
Citation: Aouini, S.; Bardaoui, A.;

Ferraria, A.M.; Santos, D.M.F.;

Chtourou, R. ZnMn2O4

Nanopyramids Fabrication by

Hydrothermal Route: Effect of

Reaction Time on the Structural,

Morphological, and Electrochemical

Properties. Energies 2022, 15, 9352.

https://doi.org/10.3390/en15249352

Academic Editor: Ming Zhou

Received: 3 November 2022

Accepted: 6 December 2022

Published: 10 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

ZnMn2O4 Nanopyramids Fabrication by Hydrothermal Route:
Effect of Reaction Time on the Structural, Morphological, and
Electrochemical Properties
Souha Aouini 1,2,* , Afrah Bardaoui 1 , Ana M. Ferraria 3,4 , Diogo M. F. Santos 5,* and Radhouane Chtourou 1

1 Laboratory of Nanomaterials and Systems for Renewable Energies (LaNSER), Research and Technology
Center of Energy (CRTEn), Techno-Park Borj Cedria, Bp 95, Hammam-Lif, Tunis 2050, Tunisia

2 Faculty of Science of Tunis, University of Tunis, El Manar, Tunis 2092, Tunisia
3 BSIRG, iBB—Institute for Bioengineering and Biosciences, Chemical Engineering Department,

Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
4 Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico,

Universidade de Lisboa, 1049-001 Lisbon, Portugal
5 Center of Physics and Engineering of Advanced Materials, Laboratory for Physics of Materials and Emerging

Technologies, Chemical Engineering Department, Instituto Superior Técnico, Universidade de Lisboa,
1049-001 Lisbon, Portugal

* Correspondence: souha.aouini@etudiant-fst.utm.tn (S.A.); diogosantos@tecnico.ulisboa.pt (D.M.F.S.)

Abstract: ZnMn2O4 spinels are prepared by a simple hydrothermal route with control of the reaction
time, ranging from 6 h to 18 h. The evolution of the structural and morphological parameters under
the effect of time was analyzed by XRD, ATR-FTIR, XPS, and SEM-EDS. The XRD results show that
for longer reaction times (18 h), the ZnMn2O4 spinel samples present a tetragonal structure with
high crystallinity and an average crystallite size of 32.3 ± 1.7 nm, larger than those obtained for 6
h and 12 h. The ATR-FTIR spectra confirm the structural results, with well-defined peaks related
to stretching vibrations of M-O (M = Zn, Mn) functional groups. XPS reveals the co-existence of
several metal oxides and hydroxides at the outermost surface. SEM analysis shows that the samples
present a pyramid morphology, better defined at 18 h, with an average particle size of 6.2 ± 1.5 µm.
EDS analysis of ZnMn2O4 (18 h) reveals atomic ratios of 0.45, 0.22, and 0.50 for Zn/Mn, Zn/O, and
Mn/O, respectively, in good agreement with the expected values. Based on the CVs, the synthesized
ZnMn2O4 samples formed at 18 h showed the most promising electrochemical properties, with a
specific capacity of 102 F g−1, offering great potential in supercapacitor applications.

Keywords: hydrothermal synthesis; ZnMn2O4 spinel; nanopyramids; electrochemical performances

1. Introduction

The ever-increasing fossil fuel consumption requires searching for new energy sources [1].
Energy storage is crucial in ensuring developments in using these energies [2]. Superca-
pacitors are essential electrochemical energy conversion and storage devices thanks to
their high power density, fast charge/discharge rate, and excellent cycling stability [3,4].
Due to their attractive features, carbon, conductive polymers, and transition metal oxides
are used as electrode materials in supercapacitors. Transition metal oxides are a form of
pseudocapacitive materials based on pseudocapacitive redox charge storage [5]. They have
attracted much attention in the last decade due to their unique physicochemical proper-
ties, high chemical activity, and interactive behavior [6]. In addition to energy storage
in electrostatic carbon material, they exhibit electrochemical faradaic reactions between
ion electrodes and material at a suitable potential [7]. Among them is the ternary metal
oxide zinc manganite, ZnMn2O4, which has a tetragonal spinel structure with space group
I41/amd. In the typical spinel structure, the Zn and Mn atoms are, respectively, located on
the tetrahedral and octahedral sites of a unit cell [8]. It provides an attractive opportunity
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to substitute cations in its crystal lattice tetrahedral and octahedral sites. They have good
safety, are inexpensive, and are environmentally friendly [9]. Thanks to these properties,
they have been investigated in various other applications, such as in photocatalysis [10],
gas sensors [11], and electrode materials for batteries [12]. Multiple methods for the prepa-
ration of ZnMn2O4 have been reported in the literature, such as solid-state reaction [13],
co-precipitation [14], sol-gel [15], thermal decomposition [16], hydrothermal route [17],
solvothermal [18], the ultrasonic spray pyrolysis method [19], and the polyol-assisted py-
rosynthesis method [20]. The hydrothermal method is a simple one-step process with high
efficiency and low cost in terms of instrumentation and precursor materials. In this process,
the reaction system is an aqueous solution containing the precursors. Crystal growth is
carried out under high temperature and pressure in a closed steel pressure vessel called
an autoclave [21]. As reported in the literature, the synthesis method and used conditions
affect the material’s structure. Barkhordari et al. presented the synthesis of ZnMn2O4
nanosheets by cathodic electrodeposition [22]. Mani et al. synthesized ZnMn2O4 spinel
by the hydrothermal method with a double-hydroxide (NaOH:KOH, 1:1) treatment and
utilizing zinc nitrate and manganese nitrate as precursors. The hydrothermal process was
run for 24 h at 200 ◦C, producing a cubic-like morphology [23]. Senthilkumar et al. obtained
hetarolite nanostructures using a similar method, with a 1:2 double-hydroxide treatment
(NaOH:KOH) and employing zinc chloride and manganese chloride as precursors for
hydrothermal treatment for 24 h at 180 ◦C. [8]. The present work used a hydrothermal
process with a hydroxide treatment (NaOH) for up to 18 h at 180 ◦C with acetate precursors
to prepare ZnMn2O4 micro/nanopyramid electrodes for supercapacitor applications. To
the authors’ best knowledge, this is the first time the production of these pyramid-like
structures over stainless steel mesh has been reported.

2. Materials and Methods
2.1. Materials Synthesis

Nanopyramid ZnMn2O4 spinel samples were deposited directly on a stainless steel
mesh (SSM, Bolin Metal Wire Mesh Co., Ltd., Hengshui, China) by hydrothermal processes.
These SSM substrates (with a wire diameter of 35 µm and a screen opening of 45 µm) were
cut into a rectangular shape (2 cm × 5 cm), immersed in 10−3 M hydrochloric acid (HCl,
≥37 wt.%) for a few seconds, then successively cleaned with acetone and ethanol for 10
min using an ultrasonic cleaner, and finally rinsed with distilled water. In this experiment,
an aqueous solution containing 0.075 M of zinc acetate dihydrate (Zn(CH3COO)2.2H2O,
≥98 wt.%) and 0.15 M manganese acetate tetrahydrate (Mn(CH3COO)2.4H2O, ≥99 wt.%)
was prepared by dissolving these chemicals (in a 1:2 molar ratio) in 20 mL distilled water
under magnetic stirring at 800 rpm for 30 min. Then, 5 M sodium hydroxide (NaOH, ≥98
wt.%) was added dropwise to the previous solution until reaching pH = 10. The reaction
system was transferred to a Teflon-coated stainless steel autoclave. Depending on the
experiment, a piece of SSM was placed in the autoclave and held at 180 ◦C for 6 h, 12 h, or
18 h. The coated mesh was carefully removed from the container and washed with distilled
water. After drying, the mesh was annealed at 400 ◦C for 2 h and used as a supercapacitor
electrode. Unless otherwise stated, all used chemicals were acquired from Sigma-Aldrich
(St. Louis, MO, USA).

2.2. Materials Characterization

X-ray diffraction (XRD) was carried out using a BrukerD8 advance X-ray diffractometer
(Bruker Inc., Billerica, MA, USA) with CuKα (k = 1.541 Å) radiation. Attenuated total
reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) analysis was performed in
Spectrum Two from Perkin Elmer equipped with a UATR Two accessory (Perkin Elmer Inc.,
Waltham, MA, USA). The spectra were obtained through 32 scans of data accumulation at
a resolution of 4 cm−1 in the transmission mode at room temperature and treated in Perkin
Elmer Spectrum IR software. Scanning electron microscopy (SEM) and energy dispersive
X-ray spectroscopy (EDS) were recorded using a Hitachi model S2400 (Hitachi Inc., Tokyo,
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Japan) with Bruker light elements EDS detector (Bruker Inc., Billerica, MA, USA). A beam
of highly energetic electrons (25 keV) was focused on the sample’s surface and secondary
electron images were acquired. X-ray photoelectron spectroscopy (XPS) was performed
using an XSAM800 spectrometer from Kratos (Kratos Analytical Ltd., Manchester, UK).
X-rays from the Al Kα source were used to irradiate the samples, which were fixed to the
XPS holder with a metal spring. Additional operational conditions, spectra acquisition,
and further data treatment details are reported elsewhere [24]. The binding energy (BE) of
aliphatic carbon atoms, set at 285 eV, was used as a reference to correct the charge shifts.
The quantification factors of Mn 2p3/2 and Zn 2p3/2 were weighted, taking into account
the multiplicity of states. Other quantification factors were those of the software library.

2.3. Electrochemical Measurements

The electrochemical properties of the samples were assessed using a conventional
three-electrode system connected to Squidstat Plus electrochemical workstation (Admiral
Instruments, Tempe, AZ, USA). The ZnMn2O4 samples treated at reaction times of 6, 12,
and 18 h were used as the working electrode. A platinum mesh was used as the counter
electrode, whereas HANNA Instruments’ saturated calomel electrode (SCE), model HI5412,
served as the reference electrode. Sodium sulfate (1 M) (Na2SO4, ≥99 wt.%, Sigma-Aldrich,
St. Louis, MO, USA) aqueous solution was employed as the electrolyte.

3. Results and Discussion
3.1. Materials Characterization

Figure 1 shows the XRD patterns obtained at different reaction times in the angular
range of 2θ = 20–90◦. The peaks of ZnMn2O4 (6 h and 12 h) from the XRD studies cor-
respond to the tetragonal ZnMn2O4 (JCPDS 00-028-1468, a = b = 9.64 Å, c = 9.91 Å) and
(JCPDS 00-03-1483, a = b = 10.3218 Å, c = 7.5521 Å). ZnMn2O4 (18 h) agrees with (JCPDS
00-032-1472, a = b = 5.71 Å, c = 10.8699 Å), indicating the presence of zinc manganese
nanoparticles. Based on the obtained XRD data, a schematic illustration of the different
crystal structures of the prepared materials was created using VESTA software (Figure 2).
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As can be seen, a small content of ZnMn2O4 is present at the lowest time (6 h). At
12 h, the intensity of the peaks increases, although there is still one more additional peak at
27.26◦. No impurities are detected at the highest time (18 h). Compared to the seed layer
and samples prepared with a reaction time of 12 and 6 h, the XRD peaks of the samples
prepared for 18 h increased and shifted to higher angles, from 29.22◦ to 29.29◦, 32.85◦ to
32.96◦, and 36.33◦ to 36.43◦, for the (112), (103), and (211) crystal planes, respectively. By
changing the hydrothermal reaction time, the lattice parameters of the samples change,
as illustrated in Figure 2 and attested in Table 1, resulting in a shift of the peaks in the
XRD patterns. These changes in the lattice parameters are related to the defects, stress, and
composition. An ideal tetragonal spinel structure with space group I41/amd was achieved
for the samples produced at 18 h (Figure 2c). In the XRD spectra, a right- or left-shift
diffraction can be seen. The left-side shift (lower 2-Theta) reveals the lattice relaxation,
and the right-side shift (higher 2-Theta) reveals the lattice strain [25]. In this work, the
strain generated in the material during synthesis caused the peak shift, showing improved
crystal properties.

Table 1. Calculated lattice parameters for ZnMn2O4 spinel samples.

Time (h) 6 12 18

2θ (radians)
29.22 29.33 29.29
32.85 33.12 32.96
36.33 36.37 36.43

β (radians)
0.42 0.45 0.28
0.47 0.46 0.26
0.79 0.32 0.24

D (nm)
19.30 18.38 29.56
17.69 17.84 31.89
10.64 25.94 35.29

Average crystallite size (nm) 15.87 20.72 32.25

Microstrain −0.054 −0.022 −0.017

Dislocation × 1015 (m−2) 3.969 2.329 0.962

To determine the average crystallite size (D) of the as-fabricated samples along the
main diffraction peaks (112), (103), and (211), the Debye-Scherrer formula is employed
(Equation (1)) [26]:

D =
Kλ

βcosθ
(1)

where K is a dimensionless shape factor with a typical value of 0.9, λ is the X-ray wavelength
(0.15406 nm), β (FWHM) is the line broadening at half the maximum, and θ is the Bragg
angle. The average microstrain, ε, and the dislocation density, δ, were calculated from
Williamson–Hall (Equation (2)) and Williamson-Smallman (Equation (3)) formulas [27]:

βcosθ =
Kλ

D
+ 4εsinθ (2)



Energies 2022, 15, 9352 5 of 16

δ =
1

D2 (3)

According to Table 1, the average crystallite sizes of the nanostructures grow as
the reaction time increases, from 15.9 ± 2.7 nm to 32.3 ± 2.6 nm, indicating improved
crystallinity for a longer hydrothermal reaction time (18 h). Moreover, the type of strain
generated in the materials changes from compressive to tensile, with a significant reduction
in the dislocation density as the growth time changes, revealing that the lattice defect
decreases as the particle sizes increase. Furthermore, the decrease in the lattice defect can
be attributed to changes in the microstructure, shape, and deficiencies.

ATR-FTIR spectroscopy characterization was performed at wavelengths between 400
and 4000 cm−1 to confirm the structural results. No significant differences can be noted by
comparing all the gathered spectra (Figure 3). However, the growth time seems to affect
only the intensity of the organic bands, which are less intense for the hydrothermal reaction
time of 18 h, proving the water escaped from the sample [22]. In the region from 900 cm−1

to 350 cm−1, three peaks are observed at 722 cm−1, 573 cm−1, and 432 cm−1, respectively,
ascribed to stretching vibrations of tetrahedral group (Mn-O) and stretching vibrational
mode of tetrahedral and octahedral group (M-O-M), where M=Mn, Zn [17,28,29]. Above
900 cm−1, all bands are related to functional groups of organic compounds (Table 2).
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Figure 3. ATR-FTIR spectra of ZnMn2O4 obtained at different times, 6 h (brown), 12 h (red), and 18 h
(green).

Table 2. Characteristic absorption peaks of FTIR spectra.

Wavenumber (cm−1) Functional Groups Source

1113.66 Mn–O–OH ethanol molecules on the surface [30]
1212.22 C-O stretching [31]
1595.01 C=O stretching [32]
2144.12 CO2 from atmosphere [33]
2945.78 Aliphatic C-H stretching [34]
3427.13 Associated O-H stretching [31]
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The samples were analyzed by XPS, with expected spinel compound stoichiometry
ZnMn2O4. Figure 4 shows the wide spectra of all samples. Carbon, oxygen, zinc, and man-
ganese were clearly detected. Table 3 shows the overall quantification. The experimental
atomic ratios Mn/Zn included in Table 3 differ from the predicted ratios (equal to 2) for the
spinel compounds stoichiometry: ZnMn2O4. Such differences result from the co-existence
of several metal oxides and hydroxides identified by XPS at the surface of the coatings (as
described below). The quantified oxygen includes oxygen from different sources, namely
metal oxides and hydroxides, oxygen from carbonaceous moieties, and oxygen from the
support. Besides the expected elements, iron from the SSM used as support is also detected
in some samples. Iron is mainly in the form of Fe(III) oxide.
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Table 3. Atomic concentrations (at.%) and atomic ratios.

at.% 6 h 12 h 18 h

C 36.5 40.4 18.6
O 43.7 45.4 46.1
Zn 8.1 3.6 17.2
Mn 11.6 10.5 18.1

atomic ratios

Mn/Zn 1.4 2.9 1.1
O/Zn 5.4 12.5 2.7

To better understand the surface composition, XPS regions were studied in detail. Zn
2p is a doublet peak with a large spin-orbit split of 23.0 ± 0.2 eV. Figure 5 shows the main
component, Zn 2p3/2, fitted with a single peak centered at 1020.9 ± 0.2 eV. This BE has
been attributed either to Zn(0) or Zn(II) [35]. However, based on the Auger parameter
(AP)—2p3/2, L3M45M45, equal to 2010.5 ± 0.3 eV—the oxidation state of zinc is +2 [35,36].
In this case, the AP is useful to distinguish between the possible oxidation states, since an
AP energy shift of ca. 3.5 eV from the metallic form Zn(0) to Zn(II) is observed. Mn 2p is
also a doublet peak with a spin-orbit separation of 11.5 ± 0.2 eV. In many examples reported
in the literature, the doublet peak is shown, but with a deficient step-like baseline definition,
which is over- or underestimated due to the difficulty in defining a Shirley-type curve
limiting the real peak area. As for the Zn 2p region, to avoid an erroneous background
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definition, only the main component of the doublet, Mn 2p3/2 (Figure 5), was considered
for qualitative analysis and quantification purposes.
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The analysis of the Mn 2p1/2 component is not included, but yields the same infor-
mation as the Mn 2p3/2, but with poorer statistics, given the lower intensity. Mn 2p3/2
was fitted with a minimum of three peaks centered at 641.1 ± 0.1 eV, 642.6 ± 0.1 eV, and
644.6 ± 0.1 eV. Identifying these components is not a straightforward task, mainly due to
the large dispersion of values reported for each manganese oxidation state, with ranges
of BE overlapping each other [35]. However, the Mn 2p3/2 profiles shown in Figure 5 are
similar to that of Mn(III) species studied by Biesinger et al. [37]. Mn(III) is the oxidation
state predicted for ZnMn2O4 structures, being the relative intensity of the satellite peak,
centered at higher BE, a relevant feature to distinguish Mn(II) from Mn(III). Therefore, the
fitted peaks in Mn 2p3/2 spectra are assigned to (for increasing BE): Mn(III), Mn(IV) mixed
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with higher oxidation states [24,37], and a satellite peak. Yet, O 1 s fitted regions include
two important peaks that confirm the presence of metal oxides and hydroxides, with peaks
centered at 529.8 ± 0.1 eV and 531.2 ± 0.1 eV, respectively. These peaks include lattice
oxygen (O2−) and hydroxyl groups in manganese, zinc oxides, and/or hydroxides. Peaks
centered at higher BE in O 1 s are attributed to oxidized carbonaceous moieties, as also
attested from C 1 s regions analysis. C 1 s regions were fitted with three peaks, centered
at 285 ± 0.1 eV, 286.7 ± 0.1 eV, and 288.6 ± 0.1 eV, assigned to C-C and/or C-H aliphatic
carbon atoms, carbon singly bonded to oxygen, and carbon in carboxylate groups (O-C=O).

The morphology of the samples was investigated using SEM. As can be seen at lower
magnification (Figure 6a,b,e,f,i,j), all the particles present a homogeneous surface coverage.
The nanocrystals show a pyramid-like morphology, more distinct at higher magnifications,
especially for ZnMn2O4 (12 h) and (18 h) (Figure 6g,h,k,l).
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Figure 6. SEM micrographs of ZnMn2O4 prepared for (a–d) 6 h, (e–h) 12 h, and (i–l) 18 h at different
magnifications of (a,e,i) ×450, (b,f,j) ×1000, (c,g,k) ×5000, and (d,h,l) ×10,000.

The particle sizes were analyzed using the DigimizerTM image analysis software
(Figure 7), which resulted in average sizes of 6.2 ± 1.5 µm, 6.9 ± 2.1 µm, and 369.3 ± 50.7 nm
at times of 18 h, 12 h, and 6 h for the hydrothermal process. The particle size measured
from SEM is much larger than the dimension of the crystallites estimated by XRD analysis.
This is expected, as each particle measured from SEM micrographs, shown in Figure 7, can
include multiple crystallites characterized by a given crystal structure with a given orienta-
tion. These results show that the particles stop growing at 12 h; however, as shown in the
previous analysis (Figure 2), the crystalline structure of the sample obtained at 12 h does
not present the predicted tetragonal structure. EDS was performed in combination with
SEM (Figure 8) to determine the elemental composition of the samples [38]. Figures 6–8
and Table 4 show that for 18 h, the atomic ratios agree with the expected. It is clear from
SEM micrographs and EDS that the topography of the spinels, the mean particle diameter,
and the atomic ratio are affected by the hydrothermal reaction time. The higher reaction
time results in better regularity, homogeneity, compactness, and uniformity.

Table 4. Atomic ratios of Zn, Mn, and O in ZnMn2O4 spinel samples.

Atomic Ratios 6 h 12 h 18 h Predicted Ratios

Mn/Zn 1.6 1.5 1.8 2
O/Zn 2.7 - 3.5 4
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3.2. Electrochemical Studies

The electrochemical characterization of the electrodes was assessed by cyclic voltam-
metry (CV), galvanostatic charge–discharge (GCD) cycling, and electrochemical impedance
spectroscopy (EIS) at each reaction time (6 h, 12 h, and 18 h). Figure 9 displays the ZnMn2O4
nanopyramid CV curves for samples produced at different reaction times. For each sample,
the scan rates range from 1 to 100 mV s−1 in a stable voltage window from 0.15 V to 0.35 V.
As can be seen, CV curves exhibit similar shapes for all produced electrodes with different
current intensities [39]. They feature an electrical double-layer capacitive character and
excellent electrochemical reversibility, based on the absence of redox peaks and an almost
rectangular shape up to 25 mV s−1, with symmetrical anodic and cathodic halves [40]. The
voltammograms’ shape deviates from the ideal rectangle at higher scan rates as a result of
the Na+ ions reaching the samples’ outer surface, resulting in a higher diffusion resistance
and rapid polarization. The diffusion also explains the current intensity increase when
the scan rate increases. More ions reach the electrode-electrolyte interface, whereas very
few ions participate in the charge–transfer reaction [22]. Therefore, one can say that the
charge–transfer reaction rate at higher scan rates is limited by the diffusion process [41,42].
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Figure 10a compares the cyclic voltammograms of the produced materials and bare
SSM substrate at a scan rate of 10 mV s−1 [43]. The curve for the sample treated for 18 h
presents the largest area. For lower time (12 h and 6 h), the CV area declined dramatically
and was almost null for the bare substrate, revealing reduced charge–storage capacity.
However, large areas demonstrate good contact between the electrode’s surface and the
electrolyte [34].

The specific capacitance, Cs, value is determined according to the inner area of the CV
curves at various scan rates (Equation (4)) [44],

Cs =

∫
IdV

2mv∆V
(4)

where the numerator is the area of the CV curve (cathodic scan), v is the potential scan rate
(mV s−1), m is the active material mass (g), and ∆V is the potential window (V).

The corresponding values are presented in Figure 10b. The highest specific capaci-
tances for each sample produced at 18, 12, and 6 h were obtained at a scan rate of 1 mV s−1,
with values of 102, 64.1, and 28.8 F g−1, respectively.

The specific capacitance decreases as the scan rate increases, which can be explained
by the fact that at low scan rates, the electrolyte ions have enough time to penetrate the
pores of the electrode material [45]. Comparing the three samples, it is clear that the sample
treated for 18 h resulted in a better response, possibly due to its purer crystalline structure.
Kanakarj et al. [46] studied the use of ZnMn2O4 as a supercapacitor electrode. In their
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work, the material was synthesized by a one-step hydrothermal method, using nickel foil as
substrate. The results show the formation of globular nanoparticles resulting in a Cs value
of 87 F g−1 for the calcinated ZnMn2O4 at 1 mV s−1 in 1 M Na2SO4 electrolyte solution.
The herein obtained value is higher than the one reported by Kanakarj et al. [46] and other
previous studies working with the Na2SO4 electrolyte, as shown in Table 5.
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Figure 10. (a) CV curves at 10 mV s−1 of ZnMn2O4 samples prepared for 6 h, 12 h, and 18 h, and
(b) variation of specific capacitance of ZnMn2O4 samples as a function of the potential scan rate.

However, there are several reports on ZnMn2O4 with higher specific capacitance
values compared with the present work (Table 5). It is stated that the lower capacitance
may be related to using an inert electrolyte, Na2SO4, as opposed to using strongly alkaline
electrolytes such as KOH [47]. Undoubtedly, the electrolyte can affect the charge–store
mechanism. In light of this, transition metal oxides may exhibit different electrochemical
properties, depending on the electrolyte and the nature of the CV.

Table 5. Comparison of the specific capacitance of ZnMn2O4 spinel (18 h) with previous studies.

Working
Electrode Substrate Fabrication Method Electrolyte Scan Rate (mV s−1) Cs (F g−1) Source

ZnMn2O4 SSM hydrothermal Na2SO4
(1 M) 1 102 Present work

ZnMn2O4 nickel foil hydrothermal Na2SO4
(1 M) 1 87 [46]

ZnMn2O4 Ti modified solution
combustion

Na2SO4
(1.75 M) 2 38 [48]

C-ZnMn2O4 Ti modified solution
combustion

Na2SO4
(1.75 M) 2 75 [48]

ZnMn2O4 − sol-gel auto-combustion Na2SO4 (2 M) 5 96 [49]
ZnMn2O4 nickel foil hydrothermal KOH (3 M) 5 492 [33]
ZnMn2O4 nickel foil hydrothermal KOH (2 M) 5 776 [23]

Cd-ZnMn2O4 nickel foam hydrothermal KOH (2 M) 2 364 [50]

Figure 11 shows the variation of galvanostatic charge–discharge (GCD) cycling of
the spinel samples over the 0.2–0.6 V potential range at specific currents of 7, 5, 3, 2, and
1.5 mA g−1. The ZnMn2O4 electrode treated for 18 h (Figure 11c) clearly shows a greater
discharge time rate than the samples produced at 6 h and 12 h (Figure 11a,b, respectively).
Due to the electrochemical double-layer capacitor feature, all the samples showed linear
variation in the charge–discharge curves [33].
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The specific capacitance, Cs (mF g−1), was measured according to Equation (5),

Cs =
I ∆t

m ∆V
(5)

where I is the discharge current (mA), ∆t is the discharge time (s), ∆V is the potential
window (0.4 V), and m is the spinel material mass (g). A maximum specific capacitance of
754 mF g−1 was measured for the ZnMn2O4 (18 h) at 1.5 mA g−1 specific current, as shown
in Table 6.

Table 6. Specific capacitance of ZnMn2O4 measured at different specific currents.

Specific Capacitance (mF g−1)

Specific Current (mA g−1) 6 h 12 h 18 h

7 147 186 157
5 195 238 253
3 197 278 358
2 416 443 742

1.5 407 398 754

To further explore the electrochemical performance, the energy density, E (Wh kg−1),
and the power density, P (W kg−1), were obtained from the GCD curves at different specific
currents using Equations (6) and (7) [51],

E =
Cs ∆V2

2
(6)

P =
E × 3600

∆t
(7)

where ∆V refers to the potential difference in the charging and discharging processes (V)
and ∆t is the time of discharging process (s). As presented in the Ragone plots (Figure 13),
ZnMn2O4 produced at 18 h delivers the highest energy density of 60.3 Wh kg−1 at a power
density of 300 W kg−1.

To study the frequency response, EIS analysis was carried out in a wide range of
frequencies, from 100 kHz to 1 Hz, at 5 mV of maximum amplitude of the AC signal.
Usually, the impedance plots consist of a semicircle component at high frequency preceding
a linear component at low frequency [52]. From Figure 12a,b, one can see that the Nyquist
plots of all samples have similar behavior. However, a very low-diameter semicircle is only
visible on the sample treated at 12 h. The semicircle is almost absent for the other samples,
suggesting improved kinetics due to fast electron transfer rates and improved electrical
contact between the stainless steel current collector and the active electrode material [52].
Furthermore, the electrolyte resistances are displayed as the intercept of the semicircle
on the real axis [53]. The Rs values are 17.7 Ω, 12.7 Ω, and 13.6 Ω for 6 h, 12 h, and 18
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h, respectively. As the reaction time increases, the straight line deviates to the left with
an angle between 45◦ and 90◦, indicating a lower Warburg impedance for the highest
reaction time. An equivalent circuit model was drawn based on the experimental results
(Figure 12c). The model includes the solution resistance (Rs), the charge transfer resistance
(Rct), the Warburg diffusion resistance (W), and the double-layer capacitance (Cdl). The Cdl
was calculated by Equation (8),

Cdl =
1

2π f Zimgm
(8)

where f is the frequency (Hz) and Zimg is the imaginary impedance (Ω). The results for
each sample are presented in Figure 12d. The reaction time affects the Cdl, with the highest
capacitance value exhibited for 18 h.
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4. Conclusions

ZnMn2O4 spinels with pyramid-like morphology were synthesized using a hydrother-
mal method over stainless steel mesh substrates. The effect of the reaction time (6–18 h)
was studied. XRD, ATR-FTIR, XPS, SEM-EDS, and electrochemical measurements were
used to characterize the ZnMn2O4 nano/micropyramid samples. It has been found that
the samples prepared using a reaction time of 18 h yield the best results in the present
work. These samples had good crystallinity, morphology with improved uniformity, and
interesting electrochemical results, with a specific capacitance of 102 F g−1. The excellent
properties of the nanostructured material are promising for supercapacitor applications.
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