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Abstract: Improving air quality, reducing greenhouse gas emissions, and achieving independence
from fossil fuels have led most countries towards deploying solar photovoltaics (PV) in the power
distribution grid and electrifying the transportation fleet. Internal combustion engine (ICE) vehicles
are, in particular, one of the main culprits of injecting greenhouse gas emissions into the atmo-
sphere, making electric vehicles (EVs) an important tool in combating climate change. Despite their
considerable environmental and economic benefits, the integration of PVs and EVs can introduce
unique operational challenges for the power distribution grid. If not coordinated, high penetration
of PVs and EVs can result in variety of power quality issues, such as instances of overvoltage and
undervoltage, frequency fluctuations, and/or increased losses. This paper proposes a mixed-integer
multi-objective nonlinear optimization model for optimal energy dispatch in a power distribution
grid with high penetration of PV and EV resources. The model proposed here is an extension of the
traditional voltage and var optimization (VVO) into a comprehensive and coordinated control of
voltage, active power, and reactive power. A modified version of the IEEE 123-bus test distribution
system is used to demonstrate the effectiveness of the proposed solution.

Keywords: distribution grid; electric transportation; electric vehicles; reactive power control; rooftop
PV; solar photovoltaics; voltage and var control; voltage and var optimization

1. Introduction

Renewable energy resources, especially solar PV, are viewed as an effective solution
for reducing the injection of greenhouse gas emissions into the atmosphere [1]. This has
resulted in an upward trend in deploying rooftop PV resources in power distribution
systems worldwide. Although switching to renewable power generation can help us in
our fight against climate change, it is by no means sufficient. About 23% of the carbon
dioxide in the atmosphere is, in fact, caused by transportation, especially gasoline-fueled
vehicles. This has led to the global push towards electrification of the transportation fleet
by using electric vehicles [2], which offer significantly higher efficiencies compared to
their ICE counterparts. EVs convert over 77% of their stored energy into moving energy,
compared to about an average of 20% for ICE vehicles [3]. Despite their significant benefits,
both PVs and EVs can introduce operational challenges associated with power and voltage
quality in the distribution grid. Distributed PVs that operate based on maximum power
point tracking (MPPT) can negatively impact power losses, increase operational stresses
on assets, and/or cause instances of node overvoltage. EVs, on the other hand, introduce
an additional source of demand, which, if not mitigated, may result in increased power
losses, increased operational costs, localized congestion, instances of node undervoltage,
higher stresses on assets, and in extreme cases, component failures and widespread outages.
Hence, the operation, reliability, and security of the power grid must be carefully evaluated
in the presence of high PV and EV penetration levels [4].
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While at low penetration levels PV resources can operate in an uncoordinated way
with no major negative impacts on the grid, this is not the case when the penetration
level exceeds certain thresholds. Under such scenarios, the traditionally radial distribution
network can turn into one with bidirectional flows of power, which could adversely impact
line flows, power losses, node voltages, and the effectiveness of system protection [5]. A
crude way to address these issues would be to curtail the power produced by the PVs,
reducing their overall impact on grid operation. However, curtailment of PV power would
be a waste of the valuable solar resource. This further underlines the need for coordinating
the power injection from rooftop PVs with the power grid’s management of voltage and
reactive power.

The same applies to the EV demand. The various zero-emission targets adopted by
different countries, complemented by government-backed incentive programs [6], have
led to a rise in adoption of these vehicles: a trend that is likely to continue globally. EVs
charge their batteries either at the owner’s residence or at public charging stations located
in parking lots, residential neighborhoods, and/or commercial buildings. Power consumed
by an EV charger (Level 1 and Level 2) can range between 1.44 kW and 19.2 kW, which
could significantly impact the peak load. To put this in better perspective, the average
demand at a residential house can be around 1.24 kW [7]. Hence, if not mitigated, the
additional demand due to EV charging can potentially lead to localized congestion and
circuit overloads, increased systems losses, and instances of node undervoltage.

Of course, the operational challenges stated above can be alleviated by reinforcing
the distribution grid through upgrades and design redundancies. However, this is a costly
solution that can only be implemented over the long term. An alternative is to coordinate
the operation of PVs and EVs with power grid dispatch in order to ensure that power
and voltage quality expectations are met. This way, the penetration level of PVs and EVs
can be increased without jeopardizing the reliability and security of the power system [8].
Devising such a solution is the focal point of the current paper. A voltage, var, and watt
optimization (VVWO) model is proposed here for coordinated control of PV resources and
EV charging stations (EVCS) in a three-phase unbalanced power distribution grid. The
model is formulated as mixed-integer nonlinear multi-objective optimization, where the
objectives are to minimize power losses, minimize PV power curtailment, minimize EVCS
load curtailment, and minimize node voltage variations. A goal programming approach
is adopted to ensure that the Pareto optimal solution is found. It is assumed in this paper
that PVs can participate in reactive power control via their smart inverters (i.e., can either
inject or absorb reactive power), while EVCSs can only consume reactive power. The
effectiveness of the proposed model is validated using a modified version of the IEEE
123-bus test distribution system.

The rest of this paper is organized as follows: Section 2 presents a review of the
literature related to control and management of EV resources. The proposed methodology
is provided in Section 3, followed by a case study and discussion of results in Section 4.
Finally, concluding remarks appear in Section 5 of the paper.

2. EV Management in Distribution Systems: A Review of the Literature

It has been shown in the literature that high EV penetration levels can cause operational
challenges for the power grid. An agent-based model developed in [9] showed that
distribution feeders with high R/X ratios are most susceptible to EV charging load and
more likely to experience overloads. A study of various EV penetration levels in [10]
concluded that a 60% penetration can lead to a 15% rise in grid investment expenses and a
40% increase in power losses. Similar studies are reported in the literature that analyze the
impacts of EVs on the distribution grid [11–15], and have identified operational challenges
such as voltage violations in remote nodes [13], general instances of undervoltage [15], and
overloading of the main distribution substation [14].

Some researchers have studied various EV charging strategies to assess their effective-
ness in alleviating some of the negative impacts mentioned above. For instance, authors
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in [16] compared coordinated and uncoordinated charging strategies in a residential net-
work and verified that uncontrolled EV charging could cause voltage imbalance and
overload problems, while those issues would not exist with the coordinated approach.
Authors in [17] investigated the maximum permissible penetration level of EVs under
dump and smart charging strategies and concluded that the latter would allow for a signifi-
cantly higher penetration level without violating any of the power grid constraints. Other
researchers have explored the optimal allocation of EVCSs with the goal of preventing
power grid operational issues. Objective functions considered include minimizing voltage
violations and power losses [18], minimizing load curtailment [19], minimizing driving
distance and power losses while improving voltage stability [20], minimizing power losses
and improving voltage stability [21], and minimizing the investment costs and power
losses [22]. Some have considered not just the optimal locations but also the optimal
sizes (ratings) of the EVCSs in order to minimize the total costs [23], minimize investment
costs and driving distances and maximize the loading capacity [24], or minimize power
losses [25]. As another example, the authors in [26] proposed a two-stage solution, where
the optimal EVCS locations were first found using a distance coefficient, and were then used
to determine the optimal sizing based on network demand. Other objectives considered in
the literature for EVCS siting/sizing include the stability of the power grid [27] and the
charging service availability in the transportation network [28].

In parallel to this, some researchers have proposed solutions for coordinated control
of EV charging while considering distributed energy resources (DER). For instance, authors
in [29] modeled both energy storage systems (ESS) and dispatchable DER units and devel-
oped a solution to reduce operating costs, while penalizing EVCS load curtailment. Authors
in [30] introduced a framework to control EV charging/discharging and PV curtailment in
order to minimize the operational costs. They developed a coordinated model consisting
of home energy management systems and the energy management system of the distri-
bution grid and considered the information exchange between the two. A solution was
proposed in [31] for a microgrid equipped with EVs, battery energy storage, and PV, with
the goal of minimizing the charging costs and the operational stresses on grid components
caused by EV charging. A solution for coordination of PVs and EV charging was also
presented in [32] to minimize the curtailment of PV active power and EV demand, while
considering voltage issues in the distribution system. A similar approach was proposed
in [33]. Authors in [34] developed a dual-stage coordination methodology to control PV
generation and EV demand while considering voltage regulation and system losses. In [35],
a PV-EV coordination strategy was introduced while considering both transmission and
distribution networks. The main objective in this work was to enable higher penetration
levels of EVs and PVs without violating system constraints. As another example, authors
in [36] proposed a solution to enable EV charging under peak load conditions, while con-
sidering power losses, network reconfiguration, and line maintenance. Another network
reconfiguration methodology considering EV integration was presented in [37], where the
authors included the cost of carbon emissions as their objective function.

Table 1 provides an overview of the solution methods proposed in the literature
related to management of EVs in the distribution grid. The most common limitation of
the majority of existing solutions is the usage of a simplified version of the problem, either
in terms of modeling (e.g., by ignoring asymmetries and unbalanced operation) or the
solution methodology adopted (i.e., simplified linear optimization models, which can only
provide an approximate solution, or meta-heuristic optimization approaches, which cannot
guarantee global optimality). Further, multi-objective optimization models proposed in the
literature often form an aggregate objective function as the sum of individual objectives.
This approach fails to reach the Pareto optimal solution and runs the risk of having one
or more objectives dominating others. This is especially true when weight coefficients are
assigned to prioritize individual objective functions because those coefficient values are
normally subjective. The methodology proposed in this paper intends to address all of
the above issues: the power system is modeled in detail, with all equations representing
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the unbalanced power flow as well as system components incorporated into the problem
formulation, and a goal programming approach is adopted to ensure the Pareto optimality
of the final solution (see Section 3 for more details).

Table 1. Review of the literature related to management and integration of EVs in the power
distribution system.

Ref. Objective Function(s) Multi-Objective Power Flow Charger Type PV/DER System
Size

[18] Power losses - Balanced L2 - IEEE 33

[19] Energy curtailment - Balanced L1, L2 - IEEE 69

[20] Annual traveling cost of EVs to
charge the battery - Balanced L3 - IEEE 33

[21] Voltage stability index - Balanced L2 - IEEE 33

[22] Cost of system losses, EVCS
investment, feeder investment Aggregate Function Balanced L2 - IEEE 33

[23] Cost of EVCS, operation,
maintenance, power losses Aggregate Function Balanced L1, L2, L3 - IEEE 123

[24] Cost of EVCS, distance between
EVCSs, EVCS loading Aggregate Function Unbalanced,

Linearized L2, L3 - IEEE 123

[26] Cost of EVCS, operation,
maintenance, Driving distance - Balanced L1, L2 - IEEE 33

[27] System stability and safety - Balanced L2 IEEE 33

[25] Power losses, distances to EVCS Aggregate Function Balanced L3 PV, 12%
penetration IEEE 34

[28] Power losses, voltage variations,
cost of ESS and EVCS Aggregate Function Balanced L3 PV, 20%

penetration
IEEE 33,
IEEE 69

[29] Cost of operation,
EV curtailment Aggregate Function Unbalanced,

Linearized L2 DER 178 nodes

[31] EV charging maximization - - L2 PV, 10% Parking lot

[36] Power losses, cost
of maintenance - Balanced L3 - IEEE 33

[37] System losses and
carbon emission Aggregate Function - L2 - IEEE 33

Current
Paper

Min. system losses, PV active
power curtailment, EV active

power curtailment,
voltage variations

Goal Programming Unbalanced L2 PV, 100% IEEE 123

3. Problem Formulation

The problem addressed in this paper is the coordinated optimal dispatch of all active
and reactive resources in a power distribution grid, known as VVWO, for a system equipped
with voltage regulating transformers, rooftop PV, and EV charging stations. It is formulated
as a mixed-integer nonlinear multi-objective optimization model, which is solved subject
to various operational constraints.

3.1. Objective Functions

Objective functions of the proposed multi-objective framework are defined as follows.

3.1.1. System Loss Minimization

This objective function ensures that active and reactive power losses across the system
are minimized by optimally delivering power to the loads via the most appropriate routes
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and using local PV resources as much as needed. This objective function is modeled as in
Equation (1).

∀t, ∀(i, p) ∈ B, ∀(j, p) ∈ B, j 6= i :

O1 = min∑
p

n
∑

i=1


n

∑
j = 1
j 6= i

ui,j,p,t · (Ri,j,p + Xi,j,p) · I2
i,j,p,t


(1)

3.1.2. Minimization of PV Active Power Curtailment

In an effort to operate the grid in a sustainable fashion, another operational goal here
is to minimize the total amount of active power curtailed from rooftop PVs and maximize
their local generation, as expressed in Equation (2).

∀t, ∀(i, p) ∈ B :

O2 = min∑
p

n
∑

i=1
(PPV,rated

i,p,t − PPV
i,p,t)

(2)

3.1.3. Minimization of EVCS Load Curtailment

It is assumed that at any point in time, several EVs are present at each charging station,
waiting or continuing to be charged. It is further assumed that each EV owner wishes to
achieve his/her target charging level as closely as possible. However, the amount of charge
provided to the EVs must be coordinated with the operational constraints of the grid. This
objective function intends to achieve the target EV charge levels as much as technically
possible, as expressed in Equation (3).

O3 = min
N

∑
v=1

(Edes
v − Ev)+ (3)

3.1.4. Improve Voltage Profile

High PV and EV penetration levels can cause voltage rises and drops across the
system, respectively. This objective function intends to improve (flatten) the voltage profile
by achieving node voltages as close to the rated 1 per unit as possible. It can easily be
seen that in certain cases, this objective may become at odds with objective (1), e.g., when
reducing node voltages through conservation voltage reduction can help with reducing
losses (especially in networks dominated by constant impedance loads). There are several
methods to reach this goal, such as curtailing active power from PVs, coordinating EV
charging levels, and injecting/absorbing reactive power through smart inverters. The
objective function is shown in Equation (4).

∀t, ∀(i, p) ∈ B :

O4 = min∑
p

n
∑

i=1
(Vi,p,t − 1)2 (4)

3.2. Constraints

The above objective functions are optimized subject to the following operational
constraints.

Equations (5) and (6) represent the real and imaginary parts of the currents flowing
through each line in the system. These equations provide means to represent the network
model and include power flow equations in the problem formulation. The benefit of
using this approach is that the usage of phasors (and hence, the nonlinear sine and cosine



Energies 2022, 15, 9324 6 of 17

functions) can be avoided. This significantly reduces the complexity of the model and
enhances convergence.

∀t, ∀(i, p) ∈ B, ∀(j, p) ∈ B, j 6= i :

Ireal
j,i,p,t · uj,i,p =

Id,real
i,p,t · u

d
i,p − IPV,real

i,p,t · uPV
i,p + IEV,real

i,p,t · uEV
i,p

−(Gc
i,p ·Vreal

i,p,t − Bc
i,p ·V

imag
i,p,t ) · uc

i,p

+(Gi,p ·Vreal
i,p,t − Bi,p ·V

imag
i,p,t ) · uy

i,p

+
n

∑
k = 1
k 6= i

[Ireal
i,k,p,t · ui,k,p + IVR,pri,real

i,k,p,t · uVR
i,k,p]

(5)

∀t, ∀(i, p) ∈ B, ∀(j, p) ∈ B, j 6= i :
Iimag
j,i,p,t · uj,i,p =

Id,imag
i,p,t · ud

i,p − IPV,imag
i,p,t · uPV

i,p + IEV,imag
i,p,t · uEV

i,p

−(Gc
i,p ·V

imag
i,p,t − Bc

i,p ·Vreal
i,p,t ) · uc

i,p

+(Gi,p ·V
imag
i,p,t − Bi,p ·Vreal

i,p,t ) · u
y
i,p

+
n

∑
k = 1
k 6= i

[Iimag
i,k,p,t · ui,k,p + IVR,pri,imag

i,k,p,t · uVR
i,k,p]

(6)

KVL constraints are expressed for all lines as shown in Equations (7) and (8):

∀t, ∀(i, p) ∈ B, ∀(j, p) ∈ B, j 6= i :
Vreal

i,p,t −Vreal
j,p,t = Ri,j,p · Ireal

i,j,p,t − Xi,j,p · I
imag
i,j,p,t

(7)

∀t, ∀(i, p) ∈ B, ∀(j, p) ∈ B, j 6= i :
Vimag

i,p,t −Vimag
j,p,t = Ri,j,p · I

imag
i,j,p,t − Xi,j,p · Ireal

i,j,p,t
(8)

Loads and EVCSs are expressed in Cartesian form as shown in Equations (9)–(12):

∀t, ∀(i, p) ∈ B :
Pd

i,p,t = Vreal
i,p,t · I

d,real
i,p,t + Vimag

i,p,t · I
d,imag
i,p,t

(9)

∀t, ∀(i, p) ∈ B :
Qd

i,p,t = Vimag
i,p,t · I

d,real
i,p,t + Vreal

i,p,t · I
d,imag
i,p,t

(10)

∀v, ∀t, ∀(i, p) ∈ B :
PEV

i,p,v,t = Vreal
i,p,t · I

EV,real
i,p,v,t + Vimag

i,p,t · I
EV,imag
i,p,v,t

(11)

∀v, ∀t, ∀(i, p) ∈ B :
QEV

i,p,v,t = Vimag
i,p,t · I

EV,real
i,p,v,t + Vreal

i,p,t · I
EV,imag
i,p,v,t

(12)

Equations (13)–(16) represent voltage regulators (VRs), which, without loss of gen-
erality, are assumed in this paper to be ideal transformers. In all these equations, bus j is
assumed to be the secondary of the VR.

∀t, ∀(i, p) ∈ B, ∀(j, p) ∈ B, j 6= i, j→ secondary :
Vreal

j,p,t = (1 + 0.00625 · sVR
i,j,p,t) ·Vreal

i,p,t
(13)
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∀t, ∀(i, p) ∈ B, ∀(j, p) ∈ B, j 6= i, j→ secondary :
Vimag

j,p,t = (1 + 0.00625 · sVR
i,j,p,t) ·V

imag
i,p,t

(14)

∀t, ∀(i, p) ∈ B, ∀(j, p) ∈ B, j 6= i, j→ secondary :
IVR,pri,real
i,j,p,t = (1 + 0.00625 · sVR

i,j,p,t) · I
VR,sec,real
i,j,p,t

(15)

∀t, ∀(i, p) ∈ B, ∀(j, p) ∈ B, j 6= i, j→ secondary :
IVR,pri,imag
i,j,p,t = (1 + 0.00625 · sVR

i,j,p,t) · I
VR,sec,imag
i,j,p,t

(16)

Other operational constraints include the bus voltage limits according to ANSI bounds
as well as the limits on the power flow through lines:

∀t, ∀(i, p) ∈ B :
0.95 ≤ Vi,p,t ≤ 1.05

(17)

∀t, ∀(i, p) ∈ B, ∀(j, p) ∈ B, j 6= i :

[(Ireal
i,j,p,t)

2
+ (Iimag

i,j,p,t)
2
] ≤ (Imax

i,j,p )
2 (18)

Equations (19) and (20) represent the upper and lower limits for the active and reactive
powers of rooftop PVs. It is assumed here that PVs, equipped with smart inverters, can
either absorb or inject reactive power. Similar equations have been introduced for EVCSs
(see Equations (21) and (22)). However, an EVCS is assumed to only be able to absorb
reactive power from the grid, as shown in Equation (23).

∀t, ∀(i, p) ∈ B :
0 ≤ PPV

i,p,t ≤ αt · PPV,rated
i,p

(19)

∀t, ∀(i, p) ∈ B :

(QPV
i,p,t)

2 ≤ [(PPV,rated
i,p,t )

2
− (PPV

i,p,t)
2
]

(20)

∀v, ∀t, ∀(i, p) ∈ B : 0 ≤ PEV
i,p,v,t ≤ PEV,rated

i,p,v (21)

∀v, ∀t, ∀(i, p) ∈ B :

(QEV
i,p,v,t)

2 ≤ [(PEV,rated
i,p,v )

2
− (PEV

i,p,v,t)
2
]

(22)

∀v, ∀t, ∀(i, p) ∈ B : QEV
i,p,v,t ≥ 0 (23)

The total energy delivered to the individual EVs is equal to the sum of the energies
delivered in each hour during the dispatch period, as shown in Equation (24). Note that
due to the time step of analysis, i.e., one hour, powers are equal to energies in value, which
is why the time variable can be dropped. The amount of energy delivered to each EV is less
than or equal to the desired level, as shown in Equation (25), but must be as close to it as
possible, as ensured by Equation (3).

∀v, ∀(i, p) ∈ B :
T

∑
t=1

PEV
i,p,v,t = Ev (24)

∀v : 0 ≤ Ev ≤ Edes
v (25)

Finally, VR tap range is expressed as in Equation (26), which indicates that the tap
position can change in 16 steps in each direction.

∀t, ∀(i, p) ∈ B, ∀(j, p) ∈ B, j 6= i, j→ secondary :
−16 ≤ sVR

i,j,p,t ≤ 16 (26)
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The problem formulation also includes all the relevant integrality constraints that are
omitted here for brevity.

3.3. Solution Methodology

The optimization problem is solved by minimizing (1)–(4) subject to constraints
(5)–(26). The multi-objective formulation is modeled using Chebyshev goal programming,
because it allows different objective functions to strike a balance and does not artificially
prioritize one objective over the others. To model the problem, every objective function is
first assigned a target (goal) value. These values are the goals that we hope to achieve in
the multi-objective setting. Naturally, not all objectives may achieve their global optima at
the same time since they can at times be contradictory to one another. To reflect this, the
goal for each objective is set to be the same as its corresponding global optimum with a 10%
margin of error. This number is chosen heuristically and is intended to allow the objectives
of the multi-objective framework to deteriorate compared to their single objective optima.
The overall problem can then be formulated as follows:

min L (27)

Subject to:
∀ f : O f − b f ≤ T f (28)

∀ f :
b f

Tf
≤ L (29)

∀ f : b f ≥ 0 (30)

Equation (27) denotes the linear objective function, i.e., minimizing the maximum
deviation of the four objectives. Constrain (28) forces each objective function to be less
than the target value defined by the user. However, since this may not be possible within
a multi-objective framework, a deficiency variable has been added for each objective
function to change the constraints from hard constraints to soft ones. Since the unit for
each of the objectives is different, the deficiency variables are all normalized based on their
corresponding target values, and a variable L has then been defined as the upper bound for
the normalized deficiency variables, as shown in Equation (29).

4. Case Study
4.1. Test System

The proposed solution is applied to a modified version of the IEEE 123-bus test
distribution system (Figure 1) [38]. The system base is considered to be 5MVA and 4.16 kV
for power and voltage, respectively. The total peak demand of the system is 3490 kW
(0.698 p.u.) of active power and 1920 kvar (0.384 p.u.) of reactive power (see Figure 2). A
total of 42 PV panels have been added to the system, with a total rated power of 3490 kW
(0.698 p.u.), representing a 100% penetration level. The locations and ratings of PV resources
are provided in Table 2. In addition, five EVCSs have been added to the network, with a
total of 96 level 2 chargers allocated to different stations as listed in Table 3. The maximum
power of each charging point is considered to be 7.7 kW. Moreover, there are two fixed
capacitors in the system that can inject up to 750 kvar (0.15 p.u.) of reactive power. The PCC
is assumed to be a reference bus, and as such, its voltage is set to be 1 per unit. To better
regulate the voltage, the system is equipped with four voltage regulators and an OLTC,
each with 32 tap positions (16 positions in each direction, as indicated in Equation (26)).
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Table 2. Locations and power ratings of PV resources.

Node # Phase Rated Power (kW/Phase)

1 A 76.5
6 C 61.2
10 A 61.2
24 C 61.2
28 A 107.1
30 C 76.5
38 B 61.2
46 A 61.2
47 B and C 76.5
48 A, B, and C 91.8
49 A 76.5
49 B and C 61.2
51 A 76.5
55 A 76.5
56 B 107.1
59 B 91.8
64 B 91.8
65 A 76.5
65 B and C 61.2
66 A 107.1
69 A 107.1
73 C 91.8
74 C 91.8
76 A and B 107.1
79 A and B 107.1
82 A 76.5
86 B 107.1
87 B 107.1
90 B 107.1
98 A 107.1

100 C 107.1
104 C 45.9
109 A 45.9
112 A 45.9
113 A 76.5

Table 3. Locations and rated capacities of EVCSs.

Node # Number of Chargers Station Capacity (kW)

1 50 385
31 10 77
39 10 77
87 5 38.5

107 21 161.7

4.2. Simulation Results

The optimization problem in Section 3 is modeled in GAMS (General Algebraic
Modeling System) software and solved using the BONMIN (Basic Open-source Nonlinear
Mixed Integer programming) solver. The following case studies are considered here, with
results tabulated in Table 4:

• Case 0: Base case, with no PV or EVCS.
• Case 1: System with the EVCSs.
• Case 2: System with PVs.
• Case 3: Considering PVs and EVCSs in the system.
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Table 4. Simulation results for the four cases. The numbers reported are the average values for the
duration of dispatch (8 h). All values are provided in per unit, based on a base power of 5 MVA.

Case
Number

Active
Power
Losses

Reactive
Power
Losses

PCC
Active
Power

PCC
Reactive
Power

EVCS
Active

Demand

EVCS
Reactive
Demand

PV Active
Power *

PV
Reactive
Power *

Case 0 0.2835 0.159 0.908 0.3527 N/A N/A N/A N/A

Case 1 0.3271 0.148 1.0703 0.3421 0.1186 0.0004 N/A N/A

Case 2 0.0470 0.1653 0.0900 0.3604 N/A N/A 0.5816 −0.0018

Case 3 0.0898 0.1509 0.2513 0.3456 0.1186 0.00055 0.5816 −0.00044

* Reactive power from PVs can be positive when consuming reactive power and can be negative when generating
reactive power.

4.2.1. Case 0: Base Case

In this case, no PVs or EVCSs exist in the system and, hence, the two objective functions
to be minimized are the power losses in the system and deviations in node voltages, i.e.,
Equations (1) and (4). This case study is considered as the baseline for comparison against
other use cases. Figure 3 illustrate the active power consumed from the point of common
coupling (PCC), and the maximum power reached is 3490 kW at t = 12 h. As reported in
Table 4, average active power losses over the dispatch period are 1417.5 kW (0.2835 p.u,)
and node voltages lie between 0.992 and 1.012 as shown in Figure 4a. The only source of
active power in this case is the main grid, and reactive power is supported by both the
main grid and the fixed capacitor banks.
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4.2.2. Case 1: System with EVCS

5 EVCSs are added to the distribution network with a peak demand of 0.148 p.u., as
illustrated in Figure 1. As expected, the demand increases significantly, which also raises
the power losses by 10.5% compared to the base case. In addition, since the PCC is the only
source for active power and the main one for reactive support, its power injection increases
proportionally. The addition of EVCSs causes some node voltages to drop compared to the
base case (see Figure 4b). At the same time, the model ensures that the additional load from
the EVCSs does not lead to violation of any operational constraints, i.e., no line overloads
or node overvoltage/undervoltage instances.
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4.2.3. Case 2: System with PV

In this case, 42 PV panels, with a total capacity of 0.698 p.u., are added to the system,
with the irradiance curve shown in Figure 2. In comparison to the base case, the average
PCC active power drops to 0.09 p.u, since most of the demand is supplied locally. This
causes the system losses to also decrease by almost 47%. PVs participate in reactive power
compensation and generate about 0.0018 p.u. of reactive power to maintain the voltages as
close to 1 p.u as possible. This is illustrated in Figure 4c., where node voltages lie between
1.01 and 0.995 with a mean of 1.002 p.u. Similar to above, this is achieved while ensuring
all operational constraints are met.

4.2.4. Case 3: System with PV and EVCS

When both PVs and EVCSs are added to the system, demand increases (due to EVs)
but the local generation by the PVs helps with voltage regulation and losses. It can be
seen that PVs manage to respond to a significant portion of the EVCS demand, which is
why power losses are reduced compared to case 2, and significantly less active power is
provided by the PCC. Node voltages lie between 1.006 p.u and 0.994 p.u, as illustrated in
Figure 4d. With the proposed solution, a high level of PV penetration is reached while also
accommodating the 96 L2 chargers. The optimal values of the objective functions in this case
are provided in Table 5. The single objective values (column 2, Table 5) are associated with
each objective function being solved in isolation. The goal values are assigned considering
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a small percentage of deterioration with respect to the single optima (column 3, Table 5).
The solution to the multi-objective model (column 4, Table 5) indicates that two of the
objective functions fail to achieve their single objective optima. This is normal within a
multi-objective framework since many objective functions may be contradictory to one
another, which makes it impossible to achieve all single objective optima simultaneously.

Table 5. Optimal values for single objectives and the multi-objective for Case 3.

Objective Function Single Objective Value Goal Value Multi-Objective Value

System losses 0.0698 0.0768 0.0898
PV curtailment 0 0.00001 0
EV curtailment 0 0.00001 0

Node voltage variations 0.0016 0.00176 0.012

4.3. Discussion

If not coordinated, high penetration levels of PVs and EVCSs in the distribution
grid can lead to operational issues such as node overvoltage or undervoltage instances,
increased power losses, and possible curtailment of EV demand. The results of the current
study indicate that optimal coordination between PV and EVCS resources can lead to
improved performance in the power distribution system without violating any operational
constraints. Such an approach can facilitate high penetration levels of renewable energy
resources in the power distribution grid, even as high as 100%. Coordinated PV and EVCS
control can also maintain a relatively flat voltage profile. As expected, local PV generation
helps with the increased demand due to EVCS load, while also significantly reducing
power losses, e.g., a reduction of 68% compared to the base case in this study.

In such multi-objective settings, it is important to find the Pareto optimal solution
because some objective functions may be contradictory to one another. Heuristic approaches
for prioritizing objectives over one another or sequential models in which objectives are
solved in the order from the most important to the least important fail to provide Pareto
optimality and their outcome will be subjective.

The problem of VVWO, as studied in this paper, can suffer from the curse of dimen-
sionality. This is especially true when the three-phase unbalanced nature of the grid needs
to be taken into account (as was the case in this paper). For larger scale distribution systems
or to study longer time horizons, it may be necessary to use alternative methodologies
to improve tractability and convergence. One option could be a decentralized approach
in which the problem is solved as a multi-level optimization model, each layer focused
on a specific part of the grid, with an upper layer, which would coordinate their actions.
An alternative would be to reduce/remove nonlinearities by using a simplified load flow
model (unlike the one used in this paper); however, such an approach will likely provide
sub-optimal results and may not be able to guarantee that all constraints are met at all times.

The model proposed in this paper is deterministic in nature, i.e., it is assumed that the
hourly levels of solar irradiance and EVCS demand are known. In general, this may not
be the case. EV demand can demonstrate significant variability during the course of the
day and solar irradiance, especially on windy and cloudy days, can be highly stochastic. In
order to obtain a better picture of the impacts of PVs and EVs on the power distribution
grid, these uncertainties need to be incorporated into the problem formulation. To do
this, the proposed model can be extended by using two-stage or multi-stage stochastic
programming approaches (when probability distributions of uncertain parameters are
known) or developing robust optimization models (when only the ranges of uncertainties
are known, but not the associated distributions).

5. Conclusions

Electrification of the transportation fleet and reverting to renewable energy resources
such as solar PV are effective steps towards achieving sustainability and slowing down
global warming. Despite their clear economic and environmental benefits, PVs and EVs,
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when deployed at high penetration levels, may introduce operational challenges in the
power distribution system. If not coordinated with the distribution management system,
they may lead to severe power and voltage quality issues and may in extreme cases
jeopardize the stability and security of the power grid. A solution was proposed in this
paper to integrate both PVs and EVs into the voltage and reactive power control of the
grid. The proposed solution provides optimal dispatch strategies for rooftop PVs and
EV charging stations such that operational constraints of the system, e.g., node voltages
and line flows, are maintained. The model was formulated as mixed-integer nonlinear
multi-objective optimization, where the objectives are to minimize power losses, minimize
active power curtailment of PVs, minimize demand curtailment of EVCSs, and minimize
node voltage deviations from rated values. This multi-objective model was solved using
Chebyshev goal programming in order to find the Pareto optimal solution so that no single
objective function dominates others. The effectiveness of the proposed model was validated
on a modified version of the IEEE 123-bus test distribution system, considering a three-
phase unbalanced system. The simulation results indicate that with optimal coordination
between PVs, EVCSs, and other voltage control devices in the system, it is possible to
support up to 100% PV penetration while accommodating variable EV demand without
violating any system constraints. In this study, the hourly levels of solar irradiance and
the demand levels of EVCSs were assumed to be known. Future research will focus on
incorporating uncertainties into the problem formulation.
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Nomenclature

Indices and Superscripts
c superscript to indicate fixed capacitor.
d superscript to indicate demand.
EV superscript to indicate electric vehicle.
i, j, k index for buses (nodes).
imag superscript to indicate the imaginary part of a complex number.
f index for objective functions of the multi-objective framework.
p index for phases.
pri superscript to indicate the primary side of a transformer or a voltage regulator.
PV superscript to indicate solar PV.
rated superscript to indicate rated power.
real superscript to indicate the real part of a complex number.
sec superscript to indicate the secondary side of a transformer or a voltage regulator.
t index for time.
v index for electric vehicles.
VR superscript to indicate a voltage regulator.
y superscript to indicate shunt admittance.
Sets
B set of buses (nodes).
T time period of study.
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Parameters
Bi,p susceptance of the shunt admittance for bus i that is connected to phase p.
Bc

i,p susceptance of fixed capacitor for bus i that is connected to phase p.
Gi,p conductance of shunt admittance for bus i that is connected to phase p.
Gc

i,p conductance of fixed capacitor for bus i that is connected to phase p.
Imax
i,j,p maximum current that can flow through the line between i and j, associated with phase p.

PEVCS, rated
i,p rated active power of EVCS at bus i connected to phase p.

Pd
i,p active power of load at bus i connected to phase p.

PPV, rated
i,p rated active power of PV at bus i connected to phase p.

Qd
i,p reactive power of load at bus i connected to phase p.

Ri,j,p resistance of the line between buses i and j that is connected to phase p.
Tf target value for the objective function f in the multi-objective framework.

ui,j,p
binary parameter indicating if there is a line between bus i and j, associated with
phase p (=1, if a line exists, and 0 otherwise).

uc
i,p

binary parameter indicating if there is a fixed capacitor connected to phase p of
bus i (=1, if a fixed capacitor is connected, and 0 otherwise).

ud
i,p

binary parameter indicating if there is a load connected to phase p of bus i (=1, if a
load is connected, and 0 otherwise).

uPV
i,p

binary parameter indicating if there is a PV connected to phase p of bus i (=1, if PV
is connected, and 0 otherwise).

uVR
i,j,p

binary parameter indicating if there is a voltage regulator connected to phase p
between buses i and j (=1, if a VR is connected, and 0 otherwise).

uy
i,p

binary parameter indicating if there is a shunt admittance connected to phase p of
bus i (=1, if a shunt admittance is connected, and 0 otherwise).

Xi,j,p reactance of the line between buses i and j that is connected to phase p.
αt irradiance level at time t.
Variables

bf
Deficiency variable associated with the objective function f in the
multi-objective framework.

Ireal
j,i,p

real part of the current that flows in the line between buses i and j associated with
phase p.

Iimag
j,i,p

imaginary part of the current that flows in the line between buses i and j associated
with phase p.

IEVCS,real
i,p real part of the current consumed by EVCS at bus i connected to phase p.

IEVCS,imag
i,p imaginary part of the current consumed by EVCS at bus i connected to phase p.

Id,real
i,p real part of the current consumed by load at bus i connected to phase p.

Id,imag
i,p imaginary part of the current consumed by load at bus i connected to phase p.

IPV,real
i,p real part of the current injected by PV at bus i connected to phase p.

IPV,imag
i,p imaginary part of the current injected by PV at bus i connected to phase p.

IVR,pri,real
i,j,p

real part of the current at the primary side of the VR that is located between
buses i and j, associated with phase p.

IVR,pri,imag
i,j,p

imaginary part of the current at the primary side of the VR that is located
between buses i and j, associated with phase p.

IVR,sec,real
i,j,p

real part of the current at the secondary side of the VR that is located
between buses i and j, associated with phase p.

IVR,sec,imag
i,j,p

imaginary part of the current at the secondary side of the VR that is located
between buses i and j, associated with phase p.

L maximum deviation of the objective functions from the target values.

Of
optimal value for the objective function f in the multi-objective
optimization framework.

PEVCS
i,p active power of EVCS at phase p of bus i.

PPV
i,p active power of PV at phase p of bus i.

QEVCS
i,p reactive power of EVCS at phase p of bus i.

QPV
i,p reactive power of PV at phase p of bus i, negative value indicating absorbing.
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sVR
i,j,p

integer variable representing the tap position of the VR located between buses i
and j, associated with phase p.

Vreal
i,p real part of the voltage of bus i at phase p.

Vimag
i,p imaginary part of the voltage of bus i at phase p.

Vi,p voltage magnitude of bus i at phase p.
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