistic variables are
used, these degrees may be managed by specific membership functions.

Thus, a fuzzy set is defined in the universe of discussion as a set of ordered pairs:
A = {x,(µ_A (x))⁄x ε X}.

The membership degree of a particular variable is established by the membership
functions µA(x) (Membership Function—M.F.).

This paper proposes a multi-objective analysis by the fuzzification of a real objec-
tive functions set. After fuzzification, the problem is converted to a single function,
as in [12,13,28,29]. In Section 4, the process of fuzzification of the objective functions used
in this work is detailed, and in Section 6, weights are attributed to each one. Finally, the
global function or fitness is obtained as a weighted sum of the objective functions.

The choice of the membership function is critical to exploiting the potential of fuzzy
logic. The membership function choice depends on the characteristics of the physical
variable analyzed. The limits—maximum, minimum, and central values—are essential to
assign the importance degree of the variable.
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4. Distribution System Reconfiguration

This section shows the methodology used to resolve the distribution system reconfiguration.

4.1. Distribution Systems Power Flow

Newton-based power flow methods are used in distribution systems but require
modifications for convergence due to the high value of R/X ratio, radial topology, and
phase unbalance. However, other methods are available, such as a backward-forward
sweep and Z-bus matrix. In this paper, the backward-forward sweep method [30] was
used. For an M bus radial distribution network, there are only M − 1 lines (elements), and
branch currents can be expressed regarding bus currents through Equations (1) and (2).

Ibus = K·Ibranch (1)

Ibranch = K−1·Ibus (2)

where Ibus is a vector of currents of each bus j of order M − 1, I branch is the vector of
currents of each branch (j, m (j)), and m (j) is the bus connected to j. The matrix K is an
incidence matrix. It is a nonsingular (M − 1) order square matrix. The incidence matrix is
constructed in such a way that:

K(j, m (j)) = 1: The diagonal elements of matrix K are ones.
K(j, m (j)) = −1: If branch (j, m (j)) is connected.
K(j, k) = 0: All the remaining elements are zeros.
The power flow calculation used in [23] allows load imbalance per phase.

4.2. Graph Theory

Similarly to [6], the network is represented by graphs for managing topology. The
nodes represent a set of loads, and the edges represent switches and branches. The distri-
bution circuits are represented by a forest, where each feeder is a tree. Thus, all loads are
connected, and the radial nature of the circuits is assured. The incidence matrix is used
in the same way as the power flow with Equations (1) and (2). The control variable is the
vector x = [x1, x2 , x3 · · · , xi, · · · , xn], where xi = 0 if the switch i is open and xi = 1 if it is
closed. N = [1, 2, 3, · · · , i, · · · , n] is the vector of the switch numbers in correlative order
to facilitate the representation.

N1 = {nm}, nm is the number of switches with a closed position, and N2 = {nl},
where nl , is the number of switches with an open position and n, N = {N1 , N2} is the total
switch set.

The same representation is used for the power flow. Thus, the branch that does not
change its state behaves like a fixed switch that maintains its status equal to 1, so these
branches do not belong to the set of variables xi. This representation is simplified using the
same incidence matrix for the power flow and the graph that manages the configurations.

There are two feasibility conditions for a particular configuration: radiality (there are
no closes meshed) and no islanding loads. According to graph theory, each feeder is a tree,
and all systems are a forest (a set of trees connected to a common node).

In [6], Prim’s algorithm obtained the initial population and ensures forest construction
(in the network). In this work, the condition of the forest was obtained using the Matroid
theory used in [1,2,7,28,31–34]. Starting from a feasible configuration N2,, possible closed
loops were obtained (fundamental loops), completing the n open switches.

The number of fundamental loops is given by Equation (3). This number is equivalent
to N2.

L f = M− N + 1 (3)

where L f is the number of fundamental loops, M is the number of buses, and N is the
number of branches.

The tree’s condition is maintained if one of its switches is open in these fundamen-
tal loops.
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Figure 1 shows an example of a 14-bus test system, used in [7,12,14,34]. It has 14 buses,
3 feeders, and 16 branches. Overall, 13 of them are normally closed switches (NC) and 3 are
normally open (NO). The initial configuration is equal to x0 = [1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0,
1, 1, 1, 10], and equivalent to N1

0 = [1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 13, 14, 15] and
N2

0 = [9, 11, 16].

Energies 2022, 15, x FOR PEER REVIEW 5 of 19 
 

 

The number of fundamental loops is given by Equation (3). This number is equivalent 
to 𝑵𝟐. 𝐿 = 𝑀 − 𝑁 1 (3)

where  𝐿  is the number of fundamental loops, 𝑀 is the number of buses, and 𝑁 is the 
number of branches. 

The tree’s condition is maintained if one of its switches is open in these fundamental 
loops. 

Figure 1 shows an example of a 14-bus test system, used in [7,12,14,34]. It has 14 
buses, 3 feeders, and 16 branches. Overall, 13 of them are normally closed switches (NC) 
and 3 are normally open (NO). The initial configuration is equal to �̅� =1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 10 , and equivalent to 𝑁 =1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 13, 14, 15,  and 𝑁 = 9, 11, 16 . 

There are three fundamental loops given by: 𝐿 = 1 , 2, 5 ,7 ,8, 11 , 𝐿 = 2, 3, 9, 10, 13 , 𝐿 = 1 ,3, 4 ,6, 14, 15, 16 . 

 
Figure 1. 14-bus test system. 

4.3. Objective Functions 
Three objectives were considered: loss reduction, feeder currents balances, and drop 

voltage. Each one of these objectives is detailed below. Finally, fuzzification was devel-
oped to handle this multi-objective optimization. As mentioned in IV, the backward-for-
ward sweep method calculates power flow and, consequently, the objective functions. 

4.3.1. Power Loss Reduction 
The power loss of the system is: 𝑃 = ∑ |𝐼 | 𝑅   (4)

where 𝐼  represents the currents of branch 𝑙. 
Nbr represents the number of branches of the system including closed switches. 𝑅  represents the resistance of branch 𝑙. 
Ploss represents the total loss of the branches. 
The membership function used in this case is the shoulder function (Figure 2), and 

the fuzzification is performed by (5): 

Figure 1. 14-bus test system.

There are three fundamental loops given by:
L1 = [1 , 2, 5 , 7 , 8, 11 ], L2 = [2, 3, 9, 10, 13], L3 = [1 , 3, 4 , 6, 14, 15, 16].

4.3. Objective Functions

Three objectives were considered: loss reduction, feeder currents balances, and drop
voltage. Each one of these objectives is detailed below. Finally, fuzzification was developed
to handle this multi-objective optimization. As mentioned in Section 4, the backward-
forward sweep method calculates power flow and, consequently, the objective functions.

4.3.1. Power Loss Reduction

The power loss of the system is:

Ploss = ∑Nbr
l=1 |Il |2Rl (4)

where
Il represents the currents of branch l.
Nbr represents the number of branches of the system including closed switches.
Rl represents the resistance of branch l.
Ploss represents the total loss of the branches.
The membership function used in this case is the shoulder function (Figure 2), and the

fuzzification is performed by (5):

P̃loss = µ(Ploss) =


1, Ploss < Pmin

loss
Pmax

loss −Ploss
Pmax

loss −Pmin
loss

, Pmin
lossT ≤ Ploss ≤ Pmax

loss

0, Ploss > Pmax
loss

(5)
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4.3.2. Load Balancing Function

Load balance is an important issue in obtaining a uniform distribution demand in the
feeder of the same substation or bay of feeders or substations. This strategy allows the
optimization of infrastructure investments and extends the useful life of the equipment
through the optimal distribution of the phase’s currents in the feeders set.

The load balancing function can be represented by an index that measures the im-
balance between demands of feeders considering restrictions such as the voltage drop,
maximum capacity of the lines, and radial topology. The load balancing index among
feeders is represented by (6):

β =
∑n

k=1
∣∣Ik − I

∣∣
I

(6)

I =
∑n

k=1 Ik

n
(7)

where
I represents the average current of substation feeders.
Ik represents the current of feeder ‘k’ obtained by a power flow methodology.
The membership function used is the shoulder function. This function must find a

minimum; therefore, fuzzification is carried out by Equation (8):

β̃ = µ(β) =


1, β < βmin

βmax−β

βmax−βmin , βmin ≤ β ≤ βmax

0, β > βmax
(8)

where βmin is the minimum imbalance value (in this case, 2% ), and βmax is the maximum
allowed value (in this paper, 40%).

The minimization problem is translated to a maximization problem of the fuzzy
function β̃.

4.3.3. Voltage Drop Function

The voltage drop (about the nominal value) is given by Equation (9):

∆Vm = max
(∣∣∣Vj −Vre f

∣∣∣) j = 1, 2, . . . .., nb (9)

where
Vj represents the j-bus voltage obtained by power flow.
Vre f represents the nominal voltage value.
nb is the number of system buses.
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The fuzzified function is calculated by the equations given in (10). In this case, the
triangular membership function is used because the voltage has an optimal central value.

∆Ṽm = µ(∆Vm) =


0, Vi < Vmin

Vi−Vmin
Vre f−Vmin

, Vmin ≤ Vi ≤ Vre f
Vi−Vmax

Vre f−Vmax
, Vre f ≤ Vi ≤ Vmax

0, Vi > Vmax
,

(10)

where
Vi is the bus related to ∆Vm (absolute value).
Vmax is the maximum voltage allowed.
Vmin is the minimum voltage allowed.
In this case, the minimization problem is transformed to maximize the fuzzy function

∆Ṽm, as shown in Figure 3.
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4.4. Problem Formulation

The multi-objective problem is formulated as follows:

min


Ploss(x)

β(x)
∆Vm(x)

 (11)

s.t.
Il < Ilmax
Vmin ≤ Vi ≤ Vmax
F(x) is a forest
where
x is a binary vector indicating the state (open-closed) of system switches, xi = 0 if open
and xi = 1 if closed.
Imax is the maximum current of branch l.

The multi-objective problem can be represented as the maximization of fuzzy func-
tions, where a global objective function is calculated through weighted sums according to
Equation (12).

Z̃1 = w1·P̃loss + w2·β̃ + w3·∆Ṽm (12)

5. Proposed Algorithm

The main contribution of this work is the Enhanced Artificial Immune Systems (EAIS)
algorithm. With this strategy, the most efficient and effective technique for resolving a
DRS problem is obtained. Next, the algorithm is described. In addition, this technique is
demonstrated to be helpful for real-time purposes.



Energies 2022, 15, 9419 8 of 18

5.1. Algorithm Flowchart

The AIS is applied similarly to [6], improving the mutation and fuzzy multi-objective
analysis. The flowchart of this algorithm is presented in Figure 4. The first population is
performed by successively applying random mutations identical to [27] from the initial
configuration, unlike [3], which is performed using Prim’s algorithm. First, the original
configuration of the circuit is included. Then, the functions are computed (and fuzzified)
by calculating the power flow.
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After that, these functions are defuzzified, converting the multi-objective problem
into a mono-objective problem. Finally, the global objective function is calculated by
Equation (12), which corresponds to the affinity value. The weights in (12) are estimated
similarly to [28] and can be adjusted according to the importance level of the variables.

The more affined antibodies are cloned and subjected to the hypermutation process.
In [3], the hypermutation process is realized in any bit of the antibody represented by a
binary vector. This process varies from the state of one component (switch).

In this paper, the cloning-hypermutation process was carried out according to the
approach developed in Section 5.2 using Equations (13)–(15). This approach consisted of
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an adaptation of the CLONALG algorithm described in [24], similar to that developed
in [3] and [25,26]. Still, with the difference in the hypermutation process, such mutation
probability depended on the current of each switch.

5.2. Cloning-Hypermutation Proposal

The cloning-hypermutation process is performed in three steps as detailed below.
Step1: The cloning of the population is performed according to Equation (13). Since

the number of clones is directly proportional to the affinity, the affinity evaluation is
performed for position i. Position i = 1 corresponds to the antibody with higher affinity,
and i = N is the worst-affinity antibody.

Step2: An element of n∗2 ∈ N2 of each antibody is chosen randomly and changes from
the open state to the closed state. A loop composed of the switch L = [Lm] is created in
this way using a depth search algorithm of Graph Theory. It is possible to extract these
elements through the incidence matrix A. Finally, the opening of one of Lm switches is
performed, ensuring that the graph obtained is a forest, which implies all nodes’ radial
configuration and connection. This process is carried out following the mutation control
criteria described below:

• It extracts the values of the currents I = [Im] of the formed loop L = [Lm] from the
previous equilibrium point in the last configuration (the antibody without applying
the mutation).

• The opening of one of the switches of L = [Lm] is performed according to the probabil-
ity given in Equation (14).

• The successive application of mutations is carried out according to (15). For this case,
from the second consecutive mutation, the opening probability is the same for all the
switches p∗m = 1.

Step3: The vector N1 is updated, adding the closed switch and removing the open
switch, yielding a vector N2 . Then, the incidence matrix A is updated, enabling one to
assess the objective function.

cl = round
(

β× N
i

)
(13)

pm = exp(−(1− i/(δ× N))I∗m) (14)

qi = round
(

exp
(

α· i
N

)
·rand(0, 1)

)
(15)

The most affine antibody is in the i = 1 position, and the worst antibody is at the end
of N vector (where N is the antibody population size).

Equation (13) implies that the number of clones is directly proportional to the affinity
degree, establishing a higher local search for upper-affinity antibodies. According toE-
quation (14), the probability of switch opening is inversely proportional to the current for
(1− i/(δ× N)) > 1 and directly proportional to the current for (1− i/(δ× N)) < 1. The
affinity involves slight changes in the configuration for upper-affinity antibodies (favoring
the local search) and significant changes in the configuration for lower-affinity antibodies
(favoring the global search). This is because the switch opening associated with a higher
current value provokes considerable changes in the configuration. Equation (15) establishes
the number of successive mutations inversely proportional to the degree of affinity, favor-
ing the local search for upper-affinity antibodies and the global search for lower-affinity
antibodies. Rand (1,0) is a random real number between 0 and 1. Figure 5 establishes the
relationship between affinity and global and local search control.
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5.3. Example of Cloning-Hypermutation Proposal

Figure 6 shows the IEEE 14-bus system. The cloning of the population is performed
according to Equation (13). The mutation of this antibody depends on its affinity. There are
two extreme cases: a high-affinity (i = 1) antibody, determined by N2

1 = [9, 11, 16], and
a low-affinity (i = 10) antibody, defined by N2

10 = [6, 14, 10]. Then, the relationship was
proportional in a continuous way to these cases. This antibody will be the initial condition
to explain each case’s mutation.
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Figure 6. 14 Bus Test System. Initial Configuration N2
1 = [9, 11, 16].

5.3.1. High-Affinity Individual Given by N2
1

The antibody given by N2
1 = [9, 11, 16] has a high affinity according to the pre-

vious power flow value. The currents are given by I = [I1, · · · , Im, · · · , I16] for each m
branch. An element of the N2

1 is then selected randomly (for example, switch 11) and
closed, creating the set loop L = [1, 2, 5, 7, 8, 11]. The currents of the loops are given
by I = [I11, I7, I5, I8, I2, I1], ordered from the lowest to highest (I11 = 0). Equation (14)
is applied and the opening probability of each switch of the loop is obtained, yielding
ρ1 = [ρ7, ρ5, ρ8, ρ2, ρ1, ρ11], ordered from the highest to lowest (ρ11 = 0). After applying
the probability, the opening of the switch is performed (for example, switch 7), and the
configuration obtained is shown in Figure 7.



Energies 2022, 15, 9419 11 of 18Energies 2022, 15, x FOR PEER REVIEW 11 of 19 
 

 

 

Figure 7. Mild Mutation—Higher-Affinity Antibodies 𝑁 = 9,11,16 ⇒ 𝑁 ∗ = 9,7,16 . 

5.3.2. Low-Affinity Antibody Given by N  
According to the power flow and the evaluation of the objective functions, the anti-

body given by  𝑁 = 11, 14, 10  has a low affinity. Similar to the previous test, an ele-
ment is selected randomly (for example, switch 14) and closed, creating the loop set 𝐿 =1, 4, 6, 16, 15, 14, 3 . The previous current values 𝐼  , 𝐼 , 𝐼 , 𝐼 , 𝐼 , 𝐼 , 𝐼  are obtained for 
the 𝑁 configuration and ordered from the lowest to highest (𝐼 = 0). Next, Equation 
(14) is applied; then, an opening probability is obtained for each loop switch as follows: 𝜌 = 𝜌 , 𝜌 , 𝜌 , 𝜌 , 𝜌  , 𝜌 , 𝜌 , (𝜌 = 0). Afterward, using 𝜌 set, an opening switch is 
performed (for example, switch 6); then, a new configuration (Figure 8) is given by  𝑁 ∗ = 11,6, 10  (small affinity implies a big change in configuration). Applying Equa-
tion (15) successively (at random) yields one or more mutations on this antibody. In this 
example, a successive mutation is applied, closing one switch of  𝑁 ∗ set at random and 
opening another loop switch at random as well, yielding the new antibody given 
by 𝑁 ∗∗ = 5,6, 10 , shown in Figure 9, which determines a configuration with the great-
est and most viable modification compared to the previous  𝑁 ∗ configuration. 

 
Figure 8. Strong Mutation—Low-Affinity Individuals 𝑁 = 11,14,10 ⇒ 𝑁 ∗ = 11,6,10 . 
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1 = [9, 11, 16]⇒ N2

1∗ = [9, 7, 16] .

5.3.2. Low-Affinity Antibody Given by N2
10

According to the power flow and the evaluation of the objective functions, the an-
tibody given by N2

10 = [11, 14, 10] has a low affinity. Similar to the previous test, an
element is selected randomly (for example, switch 14) and closed, creating the loop set
L = [1, 4, 6, 16, 15, 14, 3]. The previous current values [I14 , I15, I16, I3, I6, I4, I1] are ob-
tained for the N2

10 configuration and ordered from the lowest to highest (I14 = 0). Next,
Equation (14) is applied; then, an opening probability is obtained for each loop switch
as follows: ρ1 = [ρ1, ρ4, ρ6, ρ3, ρ16 , ρ15, ρ14], (ρ14 = 0). Afterward, using ρ set, an opening
switch is performed (for example, switch 6); then, a new configuration (Figure 8) is given
by N2

10∗ = [11, 6, 10] (small affinity implies a big change in configuration). Applying
Equation (15) successively (at random) yields one or more mutations on this antibody. In
this example, a successive mutation is applied, closing one switch of N2

10∗ set at random
and opening another loop switch at random as well, yielding the new antibody given
by N2

10∗∗ = [5, 6, 10], shown in Figure 9, which determines a configuration with the
greatest and most viable modification compared to the previous N2

10∗ configuration.
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10∗ = [5, 6, 10] .

Thus, a strong mutation was carried out due to a significant change in the initial
configuration. As a result, this global search strategy is the most effective resource compared
with entirely random mutations.

For antibodies with higher affinity, opening a switch with low currents in the previous
configuration will cause a small change in the configuration and, finally, antibody affinity.
This action creates a minor computational effort by power flow calculation in the next
iteration and favors the local search for the optimal solution. For less affine antibodies,
opening the higher current switch is favorable to the global search, and applying successive
mutations avoids the loss of solutions with overloaded configurations and high losses.
Furthermore, this strategy does not require a high additional cost since the power flow
calculation is performed every iteration (for objective function evaluation) and the equations
are simple.

For comparison purposes, the algorithm proposed EAIS was compared with an algo-
rithm AIS similar to [3,26], developed in this work.

6. Simulations

This section presents simulation results in three test systems, 33, 84, and 136 buses,
to reduce losses. The results of the proposed EAIS algorithm were compared with other
AIS strategies. In addition to comparing with other AIS proposals, the simulations were
compared against other references regarding the resulting optimal value. Moreover, simu-
lations in a 136-bus system to minimize power losses and improve feeder load balance and
voltage deviation (multi-objective case) were carried out. Five scenarios were elaborated,
two of them considering DG.

The simulations were developed in MATLAB R.17 using an Intel i7 quad-core processor
computer with 8 GB of RAM.

6.1. Bus System

This system is initially employed in [12–14,19,27,28,34,35], where it included five tie
switches (open switches) on the initial configuration (switches from 33 to 37) with power
loss of 202.68 kW. The values of β = 0.5, N = 30, α = 1, δ = 0.66 were chosen. The maximum
number of iterations was 20.

The results are shown in Table 1, and the convergence is represented in Figure 10a for
the AIS algorithm and in Figure 10b for EAIS proposed method. Note the reduction of time
and iterations convergence to 50% of the AIS approach.
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Table 1. 33 Bus System Loss Reduction.

Ref. Open Switch Loss (kW) Average
Convergence Time (s)

Average Conver-
gence Iteration

33–34–35–36–37 202.68 data data

AIS
7–9–14–32-37 139.55 0.84 8.1
7–9–14–32–37 139.55 data data

[1,2,7,8,15,17,18,20,24,28,30,33,36,37] 7–9–14–32–37 139.55 0.41 4.4
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6.2. 84-Bus System

An 11.40 kV 84-bus radial electrical distribution test system [7,14,27] was used, which
included 13 tie switches (open switches) on the initial configuration (switches from 84 to
96) with a power loss of 531.90 kW. The results are shown in Table 2, and the convergence
is represented in Figure 11a for the AIS algorithm and in Figure 11b for the EAIS proposed
algorithm with 10 simulations. The values of β = 0.5, N = 40, α = 0.5, δ = 0.8 were chosen.
The maximum number of iterations was 30. Thus, in the next tables, the same configuration
as in AIS was used.

Table 2. 84 Bus System Loss Reduction.

Ref. Open Switch Loss (kW) Average
Convergence Time (s)

Average
Convergence Iteration

Initial 84–85-85–87-88–89-90–
91-92–93-94–65-96 531.90

AIS 7–13-34–39-42-55–62-
72–83-86–89-90–92 469.88 2 20.5

EAIS same 469.88 0.8 5.8

[7,13,23] Same 469.88 ——– ———
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With EAIS, the time and iterations were reduced approximately to 40% of the initial
value. These results were significantly better than the convergence time in the 84-bus system.

6.3. 136 Bus System

A 13.8 kV test system with 136 buses and 156 branches was also employed [7,13,23,35].
The initial power loss was 320.36 kW. For this case, the total load demand was 18,313.8 kW
and 7932.5 kVAr. The results are shown in Table 3, the AIS algorithm convergence is
represented in Figure 12a, and the proposed method convergence is shown in Figure 12b.

Table 3. 136-Bus System Loss Reduction.

Ref. Open Switch Loss (kW) Average
Convergence Time (s)

Average
Convergence Iteration

Initial

136–137–138–139–140–141–
142–143–144–145–146–147–
148–149–150–151–152–153–

154–155–156

320.3

AIS

7–35–51–90–96–106–118–
126–135–137–138–141–142–
144–145–146–147–148–150–

151–155

280.19 38 68

EAIS Same 280.19 16 31

[14,19,25]. Same 280.19 ———- ———

Figure 12. Loss reduction Objective Function convergence—136-bus system: (a) AIS; (b) EAIS.

We used the values of β = 0.3, N = 50, α = 2, and δ = 0.8. The maximum number of
iterations was 120.

Similar results were obtained with the help of the 136-bus system since approximately
42% of the initial time and iterations were observed. Figure 12a,b show the iteration process.

6.4. Multi-Objective Approach with Fuzzy Logic to the 136-Bus System

For the case of multi-objective optimization, Equation (15), five scenarios detailed in
Table 4 were analyzed. The convergence is shown in Figure 13 We used β = 0.3, N = 50,
α = 2, and δ = 0.8. The maximum number of iterations was 120.
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Table 4. 136 Bus System Scenarios.

w1, w2, w3
DG1

200 kW
100 kVAr

DG2
200 kW

100 kVAr

DG3
200 kW

100 kVAr

DG4
200 kW

100 kVAr

DG5
200 kW

100 kVAr

1 1, 0, 0 x x x x x

2 0.4, 0.3, 0.3 x x x x x

3 0.8, 0.1, 0.1 x x x x x

4 0.8, 0.1, 0.1 bus 20 bus 30 Bus 42 Bus 50 Bus 80

5 0.8, 0.1, 0.1 possible bus
20,21,22,23

possible bus
30,31,32,33

possible bus
42,43,44,45

possible bus
50,51,52,53

possible bus
80,81,82,83
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In scenario 1, the original system without distributed generation was analyzed, and
the weights w1 = 1, w2 = 0, and w3 = 0 were used, equivalent to the loss reduction of the
previous section. Note that in Figure 13, the convergence was improved using fuzzy logic.

In scenarios 2 and 3, the multi-objective optimization with different weights in the
original system without DG was studied.

In scenario 4, DG was introduced on five buses for multi-objective reconfiguration. In
scenario 5, the optimal location of DG and multi-objective reconfiguration were added to the
problem simultaneously; for each DG, four possible buses were candidates to host it. The
original 136-bus system was modified in such a way that 5 buses and 20 additional branches
were added to the system (now with 141 buses and 176 branches). This methodology can
be applied to a larger number of DGs and connection buses to optimize the reconfiguration
and location of DGs simultaneously.

The convergence of the fitness function is shown in Figure 13a for each scenario;
the maximum convergence time was given for scenario 6 with 172 sec and 26 iterations.
Figure 13b shows the loss results obtained in the optimization for each scenario. A notable
improvement was noted with the introduction of DGs, and their optimal location was
carried out simultaneously.

The results of the load balance between feeders are shown in Figure 14a, whereas
the voltage drop optimization is shown in Figure 14b. The introduction of DGs clearly
improved the results.
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The results of scenario 6 are presented in Table 5, including the optimal location of
the DGs.

Table 5. Scenario 6 Results.

Open Switch DG Location
Bus

Loss
kW

Feeder-
(Branches)

Current (pu)

Maximum
Load

Unbalance

Voltage
Minimum (pu)

7–9–38–51–106–118–126–
128–138

141–142–144–145
146–147–148–149
150–151–152–156

23–33–44–53–82 246,15

1-(1)
2-(17)
3-(39)
4-(63)

5-(75) 6-(85)
7-(99)

0.0243
0.0308
0.0196
0.0179
0.0305
0.0184

26% 0.9678

There was a noticeable improvement in the voltage and the current balance with a
significant loss reduction.

These advantages could improve the performance of variable loads and distributed
generation simulations approaches similar to [38]. This is possible due to the robustness
and computational improvements introduced.

Such improvements make it possible to study a system in a more realistic way, con-
tributing to the precision of the results and state of the art. It is important to remember that
the power flow must be calculated in each iteration, which is the main consumer of compu-
tational resources. The power flow in a realistic system includes complex mathematical
models of the line, transformer, and other distribution power system equipment; this com-
plexity contributes to the increasing computational efforts. However, this precision implies
that the results obtained are more in line with reality. This method demonstrates that even
using a more complex and complete model, the optimization results are satisfactory, and
the time used is reasonable for real-time use.

7. Conclusions

This paper proposes an Enhanced Artificial Immune Systems (EAIS) algorithm with
an intelligent mutation approach with a probability related to the current of each branch.
This strategy reduces the search space and avoids the power flow calculation in overloaded
configurations as much as possible, lowering the computational cost.

The proposed method was compared with an AIS algorithm. Unlike the AIS method,
EAIS uses a mutation probability proportional to the branch current. The results obtained
were satisfactory, with test systems of 33, 84, and 136 buses, reducing approximately 50%
of the time and the convergence of the iteration and making the search for the optimal DSR
much more efficient.
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The proposed fuzzy logic multi-objective optimization offers excellent results. More-
over, the modeling also allows the incorporation of the optimal location or operation of
DGs simultaneously with the reconfiguration.

Subsequently, the validated tool was applied to a real system with a mono-objective
approach for loss reduction and a multi-objective to reduce losses, load balance between
feeders, and voltage deviation, obtaining satisfactory results.

As mentioned, this methodology allows the use of a complete mathematical model of
the electrical network (it could include variable load and distributed generation), which
contributes to the precision of the results. In relation to the computational effort, it is
possible to conclude that the simulation is reasonable for real-time operation.

The results demonstrate the effectiveness of the algorithm applied to real-time systems
with DGs. The study can be extended to applications with electric vehicles and demand
prediction in order to schedule daily operations in real systems to achieve energy optimiza-
tion, thus optimizing the number of daily configuration changes. This would be the next
step to continue the investigation.
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