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Abstract: An increase in energy demand in the coming years is inevitable, and therefore it is necessary
to provide optimal solutions for this future need. This paper examines the future energy demands of
the southern regions of Iran (with a hot and dry climate and high energy needs). In this regard, the
overall structure of the research has been divided into three parts. In the first part, using historical
energy consumption data, the energy demand in 2030 is predicted. This is carried out utilizing a
time series analysis method, namely Holt-Winters. Then, relying on the plans of the Iran Ministry
of Energy, various energy plans have been designed and energy modeling has been carried out for
both base and forecast years. Finally, regarding a multi-criteria decision-making approach, energy
plans are ranked and the best scenarios are selected and analyzed. The results of modeling and multi-
criteria analysis showed that comprehensive and simultaneous development in the construction of
thermal and renewable power plants is the best option to meet future energy needs.

Keywords: energy planning; demand forecasting; Holt-Winters; CRITIC; EDAS

1. Introduction

The usage of various energies is growing in the modern world as a result of relative
population growth, technological advancements, and improved social conditions. Predic-
tions about how to meet demand for the coming years have been made as a result of the
rise in energy demand. An increase in environmental pollution emissions due to increased
energy use also harms the biological environment by causing a rise in that environment’s
pollutant emissions. In recent decades, in addition to environmental concerns, there have
also been concerns about the reduction of fossil resources. The shortage of energy supply
in areas such as industry, transportation, and households, as well as the cost of energy
production in other methods, are just a few of the issues that will be exacerbated by the
global decline in non-renewable resources. One of the most effective strategies to avoid
the aforementioned issues is to provide accurate predictions, control scenarios, and energy
production plans so that decision makers can react to future energy flows. Using solutions
such as replacing or combining renewable and non-renewable energy systems in order to
increase or support production can answer some of the future needs.

Electricity consumption in Iran in 2018 was equal to 272.8 TWh [1]. The increase in this
amount of consumption will occur for several years to come due to the constant growth
rate. As such, it is expected that by 2030, the demand will exceed the supply. As a result,
it is essential to research the use of various energy supply techniques to expand output,
taking into account production standards and pollution levels to select the optimum option
for the given circumstances and geographical location. Examining different future energy
supply methods helps increase reliability and efficiency.

The granting of subsidies for financial support to people and producers for the use
of energy has occurred in recent years as a result of Iran’s competitive advantage in the
extraction and production of oil and its products. This has led to the cost of installing and
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maintaining new, renewable energy systems being much over the economic threshold. Due
to the lack of economic justification for clean energy projects for consumers, culturalization
has not been able to increase the speed of using these energies [2]. However, today, with
worries about the depletion of fossil fuels and the rise of renewable technology, a promising
future for these systems might be imagined. The combination of renewable systems in
order to support the energy network or increase production capacity can be one of the most
important and practical solutions [3].

The use of different decision-making methods is widely applied in various industries,
including energy and sustainability [4], to choose the most efficient and productive way.
One technique for determining the ranking and position of each technique based on the
importance and weighting of various aspects is multi-criteria decision making. It is possible
to rank and draw conclusions on how to use efficient futures because the energy sector
uses this strategy.

Fatine Ezbakhe et al. [5] analyzed the sustainable development of renewable systems
in Turkey. The MCDM approach was used to select the method and improve sustainability
development. They have also presented a model called ELimination and Choice Translating
REALITY (ELECTRE) III. In this model, uncertainty is expressed as upper and lower limits.
The results showed that the best renewable option is related to wind energy. Solar and
geothermal energy are the next options. Furthermore, due to the high score of wind energy,
it is very important to pay attention to the policies of officials and stakeholders.

Wimmler et al. [6] have investigated the multi-criteria support method for renewable
energy systems. To lessen the burden of dependency on fossil fuels, it is necessary to collect
energy flows for electricity from a variety of sources. Generating electricity from renewable
energy sources and combining it with electricity storage has become a challenge that cannot
be ignored in the near future. The purpose of this review is to find the gap created in recent
studies in order to achieve a better situation and a suitable method for the future. The
results show that new concepts, including energy time and vector change, are necessary for
island energy planning. In addition, due to the island conditions and dependence on fossil
resources, sustainable development also has this dependence.

Katal and Fazelpour [7] conducted an study to determine and prove the compatibility
of existing power plants in Iran using observational data for multi-criteria decision analysis.
In this study, five power plants built in Iran were taken into account, and the most ideal
mode was introduced based on the choice of several criteria and the choice of the proper
index. The results showed that the VIKOR method is a suitable method for selection and
ranking, but it is better to use other methods for validation.

Nadizadeh Shorabeh et al. [8] investigated the conditions for the establishment of
multiple renewable energy farms in Iran using the MCDM method. This experiment was
conducted with the aim of investigating the potential of renewable resources in eastern Iran.
Fuzzy logic was used for uncertainty and network analysis logic was applied to obtain
the required weights. The results showed that between 5 and 23% of the studied areas,
according to the type of geography, have suitable conditions for establishing these farms.

Yousefi et al. [9] studied the integration of a hybrid CCHP system, consisting of renew-
able and non-renewable CHP components, into a large commercial building. Considering
three different objective functions, the GA was applied in three different single objective
optimization problems to find the best size of the system components. Then, using AHP,
the most profitable answer was determined.

Ribeiro et al. [10] investigated future scenarios for the electricity generation sector us-
ing the MCDM tool. The purpose of this research was to eliminate the long-term electricity
problem. Five scenarios were proposed to supply electricity. The basis of the work of three
scenarios in this research was based on fossil energy; one scenario was a combination of
hydroelectric power with gas and one scenario was based on renewable energy. The final
results show that there are two solutions with different basic characteristics: (1) maximum
renewable with higher costs than coal, but leading to a significant reduction in external
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energy dependence. (2) Using coal as a source of electricity at a much lower cost, but
keeping in mind its ever-increasing decline.

Santos et al. [11] investigated scenarios for the future electricity supply in Brazil based
on multi-criteria evaluation and based on low carbon emissions and a carbon emission fee.
The findings indicated that biomass and wind energy utilization are the best possibilities
for Brazil’s electricity supply in 2050, whereas scenarios with a greater percentage of fossil
fuel sources are the least favored. Ghodusinejad et al. [12] evaluated the performance of
a PV system in five different cities of Iran with different climatic conditions to assess the
effect of weather conditions on the efficiency and performance of PV panels. They ranked
the cities using SMART method.

Some papers have used EDAS method in energy modeling and environmental issues
to rank alternatives and scenarios [13—-16]. Demirtas et al. [17] have conducted research
on the most efficient method of renewable energy consumption. The studies conducted
by the EDAS multi-criteria decision-making method and the fuzzy method have been
evaluated and ranked. This ranking has been made considering political, economic, social,
technological, legal and environmental dimensions. The obtained results showed that the
most efficient method is geothermal, and solar and wind are placed in the second and third
positions, respectively.

By combining scenario planning, energy system analysis, and multi-criteria analysis,
Witt et al. [18] sought a way to develop and evaluate energy scenarios. Using a wide
range of parameters can have a positive effect on choosing a solution and improving
performance. This study offered a methodology for combining scenario planning, energy
system analysis, and multi-criteria analysis to evaluate the sustainability, competitiveness,
and supply security of future energy systems. The results showed that the combination of
these three methods is more transparent and the decision support process is more tangible
for the development and evaluation of energy scenarios.

Karatop et al. [19] analyzed the decision making related to the investment of renewable
systems in Turkey. The study is based on fuzzy combinations and EDAS decision making.
Investigations are based on five forms of renewable energy: hydropower, solar energy,
wind energy, geothermal energy and biomass. The results showed that the best energy
alternatives for Turkey are hydropower and wind, respectively.

According to the literature review, it seems that in most of these researches, the issue
of energy modeling was focused on looking at the present time. In fact, an integrated
approach that simultaneously includes supply and demand forecasting has not received
much attention, nor have energy modeling and multi-criteria analysis. On the other hand,
this issue has not been discussed much in papers studying the Iranian energy system. The
purpose of this study is to investigate the future trend of consumption and predict how to
meet the demand for Hormozgan province in Iran. Initially, based on reliable information,
the energy consumption of the Hormozgan Province is forecasted for 2030. Forecasting the
amount of consumption leads to planning and providing effective solutions in order to meet
the energy demand. Then, energy modeling is performed using the EnergyPlan model,
regarding seven different scenarios for the energy supply in 2030. The Renewable Energy
Organization of Iran’s (SATBA) studies and the philosophy of increasing demand for new
energies were used to choose the scenarios that were put forth. The results of modeling
the presented scenarios are weighted based on the data provided by the CRTIC method.
Then, all scenarios are ranked by the EDAS method. Finally, according to the specified
indicators and the ranking, the best ways to meet the demand of 2030 for Hormozgan
province are determined.

The innovation of this research and its contribution to the literature can include the
following: (a) Energy modeling of Hormozgan province based on real data and policies
of the Ministry of Energy of Iran; (b) Presenting an integrated approach based on time
series analysis, energy supply and demand modeling, and multi-criteria decision making
in the study of current and future energy policies in the study area. In this regard, it
can be assumed that the presentation of this integrated approach can provide sufficient
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insight to the decision makers of the energy field of Hormozgan province. Considering
the high potential of renewable energy in this province, and at the same time the low
development of these resources, the most important hypothesis of this paper is that the
all-round development of renewable energy resources can be a way forward in providing
the future energy of the province.

In this regard, this paper is comprised of six sections. The research framework is
presented in Section 2. Demand forecasting is conducted and presented thoroughly in
Section 3. Multi-criteria energy planning scope is described in Section 4. Results of the
energy planning and decision-making are presented and discussed in Section 5. Finally, the
conclusion of the paper is presented in Section 6.

2. Research Framework
2.1. Study Area

Iran, located between 25 to 40 degrees north latitude, is in a region with one of
the highest potentials of solar energy in the world. The amount of solar radiation in
Iran is estimated between 1800 to 2200 kWh/m?/year, which is higher than the global
average [2,20]. Hormozgan province, with an area of 70,199 square kilometers, is one of
the southern provinces of Iran and located at 25 north latitude and 52 east longitude. Due
to the climatic characteristics and the location of Hormozgan province in the subtropical
region, warm weather is the most important climatic phenomenon. Hormozgan is one of
the hot and dry regions of Iran and its climate is characterised by semi-desert and desert
environments. The coastal climate is very hot and humid in summer and sometimes the
temperature exceeds 52 °C. The average annual temperature of this region is about 27 °C.
The climatic features of Hormozgan are a long hot season and a short cool season [21].
Figure 1 illustrates the exact location of Hormozgan in Iran.

L2 /%, caspian sea
¢ \ ()

Hormozgan

05510 20 330

0
Miles

Figure 1. Hormozgan province on a map of Iran.

As far as the power generation sector is concerned, the nominal capacity of installed
power plants is 3497.5 MW in 2018 (except Qeshm Island). All this amount belongs to
fossil fuel power plants and renewable energy sources do not contribute to the province’s
electricity supply. The details of installed powerplants in Hormozgan is provided in Table 1.
The majority of power consumption in 2017, belongs to Industrial and Residential sectors,
accounting for about 39% and 38% of total electricity consumption, respectively. The
breakdown of sectors’ energy consumption is shown in Figure 2 [22].
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Table 1. The details of Hormozgan powerplants and their installed capacity [22].

Powerplant Technolo .
Powerplant Owner L 8y Total Capacity
Steam Gas Diesel (MW)
Ministry of Energy 1280 1871.8 66.1 3217.9
Major Industries 0 160 0 160
Private sector 0 119.6 0 119.6
3497.5
38.04
10.78
1.0
5.06
6.18
[ Residential
[ Public
[ Commercial
[ ] Indqstrial
[ Agriculture
[ Street lights

38.94

Figure 2. Breakdown of sectors’ energy consumption in 2017 [22].

Due to its location at low latitudes, the southern regions of Iran, including Hormozgan,
favors a very high potential of solar energy within the country, where the global solar
irradiation ranges between 863 to 2456 kWh/m?/year, a prominent value [23]. In contrast,
although the potential of wind energy in Hormozgan is not as strong as the solar potential,
it is to an extent that cannot be ignored. Therefore, the study area is one of the most suitable
regions in the country for harvesting both wind and solar power [24,25]. Figure 3 depicts

the heat map for annual solar GHI and wind speed of Hormozgan.
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Figure 3. Heat map of annual: (a) solar GHI; (b) wind speed.

2.2. Study Process

The research process in this paper consists of a multilayer structure. Figure 4 shows
the research flow diagram. As can be seen in Figure 4, in the initial phase, the necessary
data for the research were collected. The data comprise the current installed capacity of
powerplants, annual electricity consumption history, energy development programs in the
province, climate data, etc.
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Figure 4. The research flow diagram.

Next, the main process of the paper is conducted. As shown in Figure 4, the research
process in this paper consists of the three main building blocks as follows.
1. Forecast block
2. Energy modeling block
3. Decision making block

Each block, while being essentially independent, is an important part of the research
chain. The results extracted from each block alone represent prominent information about
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the energy system of the study area, and at the same time, they are used as input to the
next block and form the overall structure of the research.

2.2.1. Forecast Block

Energy planning models play an undeniable role in policy making for the energy sector.
The forecasting of energy demand and supply is the key component of an energy planning
model [26]. The need to predict the performance of individual components of the energy
system or the overall system behavior motivates the development of planning models [27].
Energy demand forecasting is the heart of future energy management, which is required for
the appropriate allocation of resources. During the last decade, several new techniques have
been proposed for energy planning, in order to accurately forecast the future energy needs.
These includes traditional methods such as time series analysis, regression, econometric, as
well as soft computing techniques such as fuzzy logic, evolutionary algorithms, and neural
networks [28].

As stated earlier, energy forecasting is applied in this paper to predict the electricity
demand of the study area for the horizon 2030. The Holt-Winters method is utilized to
conduct the forecast based on the historical data on electricity consumption. The result of
this building block would be the electricity demand in 2030, being used as the main input
for future energy planning.

2.2.2. Energy Modeling Block

Models are one the most essential tools for energy systems planning and management.
A model is defined and could be understood as a simplified representation of the real
world’s energy system [29]. The energy models are classified and analyzed in different
aspects, including geographic coverage, spatial and temporal resolution, time horizon,
and sectoral coverage, etc. In various energy systems, particularly a large-scale system
such as a regional energy market, energy models may help to provide an understanding
of the relationships between different components of the energy system and between
different time periods, under various assumptions and scenarios [30]. Energy models are
mainly developed to solve a problem or to answer a specified question, and in this context,
scenarios are of great importance. Future long-term analysis may be conducted by means
of scenario development in the energy sector in order to evaluate the impact of various
policies [31].

This paper also pursues the scenario development approach, and in this regard, seven
different scenarios are considered as future energy development plans. In an iterative
process, the energy system of the case study area is modeled and analyzed in all seven
energy plans. Hence, seven distinct sets of answers are produced.

Due to the importance of energy modeling, numerous energy modeling tools have
been developed in the past decades. The EnergyPLAN computer model is utilized in this
paper. EnergyPLAN is an energy system analysis tool, created for the research in the design
of future sustainable energy systems with a special focus high shares of renewable energy
sources. It is designed to enable the synergies within the whole energy system, as expressed
in the smart energy system concept. EnergyPLAN provides different analysis aspects and
facilitates the study of the conversion of renewable electricity into other energy carriers,
such as heat, hydrogen, green gases and electrofuels, as well as the implementation of
energy efficiency improvements and energy conservation [32].

As shown in Figure 4, five output data are calculated and extracted as indicators of the
performance of the energy system in each scenario. The selected indices are wide-ranging
and cover various dimensions of the energy system’s performance. Therefore, the energy
system is comprehensively evaluated in various aspects. These five indices and output
data of the energy model are as follows:

Reliability Index (REL): Self-sufficiency is one of the fundamental indicators of re-
silience in energy systems. Self-sufficiency in energy supply is directly related to reliability
and high reliability in an energy system leads to its greater robustness. In this regard, the
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reliability index is considered as one of the evaluation indicators of the energy system. The
need for energy imports from outside the province’s energy system (TWh) is determined
as this criterion.

Energy Supply Index (TPES): An energy system may include different energy carri-
ers. These energy carriers can be primary or secondary energy or classified as fossil and
renewable resources. In order to understand the total amount of energy consumed, the
energy supply index, in the form of Total Primary Energy Supply (TWh), is introduced.

Environmental Index (CO;): Environmental studies and evaluation of the effects of
the energy system on climate change are an integral part of energy systems planning. There-
fore, the next indicator considered is in this area. CO, emission rate (Mt) was determined
as the environmental indicator.

Economic Index (TAC): In order to economically evaluate the energy system, it is
necessary to include the economic index in the study and planning. In this context, the
Total Annual Cost index is considered.

Renewables Index (RES): Expanding the use of renewable energy is one of the main
pillars of sustainable development and energy transition. The greater the share of renewable
energy resources in an energy basket, the more sustainable, resilient, and low carbon the
energy system will be. The Renewables Index, in the form of the Renewable Energy Share
(RES) of primary energy, is defined to consider the amount of benefit of the energy system
from renewable resources.

2.2.3. Decision Making Block

Multi-criteria decision-making (MCDM) approaches are one of the most implemented
decision-making tools for complex decision-making problems, in order to evaluate several
alternatives considering multiple decision criteria and indicators. MCDM methods have
been applied for several complicated problems that have considered the concept of future
energy planning to make the best decision for an energy system. Energy systems are
often complex systems that are affected by many factors and at the same time, affect
different factors. Due to this complexity, particularly in choosing among various alternative
energy sources and technologies, MCDM is applied as an effective tool. MCDM includes
decision support and evaluation for addressing complex problems with high uncertainty,
challenging objectives, multi-interests and perspectives. Generally, MCDM methods are
mainly applied to conduct two critical types of problems; first, these methods are utilized
to investigate the importance of considered decision indicators in a problem. Second, they
are used to determine an overall comparative ranking of several alternatives concerning
defined decision factors or indicators [33-35].

As seen in Figure 4, this paper is founded on a multi-criteria decision-making basis
because there are several scenarios and energy plans designed for the future, and therefore,
it is needed to select the best energy plan based on the evaluation of different indicators.
Over the past few decades, various MCDM methods have been introduced. In this paper, a
combined method is used to comparatively evaluate the energy plans. First, the CRITIC
method has been applied in order to verify the weights of indicators; then, the EDAS
method has been used to prioritize the alternatives based on the derived indicators’ weights.

3. Demand Forecasting

In order to forecast the electricity demand in 2030, the Holt-Winters (HW) method is
used in this paper. Proposed by Holt [36] and Winters [37], the HW model is an extension of
the exponentially weighted moving average method. The exponentially weighted moving
average model forecasts future values based on past data, placing more weight on the recent
observations. The HW model smooths the trend values with two smoothing coefficients
(ranging between 0 and 1) and incorporates an explicit linear trend in the forecast [38].

The Holt-Winters linear exponential smoothing is conducted using Equations (1)—(3) [39]:

st =aar + (1 —a)(s4-1+bi-1) 1)
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by = B(st —si-1) + (1= B)bs 1 2)
ft = st +ib; 3)

where a; is the real value at timestep t, s; is the smoothed estimate at timestep ¢, b; is
the trend value at timestep ¢, « is the level smoothing coefficient, and f is the trend
smoothing coefficient.

Equation (1) smooths the actual value in a recursive approach by weighting the current
level () and then adjusts s; directly for the trend of the previous period, b;_1, by adding it to
the previous smoothed data, s;_1. This brings s; to the approximate base of the current data
value. Equation (2) addresses the trend of data, where it updates the trend, expressed as the
difference between the last two smoothed values. It modifies the trend by smoothing with
in the last period (s; — s;_1) and adding it to the previous estimate of the trend multiplied by
(1 — B). Finally, Equation (3) is used to forecast the future data. The trend, b;, is multiplied by
the number of periods ahead to be forecast, i, and added to the base value, s; [39].

In this paper, RapidMiner Studio is used to apply Holt-Winters. The model is applied
with values of 0.5 and 0.1 for « and S, respectively. The result of the forecast model is
depicted in Figure 5. As is shown in Figure 5, the first observed piece of data is equal to
7566.6 GWh, which belongs to 2007, while the last observed one is 16,423.2 for 2018. The
trend of the historical data as well as the forecast data is almost linear, which is natural due
to the nature of the HW method. The predicted demand of electricity in 2030 is found to be
25,805.2 GWh, which is almost 1.57 of the demand on the base year.

30,000

—&— Historical consumption data
O+ Forecast data

25,000 A el

a .0
20,000 o

15,000 A

Electricity Consumption (GWh)
o)

10,000

5000 T T T T T T T T T T T T T
2006 2008 2010 2012 2014 2016 2018 2020 2022 2024 2026 2028 2030

Figure 5. Electricity consumption forecast using Holt-Winters.

4. Multi-Criteria Energy Planning
4.1. Scenario Development

The growth of energy consumption in the coming decades is undeniable for a number
of reasons, including population growth, improved social welfare, industrial and trans-
portation growth, and so on. One of the main challenges in the field of management and
planning of energy systems is allocating and finding the best solution to meet this increased
energy need in the future.

The need for optimal policy in the energy sector has always been one of the strategic
priorities in the upstream documents of countries, so the role of these policies in the interests
of current and future generations cannot be ignored. Since there is a direct relationship
between energy consumption and industrial and construction developments, the issue of
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an energy crisis has been recognized as a major problem of the present century. This has
led to increased attention to renewable energy. Given the breadth of renewable resources, it
is necessary to develop a strategic plan to improve executive action in this area. Therefore,
renewable energy resources assessment, as a way to develop an appropriate strategy
to reduce environmental consequences, is considered an undeniable necessity [40]. In
this regard, various national documents have been developed regarding sites with high
potential and evaluation of renewable energy sources in Iran.

Due to Hormozgan’s strong solar potential, solar systems have received the most
attention compared to other sources. Hormozgan province’s average GHI is 12121.8 kWh/m?,
and its specific photovoltaic output power is similarly 1789.3 kWh/m?2, demonstrating the
region’s excellent solar potential. The high number of sunny days and the appropriate
GHI have a direct effect on the energy production process [41]. In addition to the very
high potential of solar energy in Hormozgan, this province also has a favorable potential
for wind energy. The process of building a solar or wind power plant in Iran is possible
through the registration of a construction permit in SATBA. Figure 6 shows the location
of the permits issued for the construction of future wind and solar power plants for
Hormozgan province. After issuing the license and building the power plant, a power
purchase agreement (PPA) is concluded between SATBA and the investor. As can be seen,
29 licenses for the construction of solar power plants and 6 licenses for wind power plants
have been registered in Hormozgan.

S

Figure 6. The location of prospect solar and wind projects; red: wind projects; blue: solar projects.

In this context, in order to respond to increase of demand in 2030, seven energy plans
have been defined. Figure 7 presents the defined energy plans in a diagram. The potential,
position, and indicators mentioned are taken into consideration for each of the scenarios.

e Plan 1 (BAU): examines the lack of capacity increase considering Business-As-Usual.
In this scenario, the lack of capacity increase has been investigated in order to reduce
construction costs and importing power.

e Plan 2 (THERMAL): The second scenario involves increasing the thermal power
plant’s capacity by as much as 1000 MW and, if necessary, optimizing it through
cost-control measures.

e Plan 3 (SOLAR+): According to SATBA studies, a solar power plant development
plan with a capacity of 1900 MW (based on the potential of Hormozgan) has been
developed. This development plan is based on the governmental financial resources
and investments. This plan considers that this development plan will be implemented
by the Iranian government by 2030.

e Plan 4 (SOLAR): In this plan, it is assumed that instead of government investment
in the development of solar energy, the permits for the construction of solar power
plants by the private sector will be completed and all expected power plants will be
put into operation by 2030 (see Figure 6).
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e Plan 5 (WIND): 450 MW of electric energy will be provided by the wind power
plant (based on the current wind power plant construction permits), and the financial
resources will also be provided by the private sector.

e Plan 6 (RENEWABLES): The sixth scenario involves the private sector increasing
renewable energy sources such as wind and solar in accordance with potential and
geographic location. In other words, all the potential capacities of wind and solar
power plants shown in Figure 6 should be put into operation by 2030.

e Plan 7 (RE + THERMAL): This considers the combination of thermal and renewable
power plants in order to provide 5265 MW of electric energy for the desired demand
in 2030. In other words, it is a combination of the second and sixth scenarios.

Adding 2000 MW
thermal, 2815 MW
solar and 450 MW
wind powerplants
Adding no new
capacities

RENEWABLES

Adding 2815 MW solar
and 450 MW wind
powerplants based on ( THERMAL )
private sector funding 2030
Electricity ‘ Adding 1000 MW
’ Demand thermal powerplant

C)
Adding 450 MW wind
powerplant based on SOLAR

private sector funding

Adding 1900 MW solar
SOLAR powerplant based on
state funding

Adding 2815 MW solar
powerplant based on
private sector funding

Figure 7. Seven energy plans considered in the paper.
In order to model energy and examine the desired scenarios, information such as

power plant efficiency and the cost of COy, which is one of the main desired parameters, is
presented in Table 2.

Table 2. Input parameters for energy modeling [23].

Parameter Value
Powerplant efficiency (%) 35
Natural gas CO, content (kg/Gj) 57.9
CO; price (Euro/ton) 7
Electricity import price (Euro/MWh) 24

Furthermore, the investment costs for the construction of the discussed power plants
and the useful life span of the power plants are also presented in Table 3. The high cost
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of construction is one of the things that make the private and public sectors hesitant
to implement.

Table 3. Cost details for different power generation technologies [23].

e O&M Cost

Technology Investment Cost Lifetime (% of Inv.)
Thermal powerplant 0.74 25 3.32
Solar PV 0.69 40 1.28
Wind 1.2 30 32

4.2. Multi-Criteria Analysis

The optimal choice among various conditions occurs when multi-criteria decision
making is used in energy cycles and systems, and other situations are categorized and
ranked in a systematic way. Choosing the best and most important parameter and ranking
them will reduce the amount of error and increase reliability. The high potential to ensure
the reduction of production and trial and error, saving money and time, along with achiev-
ing the optimal mode, are the main reasons for using multi-criteria decision making in
energy systems.

4.2.1. CRITIC

The standard deviation is used in the original CRITIC technique to calculate how
starkly each criterion contrasts with the others [42]. The approach makes sure that a
criterion with a higher standard deviation or contrast intensity is given a higher weight. In
this process, the traits do not compete with one another, and the weights of the attributes are
determined by the decision matrix. The qualitative traits are transformed into quantitative
attributes, and the CRITIC technique does not require attribute independence.

Following are the steps of the CRITIC technique for an MCDM problem with m choices
and n criteria.

Step 1: Forming the Decision Matrix

As shown in the following, the properties of the decision matrix are dictated by the
information obtained from the decision maker, while the technique and alternatives are
entered to produce the decision matrix.

rll PR rl] PR rln
X=|r T'ij Tin ;i=1, ymjp=1,...,n
rml PR rm] .. rmn mxn

The decision matrix’s element for the iy, alternative in the j;;, attribute is represented
by the above equation, 7;;.

Step 2: The Normalized Decision Matrix

To normalize the attributes, the following equation have to be implemented:

1’1']' —r

Positive attribute Xij = ﬁ;i =1,....mj=1,...,n 4)
e —

o
—Li=1,...,mj=1,...,n (5)

Negative attribute x;j = —
T

1 1
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where x;;, i,

ri+ = max(ry,r2,...,7m),and r; = min(ry,72,...,7n), respectively.

and r; represent a normalized value of the aforementioned matrix,

Step 3: The Correlation Coefficient

Equation (6) calculates the correlation coefficient.

m

pje = Y (xij — %) (xix — xk)/\/i (i = 7)°

i=1

(xix — %)° ©6)

s

_ 1 .
x]:E'Z;xij;zzl,...,m (7)
]:

where ¥; is the mean of j, attributes and calculated as stated in the Equation (7). The ¥
is the mean of the ky, attributes and is calculated same as X;. The pj is the correlation
coefficient between kyj, and jy;, attributes.

Step 4: The Index (C)
First, the standard deviation must be calculated before calculating the index (C).

= 17 —x ;i=1,...,m 8)
j=1
n
=1

Step 5: The Weight of Attributes
Equation (10) determines the weight of each attribute (;) [43]:

C;
j=1Cj

4.2.2. EDAS

The evaluation based on the distance from average solution method (EDAS) has a
significant role in decision-making problems, especially when more conflicting criteria exist
in multicriteria group decision-making (MCGDM) problems. By calculating the difference
between each option and the ideal value, the optimal alternative is identified. The EDAS
method is a compensatory strategy in which the traits are unconnected to one another and
the qualitative traits are transformed into quantitative traits.

All steps are described below [43]. The assessment scores of alternatives must be

organized in descending order for the final ranking of alternatives, and the final ranking
will be established.

e  Step 1: The average solution
Equation (11) is used to calculate each attribute’s average solution:

Lil17ij

AV = ;i=1,...,n (11)

/ m

e  Step 2: The positive and negative distances
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Regarding the positive and negative nature of attributes, the positive distances from
average (PDA) and negative distances from average (NDA) of the positive attributes are
calculated as follows:

max(0, (rij — AVj))

PDAI']': ;i:l,_,,,m,jzl,...,n (12)
AV,
max(0, (AV; — r;;
NDA;; = (0, (AV; ”));izl,...,m,]'zlr---/” (13)

AV,

Accordingly, the values of PDA and NDA for negative attributes are calculated as
follows:
PDA.. — max(0, (AV; —rj))

max(0, (rij — AVj))
AV,

ii=1,...,mj=1,...,n (14)

NDA;; =

;i:1/~--rm/j:11-~-rn (15)

e  Step 3: The weighted PDA and NDA

Considering the weight of the attributes determined in Step 2, Equations (16) and (17)
are used to calculate the values of the weighted PDA and weighted NDA of each alternative,
respectively:

n

SP_ Y PDAjw;i=1,...,m (16)
j=1
n

SN;_ ZNDAi]'.w]';i =1,...,.m (17)
j=1

e  Step 4: The weighted normalized PDA and NDA

The values obtained from Equations (16) and (17) should be normalized as follows:

SP,

Pp=——"t __i=1,... 1
NS 1 max(gpl)rl 7 /m (8)
1
SN;
NSN; = ———,i=1,... 1
S 1 max(SNl>/l 7 rm ( 9)
1

e  Step 5: The Appraisal Score and final ranking

The appraisal score for each alternative is computed as follows:
ASi:%(NSPi—l—NSN,');i:l,...,m (20)

In order to make the final ranking of alternatives, the corresponding appraisal scores
are arranged in a descending order.

5. Results and Discussion

Modeling findings and multi-criteria outcomes are the two explanations given in the
results section. The reason for this division is the complete explanation of the results of
each section, as well as the possibility of comparing and distinguishing the methods.

5.1. Energy Modeling Results

The energy system is modeled by the EnergyPLAN software when the input data
values are chosen and the intended scenarios are stated. This is done once for the base year
of 2018 and once for the target year of 2030 in the seven scenarios proposed. Five indicators
have been examined for the purpose of complete comparison and detailed examination
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of the scenarios. These include Reliability, Energy Supply, Environmental, Economic and
Renewables indices, denoting energy import, total primary energy supply, CO; emission,
total annual costs and renewable penetration, respectively.

Figure 8 shows the reliability index in the scenarios. The existence of energy imports
demonstrates the system’s dependability. To achieve relative reliability, the amount of
energy imported is defined differently in each scenario. For example, the imported energy
in 2018 is equal to 0.96 TWh/year in the absence of other scenarios and only in the base case.
However, for 2030, the base case, or the first scenario, calls for the import of 4.51 TWh /year
of energy in order to achieve the necessary reliability. In other words, the ratio of 2030 to
2018 for energy supply with high reliability or energy self-sufficiency is equal to 4.69,
which shows the importance of energy supply and examining different scenarios in order
to supply energy demand for the future. Examining the dependability index for several
scenarios reveals that in 2030, the seventh scenario, with its 1.73 TWh/year comparable import
requirement, offers the best scenario for maintaining reliability. In general, it can be seen
that in the next 10 years, the need for energy and its supply is one of the main concerns
of researchers. Among all the scenarios in the renewable sector, the wind energy scenario
needs the most import, and the combination of renewable and thermal needs the least.

Reliability Index

B BAU
== THERMAL
1 SOLAR+

4 1'| === SOLAR

= WIND

B RENEWABLES
BB RE+THERMAL

Energy Import (TWh)

0 I

Figure 8. Energy import as reliability index for base and forecast years.

T T

2018 2030

In order to understand the total amount of energy consumed, the energy supply
index, in the form of Total Primary Energy Supply, is introduced (Figure 9). According
to the defined index, the total amount of primary energy supply is different according
to each scenario. This TPES is equivalent to 46.31 TWh/year as of 2018, but by 2030, the
amount will rise to 70.87 TWh/year as a result of increased demand and affluence. The
highest amount of TPES in 2030 is related to the second scenario and the lowest amount
is related to the sixth scenario. This means that if the sixth scenario is used for energy
supply in 2030, less production is needed, which is the most optimal state in this index.
The high TPES in some scenarios is related to the type of scenario definition in addition to
the environmental conditions.

In the cycles of production, distribution, and consumption, a rise in energy production
leads to an increase in the creation of pollutants. Therefore, one of the main problems
of increasing production is the increase in the amount of environmental pollutants. The
worry about rising pollution is lessened by using renewable energy. Renewable energy
technologies produce significantly less pollution than other systems do. Figure 10 examines
the emission of CO, during the years 2018 and 2030. The emission rate of CO, in 2018
is equal to 9.21 Mt, and considering the base case, this amount has increased to 12.68 Mt
during the first scenario in 2030. It can be seen that the highest emission of CO; in 2030 is
related to the thermal power plant. Additionally, scenario 6’s combination of renewable
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energy sources has the lowest mode of CO, emission, which is 9.36 Mt. This problem
demonstrates that by increasing production, it is possible to limit the amount of CO,
released to a certain level.

Energy Supply Index

80

N BAU
THERMAL
[ SOLAR+

[ SOLAR

60 | @mmm WIND

I RENEWABLES
B RE+THERMAL

TPES (TWh)
8

0 T
2018 2030

Figure 9. Total primary energy supply as energy supply index for base and forecast years.

Environmental Index

16
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Figure 10. CO; emission as environmental index for base and forecast years.

One of the indicators discussed is the economic index in the scenarios mentioned.
For all scenarios in the economic index, costs including startup, maintenance, fixed costs,
and imposed charges are among the factors taken into account. Figure 11 considers the
economic index of all scenarios in 2030 plus the economic index of 2018. The findings
indicate that the pace of cost growth has grown by 38.09 percent from 2018 to 2030. If
expenses are based on 2018, it is evident that the first scenario will have the lowest annual
cost in 2030, and the third scenario will have the lowest yearly cost for renewable energy.
Therefore, paying attention to the level of supply of demand along with the cost can have a
direct effect on the process of determining the feasibility of a scenario.
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Economic Index
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Figure 11. Total annual cost as economic index for base and forecast years.

The renewable energy index, in the form of RES share of primary energy, is defined
to take into account the profit of the energy system from renewable sources (Figure 12).
Thanks to the large capacity specified for the sixth scenario, this index will be at a high
level in 2030. It should be remembered that the production capacity and amount have a
direct correlation with the renewable index. In such a way the difference in the quantity of
renewable index can be noticed by increasing the amount of energy output by the solar
system in scenarios 3 and 4. Furthermore, wind energy has a low percentage of renewable
penetration due to the definition of low energy production.

Renewables Index
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N BAU
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Figure 12. Renewable penetration as renewables index for base and forecast years.
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Power Import (MW/month)

Power Export (MW/month)

2500

The amount of electricity supply in each time period of the year can be determined
based on the amount of production and demand for electric energy in 2030. In Figure 13,
it can be seen that the amount of power import in the first month of summer is at its
maximum for all scenarios so that for the first scenario in July, it is equal to 2053 MW, but in
March, it is equal to 23 MW. This difference in amount shows how the demand fluctuates
over time, which changes how much supply is required. It can be seen that in 5 months of
the year, in the THERMAL energy plan, power import is not necessary and its amount is
considered as zero. In addition, the amount of power imported in the fifth scenario (WIND)
is more than other renewable systems, so that this amount in July for fifth scenario is equal
to 1965 MW, but for the sixth scenario (RENEWABLES) it is equal to 1467 MW.
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Figure 13. Monthly power import of the system for forecast year.

As a result of the complex’s increased energy import, the amount of energy exported
from the province is decreasing, with the result that during the summer, when energy
demand is at its maximum, imports are rising and exports are falling dramatically. Figure 14
shows energy exports for a period of one year in 2030. In August, the amount of export
for all scenarios is zero, and in April, it has its highest amount. In order to avoid using
scenarios 1, 2, and 5 for export at any time of the year, it is important to keep in mind that
there will never be enough output and that there will always be a sense of need. It is clear
that the scenarios that had the largest share in energy import (Figure 13) will not have a
share in energy export.
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Figure 14. Monthly power export of the system for forecast year.
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We can give Figure 15 for the monthly power generation of the renewable system
projected for 2030, taking into account the minimal depreciation of renewable systems. It
is obvious that the scenarios in which the solar system is specified (combined and non-
combined) have the largest energy output at this time of year, notably in May, due to
the increase in solar energy production in spring and summer. In addition, due to the
importance of climatic conditions in the efficiency of photovoltaic panels, the amount
of energy production is completely different in different months. According to the type
of regional climate in the south of Iran and because of the stability of the wind flow, it
produces an approximately constant amount of energy throughout the year, as shown in
Figure 15 for scenario 5.

1400

B BAU

B THERMAL
1200 4 | T SOLAR+
SOLAR

= WIND

B RENEWABLES
1000 | @ RE+THERMAL

800 -

600 -

400

Renewable Generation (MW/month)

200 4

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Figure 15. Monthly renewable power generation of the system for forecast year.

Keeping in mind the number of different costs for setting up and promoting the
proposed scenarios, the applied costs are divided into three categories, namely, investment
cost, operation cost, and variable cost (Figure 16). The investment cost is completely
different in each sector and considering the work efficiency, the work process can be
completely changed. The seventh scenario’s investment cost is the highest, but the system’s
high efficiency can make it workable. On the other hand, the seventh scenario likewise
has higher operational and structural costs than the other scenarios, but it also has present
and ongoing costs as well as extra costs. In general, scenarios 1 to 5 are almost in the same
category in terms of the final cost, and the first five scenarios can be used according to the
potential and location of the region according to the type of investment. It should be kept in
mind that some financial considerations have increased or decreased during each scenario.
The first scenario, for instance, might be given with the lowest average investment and
operational cost, but the variable costs in this scenario are higher than those in others.
This should be kept in mind if the first scenario is adopted. One of the most important
investment parameters is variable costs, which is a very effective option.

5.2. MCDM Results
5.2.1. Criteria Weighting

The results of energy modeling and the ranking of each index are reviewed in this
section. One of the things that have been considered in the system is giving each parameter
weight in accordance with its position and importance. The investigated decision matrix,
which is derived from the outputs of energy modeling, is presented in Table 4. In order
to properly weigh each system, the minimum and maximum are specified in each index.
Furthermore, the first four indicators are of the cost type, and the last indicator is of the
benefit type.
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Figure 16. Total cost breakdown of seven energy plans for forecast year.
Table 4. The results of energy modeling as the initial decision matrix.
Power Import TPES CO, TAC RES
(TWh) (TWh) (Mt) (M Euro) (%)
» Plan1 451 70.87 12.68 377 0
'% Plan2 2.62 72.07 13.81 395 0
s Plan3 3.62 63.5 10.67 391 7.7
g Plan4 3.35 60.07 9.81 403 11.9
@ Plan5 417 69 12.22 401 1.9
o Plan6 3.09 58.25 9.39 429 14.2
A Plan7 1.73 59.11 10.19 458 13.2
.2 min 1.73 58.25 9.39 377 0
5 _& max 451 72.07 13.81 458 14.2
o s Criteria
L] : N
O & type Cost Cost Cost Cost Benefit

Equation (6) can be used to retrieve the correlation coefficient by writing the normal-
ized decision matrix. The ratio of the covariance of two variables to the product of their
standard deviation, which expresses the strength of the relationship between the two vari-
ables in each system, is the correlation coefficient between criteria and parameters. Table 5
examines the correlation coefficient between the five desired indicators for all scenarios.

Table 5. Correlation coefficient between the criteria.

Power Import TPES CO, TAC RES
Power 1.0000 0.3115 0.1458 —0.6052 0.3851
Import
TPES 03115 1.0000 0.9852 —0.7054 0.9960
CO, 0.1458 0.9852 1.0000 —0.6185 0.9671
TAC ~0.6052 —0.7054 —0.6185 1.0000 —0.7385
RES 0.3851 0.9960 0.9671 —0.7385 1.0000

Finally, after determining the correlation of the parameters, the weight of the attributes
can be accessed by specifying the desired index (C;). Table 6 shows the final index and
weights of the criteria. C; index has the highest value for annual cost and the lowest value
for CO, emission. The final weight for the annual cost is substantially high and more than
in other circumstances due to the significant difference in the index Cj. TAC, which is
equal to 34.2% of the final weighting, comes in top place, while energy import, at 19.43%,
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is in second. Additionally, the next three places belong to RES, TPES, and CO; criteria,
respectively. It is obvious that the index C; has a direct effect on the final weight.

Table 6. i, Cj and final weights of the criteria.

Power Import TPES CO, TAC RES
Std. Dev. () 0.4140 0.5200 0.4600 0.4110 0.5441
The Index (C;) 1.5576 1.2547 1.1593 2.7404 1.3006
F‘“j{,/m‘;‘)ghts 19.4397 15.6584 14.4686 342014 16.2319
oW;

5.2.2. Energy Plans Ranking

The average solution can be found using Formula (11), and then the positive and
negative distances can be calculated. The amount of positive and negative distance from
the average solution is specified separately in Table 7. Additionally, the RES parameter in
scenarios 1 and 2 are linked to the greatest value for NDA. Weighting can be applied to the
positive and negative distances from the average solution based on the measured positive
and negative distances. According to Table 8, the weighting has been carried out for all
the scenarios mentioned in the investigated indicators and the final result can be obtained
based on the weighting.

Table 7. Positive and negative distance from average solution.

Power Import TPES CO, TAC RES

Planl 0 0 0 0.0753 0
Plan2 0.2057 0 0 0.0312 0

q: Plan3 0 0.0185 0.0518 0.0410 0.1022

3 Pland 0 0.0715 0.1282 0.0116 0.7035

R Plan5 0 0 0 0.0165 0
Plan6 0.0632 0.0996 0.1655 0 1.0327
Plan7 0.4755 0.0863 0.0945 0 0.8896
Planl 0.3673 0.0954 0.1268 0 1
Plan2 0 0.1140 0.2272 0 1

~ Plan3 0.0974 0 0 0 0

g Pland 0.0156 0 0 0 0

2z Plan5 0.2642 0.0665 0.0859 0 0.7280
Plané 0 0 0 0.0522 0
Plan7 0 0 0 0.1233 0

Table 8. Weighted PDA and NDA for seven energy plans.

Power Import TPES CO, TAC RES
Planl 0 0 0 0.0258 0
- Plan2 0.0400 0 0 0.0107 0
2 Plan3 0 0.0029 0.0075 0.0140 0.0166
£ Pland 0 0.0112 0.0186 0.0040 0.1142
'g R Plan5 0 0 0 0.0056 0
Plané 0.0123 0.0156 0.0240 0 0.1676
Plan7 0.0924 0.0135 0.0137 0 0.1444
Planl 0.0714 0.0149 0.0183 0 0.1623
o Plan2 0 0.0178 0.0329 0 0.1623
. Plan3 0.0189 0 0 0 0
QA Plan4 0.0030 0 0 0 0
'§ 2z Plan5 0.0514 0.0104 0.0124 0 0.1182
Plan6 0 0 0 0.0179 0

Plan7 0 0 0 0.0422 0
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Table 9 displays the ranking and overall assessment score for the seven investigated
energy plans. It can be seen that the seventh scenario is ranked first, followed by scenarios 1
and 2. The placement of Scenario 4 and Scenario 3 in the last positions suggests that these
scenarios will not be appropriate for implementation to reach the target capacity in 2030.
On the other hand, scenarios 7 and 1 will be the most appropriate scenarios to meet demand
in 2030, but it should be remembered that scenario 7, a combined scenario, is extremely
appropriate given the recent increase in CO, emissions and loss in fossil fuel reserves.

Table 9. Final appraisal score and ranks for seven energy plans.

Rank Energy Plan Appraisal Score
1 Plan7 0.57899
2 Planl 0.54879
3 Plan2 0.49489
4 Plan6 0.44908
5 Plan5 0.37092
6 Plan4 0.28575
7 Plan3 0.11313

Plan 7, which is chosen as the best scenario, has performed well in most indicators. In
this scenario, since the largest amount of increase in energy production capacity has been
taken into account, the least amount has been imported. In TPES, CO2 and RES indicators,
this plan has taken the second place among the scenarios (after plan 6). Considering the
amount of investment, it is obvious that it ranks last in terms of the TAC index. However,
in a total of five indicators, this scenario has been chosen as the best. Despite the high
weight of the TAC index, due to the prominent performance in other indices, Energy Plan 7
has won the first place. On the other hand, Plan 1 has won the second place. Although in
this scenario, the value of RES and power import indices is quite unfavorable, due to the
low value of TAC index, the second rank has been obtained. In this plan, the high weight of
the TAC index has shown its effect. The first and second place of this ranking is an example
of all-or-nothing policy.

Plan 2 and 6 are placed in the third and fourth positions, respectively. This shows
the importance of comprehensive (and not partial) development in the construction of
thermal or renewable power plant capacities. Plan 2 has performed better in Power Import
and TAC indicators, and on the other hand, plan 6 has been higher in TPES, CO; and
RES indicators. In fact, these two scenarios have shown relatively balanced performance
compared to each other.

6. Conclusions

The usage of various energies is growing in the modern world as a result of the
relative population growth, technological advancements, and improved social conditions.
Predictions about how to meet demand for the coming years have been made as a result of
the rise in energy demand. Finding solutions for energy supply has become one of many
research projects’ primary objectives due to concerns about the future availability of energy.
The use of different technologies in the field of energy supply for different places has caused
renewable energies to enter the field of competition. The purpose of this research is to
predict the best energy supply solutions for Hormozgan province in 2030. In this study,
the energy consumption of the province of Hormozgan is first projected for 2030 based on
historical data using Holt-Winters model, and then it is analyzed by presenting scenarios
to satisfy this need. The use of indicators such as CO;, emissions, the construction cost
and even the annual consumption cost has helped in the comprehensive review of this
research. The results obtained by the future energy planning, were assessed utilizing a
multi-criteria decision-making approach. In this regard, the investigated future energy
plans were reviewed and ranked based on determined criteria. The final results can be
concluded as follows:
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The usage of renewable energies is desired for the future and is receiving more at-
tention as a result of the higher CO, emissions in the non-renewable scenarios for
2030 compared to the renewable scenarios. However, using the sixth scenario, which
combines solar and wind power, results in a large decrease in CO, emissions. Thus,
the greatest strategy for reducing environmental pollutants is to use a combination of
renewable energy sources.

The annual cost was checked in the proposed scenarios and it was found that the best
scenario in terms of cost (least expensive) is the first scenario, i.e., BAU (no investment
and total import of power). The sixth and seventh scenarios are not good options to
choose from because of the high annual cost.

The importance of production costs and energy supply strategies has increased as a
result of the inclusion of the five indicators to make the study more thorough. Of all the
indicators, the indicator with the greatest value—which is equivalent to 34.20 percent—
is related to the total annual cost. However, the weighted range for the remaining
indicators was between 14.46 and 19.43, demonstrating the major significance of the
annual cost and the project’s economic component.

The seventh scenario is the best choice among the suggested scenarios when using
the multi-criteria decision-making approach, taking into account the desired indica-
tors and their weighting (the combination of thermal and renewable power plants
in order to provide 5265 MW of electric energy for the desired demand in 2030).
The use of this plan, keeping in mind the current pollution standards, can meet the
energy needs of Hormozgan province for 2030. The first and second scenarios can
be the next choices. Considering the applied policies and attention to efforts to use
renewable systems, reducing the use of fossil and non-renewable resources should be
considered important.

The most important limitation of this research was the validation of the primary

data, which was solved by relying on the official sources of the Ministry of Energy of Iran.
As an extension to this research, some ideas can be applied, including considering other
energy resources within the energy modeling, using machine learning methods in order
to forecast the energy demand, conducting the DEMATEL method in order to analyze
the cause-effect trend, applying other methods of alternatives ranking and particularly
fuzzy-based methods, etc.
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Nomenclature

Abbreviations

MCDM Multi-criteria decision making

CCHP Combined cooling, heating and power

CHP Combined heating and power

GA Genetic algorithm

AHP Analytical hierarchy process

EDAS Evaluation based on Distance from Average Solution
CRITIC The CRiteria Importance Through Intercriteria Correlation
GHI Global horizontal irradiation

HW Holt—Winters
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Variables and parameters

t timestep

at real value at timestep ¢

st smoothed estimate at timestep ¢

bt trend value at timestep ¢

o level smoothing coefficient

B trend smoothing coefficient

rij decision matrix’s element for the 7y, alternative in the jy, attribute
Xjj normalized decision matrix’s element

Ojk correlation coefficient between ky, and jy, attributes
o standard deviation of j, attributes

gj final weight of jy;, attributes

AV; average solution of jy, attributes

PDA positive distances from average solution

NDA negative distances from average solution

SP; weighted PDA for the iy, alternative

SN; weighted NDA for the iy, alternative

NSP; normalized weighted PDA for the iy, alternative
NSN; normalized weighted NDA for the iy, alternative
AS; Final appraisal score
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