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Abstract: Demand-responsive control of electrically heated hot water storage tanks (HWSTs) is
one solution, already present in the building stock, to stabilise volatile energy networks and markets.
This has been put into sharp focus with the current energy crisis in Europe due to reduced access to
natural gas. Furthermore, increasing proportions of intermittent renewable energy will likely add to
this volatility. However, the adoption of demand response (DR) by consumers is highly dependent
on the economic benefit. This study assesses the economic potential of DR of centralised HWSTs
through both an analysis of spot price data and an optimisation algorithm approximating DR control.
The methods are applied to a case study apartment building in Norway using current pricing models
and examine the effect of the demand profile, electricity prices, heating power and storage capacity
on energy cost and energy flexibility. Unit cost savings from DR are closely linked to the variation
in unit energy price during the optimisation period. Increasing the storage capacity or the heating
power increases the flexibility with a diminishing rate of return. However, increasing storage capacity
does not result in cost savings as additional heat losses are greater than the saving from shifting
demand, except for during highly volatile electricity price periods. Changing the minimum setpoint
temperature improves the cost curve as a greater thermal storage capacity can be achieved without
increasing heat loss. Systems utilising a smaller heating power are more economical due to the
dominant role of the monthly price related to the peak energy demand of the system.

Keywords: energy storage; energy flexibility; domestic hot water; demand side management; real
time pricing

1. Introduction

The European energy market has experienced an extreme period of high prices and
price volatility between 2021 and 2022, initially due to economies reopening after the
COVID-19 pandemic and then due to the supply squeeze of natural gas as a biproduct of
the Russia–Ukraine war [1]. In response, there are increased calls to transition from fossil
fuel-derived energy to renewable sources [2]. However, the increased intermittency of
renewable energy, particularly solar and wind, requires greater energy flexibility to balance
supply and demand within energy grids [3]. The energy system must move from one
where supply matches demand (supply side management) to one where demand matches
supply (demand side management). Shifting energy demand to another point in time,
termed demand response (DR), has the potential to both mitigate the current volatility
in the energy market and balance the future energy grid powered by renewables. DR is
achieved through either directly shifting processes or by short-term storage of energy for
later use. Traditionally, DR has been managed centrally by energy companies in order
to balance the energy grid. Shifting of processes is administered via contracts with large
industrial and office buildings. Storage is provided by a centralised energy storage, such as
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pumped hydro, thermal storage pits and, increasingly, grid batteries. Direct management of
residential buildings, with their many units and small demands, has not been practical [4].

The marketisation of the electricity market and the introduction of smart meters
improves the feasibility for smaller scale DR. The wider adoption of small-scale DR could
potentially reduce CO2 emissions from energy generation, as high energy prices often
represent periods of higher demand than supply, which require the use of peaking power
plants or importing electricity, often with higher CO2 emissions [5]. Similarly, DR can take
advantage of periods of excess renewable energy generation, where energy prices are low.
There are already examples of explicit DR where suppliers manage certain appliances on
behalf of their customers, such as domestic hot water tanks [6]. The supplier acts as an
aggregator of many customer demands passing on a portion of the savings [7]. Implicit DR
is also possible with individual consumers responding to real time pricing (RTP), shifting
their energy use to when energy is cheaper [8]. For implicit DR to be widely adopted, there
must be a clear financial benefit to the consumer [9]. Where RTP is used, DR can help to
reduce electricity bills, which have received a greater focus due to recent increases in energy
prices. Additionally, incentives for DR could be offered by energy companies as paying for
consumer DR could be more cost effective than centralised storage [10] or peaking power
plants [9].

Consumer RTP requires a market-based power system and smart meters to measure
energy use in smaller timesteps, commonly one hour. The smart meter roll-out across
the EU has been uneven, with only Spain, Italy, Estonia, Finland, Sweden and Norway at
or near 100% coverage [11]. Norway was the first country to implement a market-based
power system in 1991 [12] and completed the installation of smart meters in all properties
in 2019 [11]. This has been accompanied by a wide availability of “spot price” electricity
contracts which charge the consumer the cost of electricity based on the hourly RTP of
the Nord Pool electricity exchange. Over 75% of households are now on this type of
contract [13]. Furthermore, some electricity providers are encouraging manual load shifting
by providing alerts to customers via their apps for periods of high prices [14,15]. Therefore,
Norway is well positioned to be a testbed for innovative technologies within DR.

Consumer DR requires more intelligent controls such as rule-based control (RBC)
and model predictive control (MPC) than the widely used PID (proportional–integral–
derivative) control [16]. PID control is a responsive control, which steers a system towards
a setpoint value based on formulas that use measured values as inputs. The combination of
proportional, integral and derivative terms in the formula minimises the delay and over-
shoot of the response. RBC utilises a set of predefined rules with upper and lower setpoints,
allowing for different responses depending on input data. MPC is a predictive control,
employing a dynamic building model, which can generate an optimised control strategy
that takes the future state of the system into account. The future state is modelled using
the current state of the system and forecast information such as weather, occupancy and
energy pricing [17]. Electricity pricing is a good proxy for the level of imbalance between
supply and demand within the energy grid. The optimisation can be for a combination
of factors, such as thermal comfort and energy cost, and can include constraints on the
controlled variables. Due to dependency on simulation and the computing power required,
the practical use of MPC has only become relevant during the past decade [18].

Energy storage within residential buildings offers greater DR potential than the direct
shifting of demands as these are limited to deferable loads (appliances where the time
of operation can be shifted without negatively impacting the resident), such as fridges,
freezers, dishwashers and washing machines. Consumer management of these loads has
been shown to produce insignificant results [19], while automated control may not suit all
residents [20]. In addition, the potential savings to the individual are small as the shifted
energy use is relatively small. Electricity can be stored either chemically or as thermal
energy. The economic feasibility of chemical storage (batteries) is highly dependent on the
initial costs of batteries, which are currently too high [21]. The batteries in electric vehicles
could be utilised instead, as they stand idle for long periods [4]. However, the pricing model
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and technology are still in development. The extra wear placed on the battery through
increased charging and discharging cycles could mean that price responsive charging of the
vehicle is preferred by most owners, which can offer similar savings through load shifting.

In heating dominant climates such as Norway, space heating and domestic hot water
(DHW) represent the largest proportion of energy demand, meaning thermal energy storage
(TES) offers considerable potential for DR in residential buildings. Thermal energy can be
stored in hot water storage tanks (HWSTs) or in the building’s thermal mass [22]; however,
they are not optimised for DR. In northern Europe, HWSTs are a common element in
DHW systems and as buffering elements in heating systems, especially those utilising
solar collectors, heat pumps or district heating [23]. The heating element can be a separate
element or integrated in the HWST [24]. HWSTs are currently sized according to rules-of-
thumb. Thermal mass is present in all buildings but usable storage depends on the type of
construction and the level of envelope insulation [25]. The utilisation of thermal mass is
limited by thermal comfort requirements and higher heat losses [22]. Additionally, DR of
thermal mass requires a more complicated control which accounts for thermal comfort and
the heating system [26].

HWSTs buffer heating and DHW demand peaks, reducing the required capacity of
the heating source and allowing more efficient operation for longer periods at the nominal
power [27]. HWSTs are also good stores for the unregulated supply from solar thermal
collector systems [28] and offer the most cost-effective form of storage for excess electricity
produced by photovoltaic panels, increasing self-consumption [29]. HWSTs have greater DR
potential than building thermal mass due to their higher thermal capacity by volume [22].
By charging the tank (increasing its temperature), it is possible to store energy for later
use. Tank stratification and mixing values allow for the average tank temperature to vary
without affecting the output temperature delivered to heating or DHW, minimising the
impact of DR on the consumer. The variation of setpoint temperature of HWSTs would
not affect the end user as is the case with setpoint variation of room temperatures, where
thermal comfort has to be factored in [30]. Therefore, the control for HWSTs only needs
to meet the energy required for heating and DHW, simplifying the model. Furthermore,
where HWSTs are heated by electrical heaters, they offer a significant demand–flexibility
potential, with the current stock of electric water heaters in Europe estimated to have
a flexible capacity equivalent to the entire installed power generation capacity of the Czech
Republic [31]. In Norway, the historically low electricity prices have resulted in almost
100% of water heaters being electric, the highest in Europe.

Research into the control of electrically heated HWSTs has focused on the accuracy of
the tank model and the correct functioning of the control. Kepplinger et al. [32] developed
and simulated a DR control for an electrically heated HWST which showed cost and energy
savings of up to 12% relative to conventional operation. This was then field tested over
18 days, resulting in 3.6% energy cost savings without affecting user comfort [33]. The
control used a bulk model for the HWST which was shown to be robust enough when used
with a stratified HWST. More recently, Ritchie et al. have developed more detailed models
of the HWST which better account for predicted demand and legionella prevention while
minimising energy use [34].

Several studies have investigated DR control of HWSTs using RTP in Norway. Olivera
et al. [35] found DR control strategies provided worthwhile savings over a constant setpoint
strategy especially where hourly prices become more volatile. As the energy price pattern
had predictable peaks and troughs, a less complicated control could achieve similar savings
with a control strategy to charge during the night resulting in similar savings to a complex
strategy. The study used spot prices from February, which are often higher than the rest of
the year, potentially leading to a favourable result. Furthermore, the study just used spot
prices, as consumer RTP contracts were not available when the research was undertaken.
Nord et al. [36] showed that the cost optimal tank size for price responsive control is highly
dependent on the additional fees that make up electricity pricing. A strategy with a fixed
grid fee had a cost optimal tank three times the reference size. A strategy with a variable
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fee, based on the system’s peak power, had a cost optimal tank six times the reference size.
The study used measured DHW profiles recorded for 50 days. Sørensen et al. [37] further
developed this research by applying four rule-based control strategies to the measured data
using a simplified tank model based on energy capacity. The four control strategies were
peak power limitation; spot price saving where each day was divided into low, medium
and high price periods; flexibility sale with no heating in peak periods; and maximising
self-consumption of a photovoltaic system. The reduced peak power and flexibility-sale
strategies were effective in reducing cost, although the price paid for flexibility was purely
hypothetical as no such schemes exist in Norway. Spot prices provided limited savings
when using 2019 prices, matching when the measured data were recorded. The savings
were improved when using price data from 2021 showing a need to analyse year-on-year
variation. Furthermore, Sørensen et al. noted that spot price savings could have been
improved by using an MPC.

All these studies are successful in showing the marginal benefit of DR over an existing
reference case but have not fully investigated the parameters which impact the economic
viability of the technology in the current electricity market. The parameters include the
demand profile, energy price profile, heating power capacity and the storage capacity.
Furthermore, there is a need for a better understanding of electricity price patterns over
multiple years. This is particularly important for DR with TES, as the total energy use is
often higher due to the additional heat losses from energy storage [38]. To the authors’
knowledge, there is also a lack of simple analysis tools which can be used to quickly
assess the feasibility of DR in an electricity market before investing time in the technical
development of the control. Such tools would also help in developing future price structures
to increase the use of DR.

The focus of this research is on assessing the economic potential of implicit DR of
HWSTs under current pricing policies by approximating the savings achieved by an optimal
control using a simplified analysis method. An optimal control strategy represents a best-
case scenario for DR. A pair of algorithms were written to create a charging profile to
minimise the unit cost of energy which was then adapted to the available capacity of
HWSTs. Each analysis used a full year of historic electricity prices, including fees and taxes
split into 24-h periods, as this is the availability of price data from the day-ahead Nord
Pool market. The past nine years of electricity spot prices were compared to determine
the potential variation in savings. Based on this analysis, three years were chosen to
represent average spot prices (2019), volatile spot prices (2018) and highly volatile spot
prices (2021). Three different demand profiles were optimised to three different years of
electricity spot prices for a range of heating powers. The resulting charging profiles were
then used to parametrically study the effect of varying the number of HWSTs and their
minimum setpoint temperature. The energy cost and energy flexibility in each case were
calculated against a reference system for the demand profiles. The results of this study are
used to discuss the effect of each parameter on the potential cost savings from DR and the
measures to improve the economic viability of DR.

2. Methodologies
2.1. Inputs
2.1.1. Electricity Prices

The electricity price varies for each hour based on the Nord Pool energy market. The
end-user price consists of the spot price, grid tariff, electricity tax and VAT. In addition,
there can be small fees for the electricity provider and electricity certificates. The electricity
provider fee can be applied as a monthly fixed cost, a fee per kWh or a combination of both.
The electricity certificate fee is a fixed fee applied per kWh. These fees are dependent on
contracts and represent a very small component of the electricity price. Therefore, they
were not included in this analysis. The build-up of the unit cost of electricity is shown in
Table 1 using the 2021 energy tax. Hourly spot prices for the Oslo region for the nine years
between 2012 and 2021 were acquired from Nord Pool [39]. The grid tariff varies seasonally,
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and the spot price fluctuates hourly. In addition, there is a monthly cost comprising a fixed
grid tariff and a variable grid tariff based on the peak electricity demand in that month,
shown in Table 2. Small private customers currently pay a lower fixed cost price and no
variable part, although this is changing from 1st of July 2022 [40]. As the case study’s
heating system is a large centralised system, a business grid tariff for 2021 is used.

Table 1. Unit cost model for 1 kWh of electricity. 1 NOK ≈ 0.1 EUR.

Spot Price Grid Tariff Energy Tax VAT

Electricity Hourly spot
price

0.070 NOK
(November through March)

0.039 NOK
(April through October)

0.1669 NOK +25%

Table 2. Monthly cost model for electricity [41]. 1 NOK ≈ 0.1 EUR.

Period Fixed Cost/NOK Peak Cost (Max kW in the
Month)/NOK/kW

December through February

340

120

March and November 67

April through October 22

2.1.2. Thermal Energy Demand Profile

For the purpose of this study, the demand profiles were taken from a building en-
ergy simulation of a proposed affordable apartment complex in Sørumsand (59◦58′54′′ N,
11◦14′25′′ E), Norway, roughly 20 km east of Oslo. It is proposed that four blocks will
be built, four floors high, providing 68 units and a total of 3450 m2 of heated living area.
Figure 1 shows their arrangement. The blocks are built on top of an unheated basement
which contains parking and the technical room for the buildings. Three thermal energy pro-
files were generated using the building energy simulation software SIMIEN 7 [42], which
meets European Standard EN ISO 13790 [43] and is validated according to EN 15265 [44].
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Two heating strategies based on NS 3431 (Norwegian standard) were examined:
a variable setpoint strategy, with a setpoint of 22 ◦C (7:00 to 23:00) and setback of 20 ◦C
(23:00 to 7:00); and a constant setpoint of 22 ◦C. The heating system was deactivated
during the summer (19 May to 8 September). The resulting demand profiles are shown in
Figures 2 and 3. The DHW profile is according to Norwegian energy simulation standard
SN-NSPEK 2020:3031 [45] and is the same for each 24 h period. The demand profile is
shown in Figure 4. Similar standardised profiles have been shown to be accurate where the
demands of multiple residential units were combined [46]. The resulting monthly demand
profiles of the heating strategies and DHW are shown in Figure 5. All the profiles include
the energy required for the simulated distribution losses.
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2.1.3. HWST

The number of tanks and the setpoints were varied from starting conditions based
on common praxis for the project. For heating, this was one 1000 L tank with a 55 ◦C
setpoint. For DHW, this was three tanks with a 65 ◦C setpoint. Tank sizes were varied
in 1000 L increments and setpoints (Tsetpoint) were decreased in 5 ◦C increments down to
45 ◦C for heating and 55 ◦C for DHW. A maximum tank temperature of 95 ◦C was assumed.
The heating elements supplying the system were varied in 5 kW increments. The initial
cost of one 1000 L HWST (including electric heating element) according to the Norwegian
Pricebook was 42,000 (≈4200 EUR) with a 20-year lifetime [47].

The key parameter for determining the charging profile is the heat loss associated
with the storage of energy. A high heat loss makes load shifting difficult over long time
periods. The HWST was based on a commercially available 1000 L tank, modelled as
a cylinder 2.2 m high and 1 m in diameter. It was assumed to have 100 mm of insulation
with a thermal conductivity of 0.037 W/(m·K). The internal dimensions were thus 2 m
high and 0.8 m in diameter. The resulting surface area was 6.03 m2. In addition, a 0.2 W/K
loss was assumed for each of the four connection points based on the findings of Steinweg
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et al. [48]. The specific heat loss, Hs, for each tank was therefore 3.03 W/K. The heat loss of
storing an additional kWh of thermal energy was calculated as:

Hs·(Ts + 1− Ta)− Hs·(Ts − Ta)

CT+1 − CT
=

Hs

CT+1 − CT
, [W/kWh], (1)

where Ts is the tank temperature and Ta is the ambient temperature around the tank
(assumed constant at 18 ◦C). The volumetric heat capacity of water (CT) was defined as:

CT =
cp,w·ρw

3600
,
[
kWh/(m3·K)

]
. (2)

The values used for the heat capacity (Cp,w) and density (ρw) of water are those for
a constant pressure equivalent to atmospheric pressure at sea level. As Cp,w and ρw vary
with temperature, the resulting range of heat loss within the working range of 45 ◦C to
95 ◦C was from 2.99 W/kWh to 3.27 W/kWh. In order to simplify the model, a heat
loss of 3.13 W/kWh (equivalent to 65 ◦C) was taken as the first value. The effect of this
simplification has been expanded upon in the discussion section.

2.2. Cost Saving Analyses

The potential economic benefit of DR of HWSTs was examined through two analyses,
outlined in Figure 6. The first was a simple analysis of energy price data. The second
utilised a set of algorithms that created an HWST charging strategy to minimise unit energy
cost based on electricity price, heating power and a thermal energy demand profile, which
was then adapted with a second algorithm to the available storage capacity. Although
an optimal strategy is unlikely in practice, this simplified model delivers a best-case result
to quickly evaluate the potential economic benefit. It is then possible to further analyse
chosen scenarios in detail using simulation of a control system.
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Both analyses worked on an end-of-day time horizon with price information available
from 14:00 on the previous day. The Nord Pool auction closes at 12:00 with price data avail-
able within the following hour [12]. An additional hour was assumed to mitigate potential
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communication problems. This meant that the charging profile would be optimised in 34-h
iterations. Both analyses worked on the principle that the control would only charge the
tank when necessary, preloading it with the required energy to meet the heating demand
for future hours. Otherwise, the HWST was kept at the lower setpoint temperature to
minimise heat loss.

2.2.1. Analysis of Unit Cost Savings Using Electricity Price Data

A simple analysis of the electricity price data was first undertaken to assess the
potential for savings from DR. The last nine years of electricity price data were analysed to
find the possible year on year variation. The analysis did not consider any system limits
for the heating element or HWST capacity. Therefore, the results represent the maximum
energy savings possible from shifting heating energy within the time horizon. For each
timestep, the electricity price was compared to the price in the preceding hours until 14:00
the previous day. The price for each preceding hour was calculated as:

Price0−n = Pricen · Additional Heat Lossn, [NOK/kWh], (3)

where n is the number of hours preceding the current timestep. The price for each preceding
hour factors in the additional heat loss from the longer storage. The potential saving was
then found by subtracting the lowest found price from the timestep price. The process was
repeated for each timestep. The resulting timestep savings were then multiplied by the
hourly thermal energy demand profile. Four scenarios for the delivery of the demand were
analysed which represent common electric heating solutions:

• Scenario 1: Electric water heater.
• Scenario 2: Shifting from heat pump to heat pump, maintaining COP. Unit cost savings

are divided by the heat pump COP. For both heating profiles, a COP of 4 was used.
For DHW, a COP of 3 was used. These values were fixed and based on measured
seasonal values [49] as a simplification for this analysis.

• Scenario 3: Shifting from heat pump to heat pump with reduced COP. As the storage of
thermal energy for later use often requires higher tank temperatures, the performance
of the heat pump will likely be reduced. The reduced COP is half of those used in
scenario 2.

• Scenario 4: Shifting from heat pump to electricity. Extending scenario 3 to a situation
where the heat pump is no longer able to provide hot enough water temperature to
charge the HWST and so an electric heating coil must be used. In other words, the
COP is reduced to 1.

2.2.2. Approximation of an Optimal DR Control to Minimise Energy Cost

An algorithm was written to create a charging profile to minimise unit energy cost
according to the available heating power, the demand profile and the electricity price over
the 34-h iteration time. The algorithm was limited to heating systems with a constant
system efficiency independent of the outside conditions or load on the system. Based on
the analysis of historic electricity spot prices, three years were chosen to represent average
electricity prices (2019), volatile electricity prices (2018) and highly volatile electricity
prices (2021).

The potential cost saving for each timestep was found by multiplying the timestep’s
demand by each of the electricity prices for the timestep hour and the preceding hours
until 14:00 the previous day, using Equation (3). These were ranked (Ranktimestep) by cost
saving. This was repeated for all 24 timesteps in the iteration, which were ranked (Rankhour)
by their maximum cost saving.

The demand for the highest Rankhour was then placed at the timestep which had the
highest Ranktimestep for that Rankhour. If this exceeded the capacity of the heating power,
the demand to fill that capacity was placed at the highest Ranktimestep and the remaining
demand was placed at the next highest Ranktimestep. This process was repeated for each hour
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in descending order of Rankhour, as shown in Figure 7. The available heating power at each
timestep was equal to the maximum capacity of the heating element minus any demand
assigned to that timestep. This included the demands assigned in the previous iteration
which overlap the first 10 h of the 34-h optimisation period. Where it was not possible to
distribute all of an hour’s demand within its preceding timesteps, any remaining demand
was added to the next proceeding timestep which did not create a deficit in the energy
balance. This, in essence, moves a higher ranked hour’s demand to a later point to make
space for the lower ranked hour’s demand.

Energies 2022, 15, x FOR PEER REVIEW 10 of 27 
 

 

2.2.2. Approximation of an Optimal DR Control to Minimise Energy Cost 

An algorithm was written to create a charging profile to minimise unit energy cost 

according to the available heating power, the demand profile and the electricity price over 

the 34-h iteration time. The algorithm was limited to heating systems with a constant sys-

tem efficiency independent of the outside conditions or load on the system. Based on the 

analysis of historic electricity spot prices, three years were chosen to represent average 

electricity prices (2019), volatile electricity prices (2018) and highly volatile electricity 

prices (2021). 

The potential cost saving for each timestep was found by multiplying the timestep’s 

demand by each of the electricity prices for the timestep hour and the preceding hours 

until 14:00 the previous day, using Equation (3). These were ranked (Ranktimestep) by cost 

saving. This was repeated for all 24 timesteps in the iteration, which were ranked (Rankhour) 

by their maximum cost saving. 

The demand for the highest Rankhour was then placed at the timestep which had the 

highest Ranktimestep for that Rankhour. If this exceeded the capacity of the heating power, the 

demand to fill that capacity was placed at the highest Ranktimestep and the remaining de-

mand was placed at the next highest Ranktimestep. This process was repeated for each hour 

in descending order of Rankhour, as shown in Figure 7. The available heating power at each 

timestep was equal to the maximum capacity of the heating element minus any demand 

assigned to that timestep. This included the demands assigned in the previous iteration 

which overlap the first 10 h of the 34-h optimisation period. Where it was not possible to 

distribute all of an hour’s demand within its preceding timesteps, any remaining demand 

was added to the next proceeding timestep which did not create a deficit in the energy 

balance. This, in essence, moves a higher ranked hour’s demand to a later point to make 

space for the lower ranked hour’s demand. 

 

Figure 7. Graphical representation of demand profile optimisation for a simple example of a heating 

element with a 5 kW capacity. Green shows placement of an hour’s demand at that timestep. Red 

shows where demand placement is not possible as the capacity of that timestep has already been 

reached. 

The resulting charging profile was then applied to a second algorithm which adjusted 

the charging profile according to the available heat storage capacity and resulting heat 

losses. The energy stored in the HWSTs at each timestep (qtank) was calculated using the 

following formula: 

𝑞𝑡𝑎𝑛𝑘,𝑛 =   𝑞𝑡𝑎𝑛𝑘,𝑛−1  + (𝑄𝑐ℎ𝑎𝑟𝑔𝑒,𝑛 − 𝑄𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒,𝑛), [kWh],  (4) 

where Qcharge is the heat added according to the optimised charging profile and Qdischarge is 

heat used according to the demand profile. For the reference system, it is assumed that 

Qcharge was equal to Qdischarge at each timestep. The temperature and additional heat losses of 

the HWSTs for each timestep were calculated as: 

Figure 7. Graphical representation of demand profile optimisation for a simple example of a heating
element with a 5 kW capacity. Green shows placement of an hour’s demand at that timestep.
Red shows where demand placement is not possible as the capacity of that timestep has already
been reached.

The resulting charging profile was then applied to a second algorithm which adjusted
the charging profile according to the available heat storage capacity and resulting heat
losses. The energy stored in the HWSTs at each timestep (qtank) was calculated using the
following formula:

qtank,n = qtank,n−1 +
(

Qcharge,n −Qdischarge,n

)
, [kWh], (4)

where Qcharge is the heat added according to the optimised charging profile and Qdischarge
is heat used according to the demand profile. For the reference system, it is assumed that
Qcharge was equal to Qdischarge at each timestep. The temperature and additional heat losses
of the HWSTs for each timestep were calculated as:

Ttank = Tmin +

(
qtank
qmax

·(Tmax − Tmin)

)
, [◦C]. (5)

The maximum temperature (Tmax) is set at 95 ◦C. The minimum temperature (Tmin) is
defined from the starting condition and decreased in 5 ◦C increments. Here, the relationship
between energy storage and the water temperature is simplified to a linear correlation.
The energy storage capacity of the tank (qmax), defined in kWh, is calculated based on the
temperature range and number of tanks:

qmax = Vtank·((Tmax·CT,max)− (Tmin·CT,min)), [kWh], (6)

where CT is calculated according to Equation (2). The heat capacity (cp,w) and density (ρw)
of water are set based on the minimum and maximum tank temperatures. Finally, the heat
loss at each timestep was calculated as:

qS,Loss = HS·(Ttank − Ta)·ntank, [W], (7)
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where HS is the specific heat loss for each 1000 L tank (3.03 W/K) and ntank is the number
of tanks. The heat loss was then added to the charging profile. In hours which were
already utilising the maximum heating power, the heat loss was placed at the next hour
with available heating power. When the available storage capacity was full, any additional
charging of the tank was placed at the next available hour. These simplifications were
chosen to allow variation of the tank size and temperature without having to run the first
algorithm again. A potential impact is that in cases with small storage capacity and heating
power it is possible that the resulting demand profile is slightly suboptimal.

2.3. Performance Indicators

According to Pallonetto et al. [50], three different dimensions need to be considered
in the assessment of energy flexibility: technical (volume of energy shifted or available
instantaneous capacity), economic (operational cost) and environmental (carbon dioxide
emissions or primary energy). The specifics of these dimensions are dependent upon the
chosen perspective studied (supplier, grid operator or consumer). These indicators show
the difference in a chosen parameter between the altered energy demand profile and its
reference.

The amount of shifted energy was quantified in line with the that proposed by IEA
EBC Annex 67 for available electric energy flexibility (AEEF) [50]:

AEEF =
∫ T

0
|Pe,DR − Pe,R|·dt, [kWh], (8)

where Pe,DR is the optimised profile, Pe,R is the unoptimised profile and T is the length
of the optimisation period, which was 8760 h in this study. AEEF was then averaged to
an hourly value for comparison.

The economic benefit was calculated by multiplying the optimised profile by the
electricity price data. The monthly peak power was also found to calculate the monthly
fees. These were then compared with the cost of the unoptimised profile.

Unit cost savings = ∑T
n=0 Pricen ∗ (Pe,DR.n − Pe,R.n), [NOK]. (9)

Monthly cost savings = ∑Dec
Jan Monthly cost ∗ (Pe,DR.max − Pe,R.max), [NOK]. (10)

For this study, no assessment of primary energy or carbon dioxide was undertaken, due
to the DR of a single building having little effect on macro energy decisions. Furthermore,
the CO2eq. intensity in the Oslo regional grid is low with minimal variation [5]. It is unclear
if DR would help to reduce carbon dioxide emissions in Norway, as the correlation between
price and CO2eq. intensity has been shown to be the opposite of most other countries, with
higher intensities at low prices. This is because Norwegian hydropower favours operating
at higher prices during energy peaks and so more energy is imported (with higher CO2eq.
intensity) when prices are low.

3. Results
3.1. Analysis of Spot Prices

The past nine years of electricity price data were analysed for price distribution over
the year, shown in Figure 8, and price variation in a 24-h period, shown in Figure 9. Prices
are given in NOK (1 NOK ≈ 0.1 EUR). Box plots in Figure 9 show the 1st, 2nd and 3rd
quartile of the 365 values for each year. Whiskers show the range of values within 1.5 times
the interquartile range below the 1st quartile and above the 3rd quartile. Dots are values
outside this range. For 2016, there are three points which lie beyond the chart range
(1.23 NOK, 1.28 NOK and 1.82 NOK). For 2018, there is one point (2.08 NOK). For 2021,
there were 26 points with a maximum difference of 4.07 NOK on the 22nd of December.
The general variation of prices was less than 0.1 NOK in all years except for 2018 and
2021. This small variation is due to the high proportion of hydropower in the Norwegian
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electricity mix, as it is possible to regulate the generation capacity of hydropower without
affecting efficiency.

Energies 2022, 15, x FOR PEER REVIEW 13 of 27 
 

 

 

Figure 8. Distribution of Nord Pool spot prices for the Oslo region for the last nine years. Average 

spot price indicated by the dashed line. 1 NOK ≈ 0.1 EUR. 
Figure 8. Distribution of Nord Pool spot prices for the Oslo region for the last nine years. Average
spot price indicated by the dashed line. 1 NOK ≈ 0.1 EUR.



Energies 2022, 15, 9314 13 of 26Energies 2022, 15, x FOR PEER REVIEW 14 of 27 
 

 

 

Figure 9. Distribution of the price difference between the highest and lowest spot price in each 24 h 

period in a year, for the last nine years of spot price data. 1 NOK ≈ 0.1 EUR. 

3.2. Potential Unit Cost Saving 

The maximum potential unit cost savings from shifting the energy for all nine years 

was calculated using Equation (3). The results are shown in Table 3 for the three demand 

profiles and four scenarios. For comparison, the leap day was removed from 2020 and 

2016 data. 

Table 3. Annual savings in unit energy cost from shifting demand to lowest price within a 24 h 

period. Prices in NOK. 1 NOK ≈ 0.1 EUR. 

 2013 2014 2015 2016 2017 2018 2019 2020 2021 

Scenario 1: Shifting from electricity to electricity 

Constant 3665 3714 3924 7596 4026 8859 4540 3477 35,835 

Variable 4564 4435 4737 9144 4927 10,916 5646 4003 40,291 

DHW 4125 2650 4107 5402 3798 9154 5049 2092 25,272 

Scenario 2: Shifting from heat pump to heat pump maintaining COP 

Constant (COP = 4) 916 929 981 1899 1006 2215 1135 869 8959 

Variable (COP = 4) 1141 1109 1184 2286 1232 2729 1412 1001 10,073 

DHW (COP = 3) 1375 883 1369 1801 1266 3051 1683 697 8424 

Scenario 3: Shifting from heat pump to heat pump with reduced COP 

Con. (COP: 4 →2) 10 0 1 203 5 98 12 38 709 

Var. (COP: 4 → 2) 11 0 2 244 5 130 14 44 827 

DHW (COP: 3 → 1.5) 14 0 2 156 4 122 17 24 818 

Scenario 4: Shifting from heat pump to electricity 

Con. (COP: 4 → 1) 0 0 0 10 0 3 0 0 18 

Var. (COP: 4 → 1) 0 0 0 14 0 4 0 0 16 

DHW (COP: 3 → 1) 0 0 0 53 0 16 0 0 126 
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The electricity price has had greater variation in the past four years. Average prices and
price variation were higher than average in 2018, due to a lack of precipitation constricting
the supply of hydropower combined with increased prices for imported energy due to
higher CO2 taxes [51]. Prices were also slightly volatile in 2016, although this was due to
a few extreme 24 h periods, of which three were over 1 NOK in difference (outside the
range of Figure 9). The interquartile range and mean spot price for 2016 were similar to the
other “normal” years before 2018, with a mean spot price of around 0.25 NOK/kWh. There
was increased variation in 2019 due to the increasing number of grid interconnections [12].
When prices are high in other countries, it is appealing for Norwegian energy producers
to sell their electricity abroad, in turn raising prices nationally. As both CO2 taxes and
grid interconnections will exist in the coming years, 2019 is considered a good example of
a typical year. Electricity prices were extremely low, sometimes below zero, in 2020 due
to the depressed demand caused by the coronavirus pandemic. There were significantly
higher prices in 2021, due to the combination of high demand from economies reopening
from the pandemic and a shortage of fossil fuels [52]. During 2021, Norway exported
large quantities of energy at peak times which resulted in significantly more price variation
within a 24 period than in the preceding nine years. There was also the largest range in
prices over the year with a minimum of 0 NOK and a maximum of 6.12 NOK.

3.2. Potential Unit Cost Saving

The maximum potential unit cost savings from shifting the energy for all nine years
was calculated using Equation (3). The results are shown in Table 3 for the three demand
profiles and four scenarios. For comparison, the leap day was removed from 2020 and
2016 data.
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Table 3. Annual savings in unit energy cost from shifting demand to lowest price within a 24 h period.
Prices in NOK. 1 NOK ≈ 0.1 EUR.

2013 2014 2015 2016 2017 2018 2019 2020 2021

Scenario 1: Shifting from electricity to electricity

Constant 3665 3714 3924 7596 4026 8859 4540 3477 35,835

Variable 4564 4435 4737 9144 4927 10,916 5646 4003 40,291

DHW 4125 2650 4107 5402 3798 9154 5049 2092 25,272

Scenario 2: Shifting from heat pump to heat pump maintaining COP

Constant (COP = 4) 916 929 981 1899 1006 2215 1135 869 8959

Variable (COP = 4) 1141 1109 1184 2286 1232 2729 1412 1001 10,073

DHW (COP = 3) 1375 883 1369 1801 1266 3051 1683 697 8424

Scenario 3: Shifting from heat pump to heat pump with reduced COP

Con. (COP: 4→2) 10 0 1 203 5 98 12 38 709

Var. (COP: 4→ 2) 11 0 2 244 5 130 14 44 827

DHW (COP: 3→ 1.5) 14 0 2 156 4 122 17 24 818

Scenario 4: Shifting from heat pump to electricity

Con. (COP: 4→ 1) 0 0 0 10 0 3 0 0 18

Var. (COP: 4→ 1) 0 0 0 14 0 4 0 0 16

DHW (COP: 3→ 1) 0 0 0 53 0 16 0 0 126

The results indicate that the variable setpoint heating schedule had the most to gain
from DR. The constant setpoint heating and DHW schedules produced similar savings,
but neither was consistently better than the other over the nine years. There was no clear
correlation between the price distribution and the difference between these schedules. For
all three schedules, there was a good correlation between the price variation over a 24 h
period (Figure 9) and the energy savings for scenario 1 and 2. The correlation for scenario 1
is shown in Figure 10. Scenario 2 has the same R2 value as the savings are scaled. The high
price variation in 2021 resulted in the largest savings. The low price variation in 2014 and
2020 resulted in the lowest savings. Under scenarios 3 and 4, these patterns were skewed
in favour of years with large price variations (2016, 2018 and 2021), due to the decreased
COP requiring a greater electricity price saving to warrant shifting energy.

The potential savings were greatest for scenario 1. Where a heat pump is used for
DR, maintaining its COP (scenario 2), the possible savings were divided by that COP. In
Table 3 the savings are a quarter of the electricity savings, as the COP is 4. Therefore, the
higher the heat pump COP, the lower the potential savings from load shifting. This was
even more pronounced for scenarios 3 and 4, where the COP at the shifted time is reduced.
As the energy has to be stored, it will likely require a higher temperature than at the point
of demand, reducing the COP of the heat pump. Under these scenarios, the savings are
reduced to a few hundred NOK. Under scenario 4, there were no savings in six of the
nine years.

The savings mirror the potential benefit to the electricity grid. As the COP of the heat
pumps already reduces the load on the grid, shifting it to another point in time has less
benefit. Flexibility control should therefore be focused on direct electrical systems. These
are well suited to control as they can be started and stopped nearly instantly with little
energy loss.
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3.3. Demand Profile Optimisation

The potential for electrical systems was further analysed, accounting for the power of
the electric water heater and the HWST characteristics. The monthly cost for the electrical
peak power was also considered. Based on the analysis of historic electricity spot prices,
three years were chosen to represent average spot prices (2019), volatile spot prices (2018)
and highly volatile spot prices (2021).

The energy flexibility as a function of the tank volume for the three demand profiles
at different maximum heating powers is shown in Figure 11, using 2019 spot prices. The
flexibility increases with tank size and heating capacity; however, both factors are subject
to a diminishing rate of return as shown by the plateauing of flexibility as the tank size
increases. The variable heating schedule had the highest flexibility potential and DHW
had the lowest. As the metric is created by the difference between the optimised charging
profile and the reference demand profile, it is affected by the amount and distribution of the
reference demand. The lower potential of DHW is in part due to the lower total demand.
DHW requires 133 MWh annually compared to 179 MWh for constant setpoint heating
and 165 MWH for variable setpoint heating. Conversely, the higher total demand of the
constant heating does not lead to more flexibility due to the distribution of the demand
which is fairly constant over a 24-h period. The peaks of the DHW and variable demand
coincide with the daily peaks in electricity prices. Therefore, this demand is often shifted
and so leads to a higher flexibility result. Part of the increased flexibility score with the
increased number of tanks is due to the higher energy use due to additional heat losses
from more tanks.

Changing the minimum setpoint temperature alters the energy storage capacity of
each HWST. This affects the steepness of the flexibility curve but has little effect on the
maximum level of flexibility achieved, as shown in Figure 12.

The unit cost savings curves as a function of the tank volume for the three demand
profiles at different powers and minimum tank temperatures using 2019 spot prices are
shown in Figures 13–15.
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Increasing the heating power increases the unit cost savings but with a diminishing
rate of return, as shown with the flexibility. However, increasing the storage capacity by
increasing the number of tanks results in lower cost savings as the additional heat losses
more than outweigh the gains from greater flexibility. Increasing the storage capacity by
lowering the minimum tank temperature shows improved cost savings, as storage capacity
is increased without increasing heat losses. The AEEF and unit cost savings for 2018, 2019
and 2021 are compared in Figures 16 and 17, respectively.

Figure 16. Average AEEF per hour as a function of tank volume for the three demand profiles at
different maximum heating power using 2018, 2019 and 2021 spot prices.
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The amount of flexibility was similar between the three years, while the unit cost
savings varied considerably, correlating to the energy price variation shown in Figure 9.
The volatile prices of 2018 resulted in five tanks giving increased unit cost savings for the
variable schedule. Here, the benefit of more flexibility outweighs the additional energy
cost of heat losses. The high volatility of the 2021 spot prices makes greater tank volumes
worthwhile for all three demand profiles when considering unit cost savings. For this spot
price, there was a clear optimum tank volume, which increased with higher heating power.
For the DHW demand, the optimum number of tanks was three. The optimums for the
heating profiles were between three and five tanks. The savings were significantly lower
than those predicted using the simple model, as the simple model did not factor in the
increased baseline heat losses from the increased storage volume required to maximise the
shifted load.

The monthly cost saving is shown in Figure 18. The peak load of each month would
equal the defined maximum heating power as the algorithm would always assign the
maximum capacity where electricity prices were lowest. For each 10 kW increase in heater
power, the peak electricity cost increased by 6480 NOK (≈648 EUR) for DHW and by
5820 NOK (≈582 EUR) for heating (as there is no heating in the summer months).

Energies 2022, 15, x FOR PEER REVIEW 19 of 27 
 

 

 

Figure 17. Unit cost saving as a function of the tank volume for the three demand profiles at different 

maximum heating power using 2018, 2019 and 2021 spot prices. 1 NOK ≈ 0.1 EUR. 

The amount of flexibility was similar between the three years, while the unit cost savings 

varied considerably, correlating to the energy price variation shown in Figure 9. The volatile 

prices of 2018 resulted in five tanks giving increased unit cost savings for the variable sched-

ule. Here, the benefit of more flexibility outweighs the additional energy cost of heat losses. 

The high volatility of the 2021 spot prices makes greater tank volumes worthwhile for all three 

demand profiles when considering unit cost savings. For this spot price, there was a clear op-

timum tank volume, which increased with higher heating power. For the DHW demand, the 

optimum number of tanks was three. The optimums for the heating profiles were between 

three and five tanks. The savings were significantly lower than those predicted using the sim-

ple model, as the simple model did not factor in the increased baseline heat losses from the 

increased storage volume required to maximise the shifted load. 

The monthly cost saving is shown in Figure 18. The peak load of each month would 

equal the defined maximum heating power as the algorithm would always assign the 

maximum capacity where electricity prices were lowest. For each 10 kW increase in heater 

power, the peak electricity cost increased by 6 480 NOK (≈648 EUR) for DHW and by 5 

820 NOK (≈582 EUR) for heating (as there is no heating in the summer months). 

 

Figure 18. Annual cost saving from monthly fees as a function of maximum heating power for the 

three demand profiles. 1 NOK ≈ 0.1 EUR. 
Figure 18. Annual cost saving from monthly fees as a function of maximum heating power for the
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When the monthly cost and the capital cost of additional tanks are factored in, the unit
cost savings are dwarfed and the yearly variation appears minimal. The total cost savings
are shown in Figure 19. The capital cost of each tank (42,000 NOK≈ 4200 EUR) was divided
by its expected lifespan (20 years) to give a simple annual cost based on a straight-line
depreciation. Under all scenarios, the most cost-effective approach was to minimise the
tank volume and heating power. These savings are sensitive to the starting parameters
for the number of tanks and tank setpoint. The savings for DHW are relatively high as
the reference system consisted of three tanks compared to just one tank for the heating
systems. There were little cost savings for the constant profile as this heating strategy
already minimises the peak power required. The variable setpoint gives the greatest cost
savings as the electric heater size can be dramatically decreased.
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4. Discussion

When all system factors were considered, the use of DR of HWSTs gave operational
cost savings, but this was from minimising the peak power of the heating element and
storage volume rather than shifting the load to hours with a lower spot price, as shown
in Figure 19. Under this strategy, an intelligent control is required to proactively charge
the HWST over several hours at a low power to meet the heating/DHW demand. Even
when the monthly cost and tank investment cost are excluded, it was more economical to
minimise the storage volume in most cases. The spot prices from 2021 had enough price
variation to warrant increased storage volume for all three demand profiles, as shown in
Figure 17. Greater unit cost savings were possible through increasing the heating power or
reducing the setpoint temperature, as shown in Figures 13–15. Increasing the heating power
was subject to a diminishing rate of return and the unit cost savings were outweighed
by the dominant role of the monthly price related to the peak energy demand of the
system. Reducing the minimum setpoint temperature reduces heat losses while increasing
storage capacity. For DHW, this must be balanced with periodically achieving a high
enough temperature to prevent the growth of legionella [53]. Furthermore, a lower setpoint
decreases the resilience of the HWST to short demand peaks, with an increased risk of
not meeting demand. For this study, the minimum setpoint temperature was not reduced
below the required supply temperature of the demand profile, to guarantee the quality of
heat was always enough. As the algorithm uses the average temperature in the HWST,
a stratified HWST could allow for the minimum setpoint temperature to be further reduced
as the top of the tank can be hotter than the average.

The results are an indication of the economic benefits of DR of HWSTs; however, they
are subject to methodological and practical limitations which mean that real-world returns
would likely be lower than found with this method. The algorithms approximate a control
with a charging strategy to minimise unit cost, whereas an actual control would deviate
from this profile as it responds to other system parameters and unforeseen disturbances.
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Additionally, the heating control requires a finer temporal resolution [54] than the hourly
values simulated here and a degree of safety to cover these unforeseen disturbances.
Although the time horizon was limited by the electricity price data, short horizons on the
order of one day are only marginally suboptimal relative to a strategy that is optimal over
the entire simulation horizon [55]. Similarly, it has been shown that MPCs can achieve
near optimum performance [36]. This study assumed that there were no limits to the
amount of energy used to charge and discharge the HWSTs. Measured data shows that
large demand variations can occur within the hour for DHW [37], which define the peak
discharge and so the minimum system size. Therefore, there is a limit to how much the size
of a DHW system can be reduced. Another issue with small storage volumes is a greater
temperature fluctuation which requires a control valve to provide consistent delivered
temperatures, adding an additional cost to the system. The optimisation is sensitive to the
chosen storage heat loss parameter, with a higher value resulting in less shifting. If the
average tank temperature is significantly higher or lower than the one used to define the
heat loss parameter, the algorithm can deliver a suboptimal charging strategy. Running
the optimisation using the upper and lower limits for the heat loss parameter showed
a maximum variation of 0.08% in the calculated cost, equivalent to less than 200 NOK
(≈20 EUR) in annual savings. This error could be reduced by running several whole-year
iterations of the algorithms where the average tank temperature of the previous iteration is
used for determining the heat loss value.

The benefit of DR is also dependent on the demand profile. A demand profile with
little variation, such as the constant heating profile, benefits less from both the unit cost
savings and the monthly cost savings. The savings potential of the variable setpoint heating
was the highest of the three demands, as the profile peaks during the morning electricity
price peak. Distributing this load to the night before gives good unit cost savings and
reduces the peak load to that of constant setpoint heating. However, the practical use of DR
for heating is limited. Although electric heating is common in Norway, a large proportion
are electrical panel radiators, which limits the flexibility of the energy storage capacity
of the thermal mass that does not affect thermal comfort. Where water-based heating is
used, central heating systems with heat pumps offer greater savings in energy use and
peak power demand than the optimised electrical water heaters in this study. The use of an
intelligent control may still be relevant for heat pumps in order to increase the operation
of the heat pumps at nominal power. This improves the seasonal COP and can reduce
the size of the required heat pumps, reducing costs. If the price variation increased, load
shifting would become more relevant for heat pump systems [56,57]. A study of a HWST
with a heat pump reached a similar conclusion that the most cost-effective solution occurs
at small tank sizes [58].

DR of DHW systems is more practical both for new systems and retrofitting of exist-
ing systems. DHW represents an increasing share of the total energy use in low-energy
Norwegian apartment buildings [59]. A study of existing HWSTs used for DHW in Nor-
way showed that they are dimensioned with a large margin of safety [60] offering good
flexibility potential. DHW systems also have a greater potential to reduce the setpoint
temperature than heating systems. Electric heating of DHW is still common as the perfor-
mance difference between heat pumps and electric heating is smaller due to the higher
temperatures required.

There is a degree of uncertainty in the results as the demand profiles were generated
through simulation using a typical meteorological year, whereas the electricity pricing is
based on historic data. Both heating demand and electricity prices are influenced by the
weather with higher energy prices often coinciding with higher heating demand such as
in sustained cold periods. Real DHW profiles for Norwegian apartment buildings have
been found to be less volatile than the standardised profile [60,61], which could result in
smaller cost savings. However, the measured profiles also showed variation seasonally and
between weekdays and weekends, which could offer other opportunities for load shifting.
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The presented approach allows for a simple economic analysis of the potential for
DR control in an energy market. The method is applicable to other building typologies
and DR technologies. There was good correlation between the potential energy savings
from DR and the simple energy price analysis, shown in Figure 9 and Table 3. However,
the results of the algorithmic model were significantly lower than the simple analysis
predicted due to the extra heat losses from the additional HWSTs required to shift enough
electricity. This discrepancy would be smaller for DR technologies with lower additional
losses, for example, shifting of electric vehicle charging. Such simple analysis tools could
be further developed to better predict savings and so quickly find the most cost-effective
applications of DR based on RTP signals. Smaller systems, such as those in single family
houses and apartment-based systems, could also be analysed. However, these would likely
give less flexibility and savings, as the higher variation in demand [62] makes prediction
more difficult and increases the safety margin required. Furthermore, the control must be
inexpensive to be worthwhile in small systems [63].

The results indicate that the current electricity pricing policies in Norway encourage
DR to reduce peak power use. The societal benefit of this strategy is a reduced need to
expand grid infrastructure. This will be further reinforced by a new grid tariff model in July
2022, where small residential customers pay monthly fees according to the peak power of
their energy use [40]. There is little benefit to the consumer from load shifting as electricity
prices are relatively cheap with little variation compared to other European countries [64],
due to the large proportion of hydropower (and pumped storage) in the Norwegian energy
mix, which can respond well to changes in demand [65].

An alternative price model is required, if grid operators and governments want to
encourage consumer demand side management in order to balance the more intermittent
renewable energy. In Norway, this would require reducing the dominant role of peak
pricing, which is particularly present in Norway and the Netherlands [11], in favour of
spot prices. Days ahead, electricity spot prices can provide a clear price signal of supply
in the grid. However, the cost of electricity for consumers is not determined solely by the
wholesale electricity price. A large proportion (averaging 40% across the EU) of the unit
cost is made up of fixed price taxes, which blunt the price signal to the consumer [11]. In the
studied case, the fixed part of the unit cost averaged 35% for 2018 price data, 37% for 2019
and 26% for 2021. In years with low spot prices, the fixed part exceeded 50%. Regulation of
electricity prices to protect consumers from market fluctuations also disconnects consumer
prices from the market price signal required for DR. Although not present in Norway, some
form of price intervention was present in 13 EU countries in 2018, although it is an aim of
the EU commission to phase out such price regulation [66].

In the long term, wide adoption of DR could reduce the clarity of spot prices as the
price signal, as more DR devices would stabilise electricity prices, making further adoption
less economically attractive [67]. Further price incentives may be required to stimulate
load shifting. Peak pricing could be changed so that it acts as a short-term price signal. For
example, the peak pricing could be lower at night to encourage greater electricity use in this
period. Another possibility is to allow DR devices to trade on the intraday market which
can be more volatile than the day ahead market [68]; however, this would require additional
metering infrastructure. Alternatively, energy companies can pay a flexibility bonus per
kWh of shifted demand. It has been shown that such incentives can greatly improve the
return on investment [37,69]. However, too many incentives without regulation can lead to
the use of less efficient technologies which offer greater flexibility.

5. Conclusions

The use of demand-responsive electrically heated hot water storage tanks (HWSTs) is
one of many interesting solutions to stabilise future energy networks with higher propor-
tions of intermittent renewable energy. HWSTs are already present in a large proportion
of the building stock; however, the adoption of demand response (DR) by consumers is
highly dependent on the economic benefit. This study assessed the economic potential of
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DR of HWSTs under current pricing models which were applied to a Norwegian case study
building with three different demand profiles. The analysis found the maximum possible
cost savings from shifting electricity within a 24-h time horizon using energy price data and
the demand profile as inputs. A charging profile was created for each demand profile and
optimised to three different years of electricity spot prices, each representing three levels of
price volatility. The optimisation was repeated for different heating powers, varying by
5 kW increments. The resulting charging profiles were then used to parametrically study
the effect of varying the number of HWSTs and their minimum setpoint temperature. The
energy cost and energy flexibility of each case was calculated against a reference for each of
the demand profiles.

Increasing the number of HWSTs or the heating power increased the flexibility with
a diminishing rate of return. Increasing heating power also increased unit cost savings
with a diminishing rate of return. However, increasing the number of tanks resulted in
lower unit cost savings as the cost of additional heat losses was greater than the savings
from shifting demand, except for the highly volatile price data from 2021. Changing the
minimum setpoint temperature has little effect on flexibility but improves the cost savings,
as a greater thermal storage capacity can be achieved without increasing heat loss. Overall,
systems utilising smaller heating power and fewer HWSTs were more economical when
the monthly price was included, which is related to the peak energy demand of the system
in each month. The year-on-year variation in savings is small as the monthly price is
dominant over the hourly spot prices. The savings potential from DR is reduced when
a heat pump is used, especially when the shifting of energy leads to reduced heat pump
performance. The total cost savings are sensitive to the reference system used. Where the
reference system utilises several HWSTs, there are greater savings available from using
a smaller optimised system.

The possible savings from DR are closely linked to the variation in unit energy price
during the optimisation period. The small variation in Norwegian spot prices meant that
adopting DR for load shifting offers little economic benefit to consumers, despite Norway
being one of the few countries with the infrastructure required to implement it. Cost
savings are best achieved from redistributing energy demand to flatten demand peaks
and thus minimise the peak heating power required, the pricing of which is dominant in
the energy cost under the current price structure. With the current importance of peak
pricing, the method presented in this study should be further developed to include all
building electricity loads when creating the charging profile. The charging profile can then
be used to smooth out the building’s demand profile in order to minimise the peak power.
Under such a method, the available capacity for heating a HWST would vary throughout
the day depending upon other loads. Alternatively, it is possible for energy companies or
governments to encourage load shifting by changing this price structure so that the unit
cost has greater importance for the total energy cost. This can be achieved by minimising
the fixed parts of the unit cost or introducing bonuses for shifting energy use away from
certain times.
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