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Abstract: A highly loaded transonic centrifugal compressor is aerodynamically designed and nu-
merically investigated. The objectives are to improve the compressor efficiency by using tandem
impeller configuration and 3D free-formed blade design concepts. This approach has the potential
to control both the transonic and distorted flows within impeller passages. The results suggest that
employing the tandem impeller configuration can significantly improve the compressor efficiency by
1.4%. The efficiency gain is mainly contributed by the improved uniformity of the impeller discharge
flow achieved when the newly generated inducer-shed vortices rearrange the secondary flow pattern.
In addition, the location of the impeller passage shock moves downstream due to the potential effect
within the tandem impeller and locally changes the back pressure of the inducer. These factors
mitigate flow losses in the impeller and diffuser. Furthermore, the 3D design concepts of forward
blade sweep and negative lean are employed in the tandem impeller configuration. The forward
sweep design of the inducer weakens flow acceleration before the passage shock, and the negative
lean design optimizes the secondary flow pattern, which yield an additional compressor efficiency
improvement of 0.7%. The study conducted in this paper provides a valuable reference for future
advanced transonic centrifugal compressor designs.

Keywords: highly-loaded centrifugal compressor; tandem impeller; free-formed blade; flow control;
design method

1. Introduction

Centrifugal compressors are widely used in many fields, such as in small gas tur-
bines for aviation, turbochargers, and the gas and pipeline industries. Currently, based
on the challenging requirements of compact and effective compression systems, includ-
ing low manufacturing costs and weights, high blade loading, high pressure ratios and
high rotation speeds have been the main characteristics of modern advanced centrifugal
compressors [1,2]. However, highly loaded centrifugal compressors always suffer from
relatively low efficiency levels due to unwanted impeller flow deterioration, which is
mainly contributed by impeller shock waves, complex secondary flows within impeller
passages, and flow nonuniformity at the impeller outlet/diffuser inlet [3]. Therefore, the
impeller flow quality in a highly loaded centrifugal compressor is of vital importance
to device performance. Over time, numerous researchers have focused on improving
the impeller flow quality through many innovative approaches, and the most potential
and effective methods may be three-dimensional free-formed centrifugal impellers and
tandem-designed impellers [4,5], which can significantly improve the performance of a
highly loaded transonic centrifugal compressor.
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A conventional ruled impeller, which means that the point pairs of the impeller hub
and shroud are linearly connected, has been verified as an economic design for subsonic,
medium-loaded centrifugal compressors in the past decades. However, with the increasing
of impeller loading and flow Mach number, enhanced passage shock and secondary flow
issues have become increasingly difficult to control. As a result, a three-dimensional
free-formed centrifugal impeller is proposed for effective flow control. Elfert et al. [6]
conducted an optimization of a highly loaded transonic centrifugal impeller to overcome
ruled impeller surface limitations. The newly generated impeller exhibited a typical
3D free-formed geometry (compound sweep and lean for the leading edge), and a 1.5%
compressor-stage efficiency gain was achieved over the efficiency of the conventional ruled
impeller design (evaluated in experiments). Next, Wittrock et al. [7,8] provided deep insight
into the optimized 3D impellers and found that the main performance gain was contributed
by reductions in passage shock loss, and the impeller discharge flow patterns seemed
unchanged. Hazby et al. [9] discussed the positive effect of free-formed impeller designs on
transonic compressor performance in detail. The results indicated that the 3D inducer (axial
part of the impeller) design played the most important role in performance enhancement.
Hehn et al. [10] modified a transonic centrifugal compressor using a free-formed impeller.
In addition to passage shock loss reduction, the flow uniformity of impeller discharge was
improved due to the versatile geometry of the radial part of the impeller. As a result, a
1.4% compressor-stage efficiency gain was achieved (evaluated by CFD). However, due to
the low aspect ratio of the radial part of the impeller, currently, a highly arbitrary blade
geometry may be too costly or challenging to manufacture.

An additional configuration may be required to practically apply the 3D design
concepts in a highly loaded centrifugal compressor. A tandem impeller is a centrifugal
impeller that consists of two separated blade rows. The front row, called the inducer, is
always located in the axial part of the impeller, and the aft row, named the exducer, is
located in the radial part. In recent years, tandem impellers have displayed the ability to
control the passage shock and reorganize the secondary flow pattern in transonic centrifugal
compressors. Hlavacek and Hanus [11,12] performed a tandem impeller research (with
ruled inducer and exducer blades) based on a transonic compressor and observed improved
impeller discharge flow uniformity, which decreased diffuser flow loss and contributed to a
significant efficiency gain. Erdmenger and Michelassi [13] implemented a tandem impeller
(with ruled inducer and exducer blades) in a transonic centrifugal impeller and achieved
a 1.7% compressor-stage efficiency gain. The results showed a weakened passage shock
and improved discharge flow uniformity. Similar results were observed by Li et al. [14–16].
The authors further concluded that the reduced secondary flow directed from the impeller
pressure side to the suction side played a crucial role in flow uniformity improvement.
However, tandem impeller research is still in the early stages, and general design guidelines
and practical applications are limited.

The aforementioned publications indicate the great potential of the free-formed im-
peller method and tandem impeller method in improving transonic centrifugal compressor
performance. Nevertheless, the free-formed design of the inducer part only may be a better
choice when considering both the compressor performance gain and manufacturability.
Considering the divided inducer part and exducer part in the tandem impeller, it could be
naturally concluded that the unique geometry of the tandem impeller can greatly benefit
the 3D free-formed inducer design. In addition, the flow control effects may accumulate
when integrating the 3D inducer design with the tandem impeller configuration, and the
highly loaded transonic centrifugal compressor performance should be further improved.

In this paper, the objectives are to improve the transonic compressor efficiency by
using tandem impeller configuration and 3D free-formed blade design concepts. A novel
aerodynamic design method, namely, employing 3D inducer design in the tandem impeller
configuration, is applied to a highly loaded transonic centrifugal compressor to explore the
potential performance improvement and its underlying flow mechanisms. The core of this
research consists of three parts: first, based on the conventional ruled impeller, a baseline
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tandem impeller is designed and numerically analyzed to clarify the effect and fundamental
physics of tandem design on compressor performance. Second, 3D design concepts such as
blade sweep and lean to the tandem impeller inducer blade design are employed to further
improve the compressor performance. According to the parametric study of blade sweep
and lean, a modified tandem impeller design with the best compressor-stage performance
is achieved. Finally, the underlying flow mechanism of the added compressor performance
gain resulting from 3D inducer design is discussed in detail. The study conducted in this
paper provides a valuable reference for future advanced transonic centrifugal compressor
designs, which contributes to the performance enhancement and energy saving of industrial
products such as gas turbines, turbochargers and jet engines.

2. Cases Studied
2.1. Conventional Compressor

The conventional compressor with a conventional ruled impeller and a vane radial
diffuser is developed by the Institute of Engineering Thermophysics, Chinese Academy of
Sciences for a small gas turbine engine to produce a pressure ratio of 5:1 at the design mass
flow rate. The main design parameters are shown in Table 1. The conventional compressor
is a highly loaded compressor for small jet engine applications, and the impeller inlet tip
Mach number is 1.5, with a rotation speed of 65,000 rpm under the designed conditions.
Therefore, the compressor is an appropriate reference for investigating the advanced
impeller design method in this paper. The meridional flow path in the compressor is shown
in Figure 1. It should be noted that the axial diffuser of the centrifugal compressor, which
is required in real jet engines, is not discussed in this paper due to its small impact on the
research conclusions.

Table 1. Compressor-stage design parameters.

Parameter Value

Corrected mass flow (kg/s) 1.5
Total pressure ratio 5.1
Isentropic efficiency 81%

Splitter leading-edge meridional location
(percentage of blade chord) 30%

Number of blades 12 + 12
Impeller exit backsweep angle (deg) 26

Impeller exit lean angle (deg) 20
Constant impeller tip clearance (mm) 0.15

Number of diffuser vanes 23
Exit blade height (mm) 8.5

Diffuser divergence angle (deg) 8
Diffuser vane angle (deg) 72

2.2. Compressor with Baseline Tandem Impeller

Based on the conventional compressor, a baseline tandem impeller is generated consid-
ering a conventional ruled impeller. The baseline tandem impeller is designed as follows.
First, with the meridional flow path shape unchanged, the conventional ruled impeller is
divided into two rows (inducer and exducer) at the meridional location of the leading edge
of the splitter, and the axial gap between the two rows is set to 1 mm (Figure 2a). Second,
based on inducer and exducer blades with ruled surfaces for the baseline tandem impeller,
the blade angle distributions are identical to those in the conventional ruled impeller, and
the blade thickness distributions are slightly changed to satisfy the requirement of the newly
generated inducer trailing edge and exducer leading edge within the tandem impeller
configuration. Finally, the circumferential displacement of the inducer pressure surface
and exducer suction surface is set to 25% of the exducer blade pitch (Figure 2b), which is a
satisfactory arrangement for achieving good compressor performance [14]. As a result, the
baseline tandem impeller is generated, and the 3D geometry is shown in Figure 2c.
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2.3. Compressor with a Free-Formed Tandem Impeller

In contrast to the ruled blade designed for the two control sections with 0% and
100% blade spans, the free-formed blade is designed by stacking the 0% and 100% span
sections and many other midspan sections, thus creating a comparatively arbitrary blade
geometry. In the present investigation, the free-formed tandem impeller is generated by
replacing the ruled inducer blade within the baseline tandem impeller with a free-formed
inducer blade. As shown in Figure 3, five control sections with 0%, 20%, 50%, 80, and
100% spans for the inducer blade are chosen to achieve a 3D free-formed inducer design,
which can be fundamentally attributed to the effects of blade sweep and lean despite the
complicated geometrical changes. The definitions of the blade sweep and lean within
centrifugal compressors are different from those for axial flow compressors [17]. The
inducer blade of the baseline tandem impeller is considered to be swept when varying the
blade chord in blade tip sections and keeping the blade angle and thickness distribution the
same (maintaining the blade circumferential position of the trailing edge at the hub and tip,
and maintaining the blade hub chord). As shown in Figure 4, extending the blade chord
length at blade tip sections is called a forward sweep, and shorting the blade chord length
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at blade tip sections is called an aft sweep. The inducer blade is considered to be leaned
when varying the circumferential locations of midspan blade sections (Figure 5); a variation
in the direction of rotation reflects a positive lean, and that in the opposite direction is a
negative lean. In other words, the displacement lengths of the blade section are shifted in
the same or opposite direction as rotation. As a result, the definitions above can simplify
the investigation of free-formed inducer blades considering sweep and lean effects.
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In this paper, six values of the sweep parameter (F = ±2 mm, ±4 mm, +6 mm and
+8 mm) are considered in the parametric sweep study, where F = 0 corresponds to the
leading edge at the tip of the conventional impeller, and these different values correspond
to extending or shortening the blade tip section. To reduce computational costs, an inducer
blade sweep study is performed in isolation to identify the sweep effects and obtain the
best sweep parameter value. Next, a parametric study of blade lean is conducted using
seven values of the lean parameter (L = ±1 mm, ±2 mm, +3 mm, −4 mm and −5 mm)
at two blade sections of 50% and 80% spans. As a result, a modified tandem impeller
with an appropriate 3D inducer design can be achieved. It is necessary to note that the
main purpose of this paper is to explore the potential and underlying flow mechanisms of
the 3D inducer design, and no attempt is made to maximize compressor performance by
optimizing the sweep and lean parameters.

3. Numerical Method and Validation
3.1. Numerical Method

The Euranus solver in Numeca Fine/turbo software has been extensively used for
axial and centrifugal turbomachines and has been validated in many studies. In this paper,
steady simulations were conducted using Euranus to investigate the performance and flow
structures of different centrifugal compressors by solving the RANS (Reynolds-averaged
Navier-Stokes) equations. The S-A one equation turbulence model was used to close
the equations. The discretization is based on a finite volume approach. The Jameson
second order scheme with scalar artificial dissipation is used for the convective terms
while the diffusive terms are discretized using second order central schemes. Temporal
integration is based on the dual-time step method. At each time step, a steady problem is
thus solved using an explicit forth order Runge-Kutta scheme accelerated with the use of
multi-gridding, local time-stepping and residual smoothing.

3.2. Calculation Mesh and Experimental Validation

Figure 6 shows the mesh topologies of the investigated compressors with conventional
and baseline tandem impellers. The compressor computational domain is only a single
passage considering the periodicity hypothesis, and the blocks of the impeller blade passage,
tip clearance region and wedge diffuser passage are independently generated to predict
the coupled flow. The inducer blade and exducer blade of the tandem impeller are also
independently meshed with matching connections. The spacing of the first elements near
the wall is maintained at 0.002 mm to achieve a dimensionless distance y+ of no greater
than 5 (Figure 7). For comparability, the mesh topologies and node distributions of the
compressors with conventional impeller and tandem impeller are almost the same, except
those for the regions near the newly generated inducer trailing edge and exducer leading
edge of the tandem impeller. In addition, the mesh of the free-formed tandem impeller is
identical to that of the baseline tandem impeller.

The boundary condition details are shown in Table 2. All the compressor calculations
start from the choke condition and stop at the stall condition with increased static back
pressure. Since the main concern of this study is the compressor efficiency variations among
different impeller designs, no attempt has been made to accurately determine the stall limit.

The mesh independence and numerical accuracy are evaluated based on the calcu-
lations and experimental results for the conventional compressor. Figure 8 shows com-
parative plots of compressor-stage performance at 100% rotation speed resulting from
different mesh sizes of 0.5–5 million nodes. For the coarsest mesh grid of 0.5 million nodes,
a brief description on the impeller blade passage, tip clearance region and wedge diffuser
passage node distribution are shown in Table 3. On this basis, the meshes were generated
by multiplying the coarsest grid dimensions by suitable factors (Table 4). The experimental
compressor performance map and relative error bar are included in Figure 8. Notably, the
peak total pressure ratio, peak efficiency and choked mass flow are almost the same as the
mesh size approaches 2.5 million.
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Table 2. Boundary condition details.

Parameter Description

Inlet total pressure 101,325 Pa
Inlet total temperature 288.2 K

Inlet flow angle Normal to the inlet
Outlet averaged static pressure (choke~stall) Appr. 350,000~540,000

Rotor/stator interface Mixing plane
Solid wall Nonslip and adiabatic

Periodic surface Periodic boundary condition
Convergence criterion Root mean square value below 10−6
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Table 3. Grid node distribution of the coarsest mesh.

Grid Region Stream-Wise Grid
Number

Span-Wise Grid
Number

Pitch-Wise Grid
Number

Total Grid
Number

Conventional
compressor stage

Impeller 89 21 25
548,594Tip clearance 89 5 25

Wedge diffuser 37 21 21

Table 4. Summary of grid numbers and discretization errors.

Grid Node Number
(Million/1)

Equivalent Grid Size
S

Discretization Error of the
Peak Efficiency EP.E.

Discretization Error of the
Choked Mass Flow Echoke

Conventional
compressor

stage

0.55 1.8182 0.009204 0.007305
1.22 0.8197 0.002523 0.002210
2.46 0.4065 0.000516 0.000680
3.69 0.271 0.000052 0.000170
4.95 0.202 0.000011 0.000055

Furthermore, based on the equivalent grid size S (inverse of the grid number), the
discretization error of the peak efficiency EP.E. and the choked mass flow Echoke summa-
rized in Table 3, a log-log plot of the three parameters was drawn, as shown in Figure 9.
Roache [18] demonstrated that mesh convergence behavior can be quantitatively investi-
gated by evaluating the error convergence order, namely, the slope of the resulting line,
where a minimum order of 3 can be achieved as the grid size increases to approximately
2.5 million cells. Therefore, the mesh size is chosen as ~2.5 million considering both the
mesh independence requirements and computational costs. The calculation results for a
mesh size of ~2.5 million agree well in magnitude and trend with the experimental results,
thus validating the accuracy and reliability of the numerical method used in this study.
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4. The Effect of the Baseline Tandem Design on Compressor Performance and the
Corresponding Mechanism

As the first step, the conventional impeller in the compressor stage is replaced by
the baseline tandem impeller. Figure 10 shows the performance of the baseline tandem-
designed compressor, which is compared with that of the conventional compressor, and a
significant efficiency gain of 1.4% is achieved with no pressure ratio penalty.
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Figure 10. Comparison of the compressor-stage performance with different impeller designs.

The compressor-stage efficiency gain is resulted from the performance variations in
both the impeller and diffuser components. In order to identify the underlying influence
of the tandem design on the compressor performance change, the stage peak efficiency
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points (P.E. points) in the two cases are selected for comparison. Figure 10 presents the
impeller and diffuser efficiency variations with and without employing the baseline tandem
impeller, and the diffuser efficiency is assessed based on the total pressure loss coefficient
Cpt. Both the impeller and diffuser efficiencies are improved in the tandem-designed
compressor, and the diffuser flow loss reduction contributes to the majority of the efficiency
gain (approximately 70%) in this stage compared with the contribution of the impeller
efficiency gain (approximately 30%). For the impeller component, Figure 11 presents the
entropy distribution at the meridional plane of the two impellers at a P.E. point, and the
difference is mainly illustrated in the tip region of the inducer part. Figure 12 compares the
flow structure at a 95% blade span for the two impellers, and the inducer passage shock for
the baseline tandem impeller moves significantly downstream. Furthermore, the inducer
loading distributions at a 95% blade span are shown in Figure 13, which further verifies the
downstream shift of the passage shock within the tandem impeller.
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The underlying mechanism of the shock pattern variation can be contributed to the
interaction between the inducer and exducer blades (potential effect). As we know, the
tandem impeller configuration implies an independent inducer blade, and the local pressure
near inducer blade trailing edge will be changed due to the inducer/exducer interaction.
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In other words, the back pressure of the inducer blade will be locally changed by the
potential effect of the exducer blade, which further affect the shock pattern within the
inducer blade passage. In the present study, the back pressure of the inducer blade within
the tandem impeller is considerably reduced compared with the corresponding pressure at
the conventional impeller suction surface. The potential effect within the tandem impeller
significantly reduces the inducer blade back pressure. As a result, the inducer passage shock
shifts downstream, and the flow loss induced by the shock/boundary layer interaction is
reduced when applying the tandem impeller design.
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Figure 13. Comparison of the loading distribution at a 95% span.

For the performance gain contributed by the diffuser, particular emphasis should be
placed on the effect of the tandem impeller design on the impeller discharge flow quality,
which directly affects diffuser performance. Figure 14 shows a comparison of the dis-
charge flow pattern and the flow uniformity denoted by the velocity distortion parameter γ

(γ =
√∫

(Vm −Vm)
2dA/

∫
VmdA) for the two impellers. The conventional impeller outlet

exhibits a typical “jet-wake” flow pattern, where the relatively low-momentum flow region
(wake) is located at the impeller suction surface/shroud corner and the high-momentum
flow region (jet) is located at the impeller pressure surface/hub corner. However, the
“jet-wake” flow pattern is significantly diminished for the baseline tandem impeller; addi-
tionally, the location of the wake region moves to the pressure side, and the low-momentum
flow is largely diminished. As a result, the flow uniformity in the baseline tandem impeller
is significantly improved (Figure 14b), which is similar to the results in reference [5,12,19,20]
concerning the tandem impeller configuration.

In order to identify the underlying flow mechanisms related to the effect of the tandem
design on discharge flow uniformity, it is important to focus on the flow structure variations
within the impeller passages. As shown in Figure 15, six impeller passage sections at
different meridional locations are chosen to compare the flow patterns of the two impellers.
Figures 16 and 17 compare the flow patterns at sections (I-VI) based on the contours of
the meridional velocity Vm and relative helicity H, where H is defined as the shedding of
the streamwise vortex to illustrate the secondary flow and the positive helicity indicates
a clockwise vortex [21]. Compared with the intense secondary flow directed from the
impeller pressure surface to the suction surface within the conventional impeller, which
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results in a highly distorted discharge flow, the secondary flow contributed by the Coriolis
force (vortex CV) within the tandem impeller is significantly suppressed by the newly
generated inducer shedding vortices: the PSV (pressure surface shedding vortex) and SSV
(suction surface shedding vortex). In addition, the PSV and SSV enhance the interactions
between low-momentum and high-momentum flows, which further improve the discharge
flow uniformity. As a result, the tandem design can rearrange the secondary flow pattern in
the impeller and reduce low-momentum flow generation and accumulation at the impeller
outlet, thus greatly enhancing the downstream diffuser performance and contributing to
the compressor-stage performance gain.
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distortion parameter γ.
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passages (P.E. point). (a) Conventional impeller, and (b) baseline tandem impeller.
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5. The Effect of the Free-Formed Inducer Design on the Compressor Performance and
the Corresponding Mechanism

Based on the baseline tandem impeller, the 3D design concepts of blade sweep and
lean are employed in the inducer design to further improve compressor performance.
Figure 18 shows the parametric study results for the inducer sweep design. Due to article
length limitations, only the performance variations at the P.E. points (versus the perfor-
mance of the conventional compressor) of the proposed compressor with different impeller
designs are presented. The results demonstrate that the forward sweep of F = 4 mm is a
preferred inducer sweep design, which achieves a maximum compressor-stage efficiency
gain of 1.76%.
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Furthermore, a parametric study of inducer lean within the tandem impeller was
conducted based on the inducer sweep results, and the inducer sweep was set as a constant
at F = 4 mm. The results of the inducer lean study are presented in Figure 19, and the
negative lean of L = −3 mm at an 80% blade span yielded the best potential for further
improving compressor performance. Therefore, a tandem impeller with the free-formed
inducer design was achieved by applying a forward sweep and negative lean (F = 4 mm
and L = −3 mm), which yielded an efficiency gain of 2.11% (Figure 20). The 3D geometry
of the free-formed tandem impeller is shown in Figure 21. Notably, the leading edge of
the inducer within the free-formed tandem impeller displays compound sweep and lean
characteristics that are very similar to those for an advanced axial compressor blade (i.e.,
the fan blade used in modern GE aircraft engines [22]).

The tandem impeller configuration coupled with the free-formed inducer displayed
the potential to significantly improve the performance of the highly loaded centrifugal
compressor. However, the effects of the underlying physics of the 3D inducer design
concepts applied for the tandem impeller on compressor-stage performance must still be
assessed. Based on the results of different tandem impeller designs, the variations in the
contribution to the efficiency gain at the P.E. point are compared in Figure 22. The effect
of the forward sweep design only is reflected in the impeller flow loss reduction, and the
diffuser flow loss is almost the same. When a negative lean design is used, the impeller
flow loss remains the same, and the diffuser flow loss is reduced. Therefore, it can be
concluded that the sweep design benefits from the improved quality of the flow within the
impeller passages, such as shock and flow separation, and the lean design benefits from
the improved impeller discharge flow quality.
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Figure 19. The effect of inducer lean on the compressor performance at the P.E. points. (a) Isentropic
efficiency, and (b) total pressure ratio.
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Figure 20. The performance of the compressor with the free-formed tandem impeller.

In order to identify the effect and flow mechanism of the sweep design, Figure 23
compares the entropy plots at the meridional plane of the baseline tandem impeller and
forward-swept tandem impeller; the main difference is in the inducer tip region. Figure 24
presents the relative Mach number contours at the blade-to-blade plane for a 95% span for
two tandem impellers. The inducer passage shock intensity is significantly reduced and the
relative location is shifted downstream by the forward sweep design; this result is identical
to the general conclusion of a sweep study involving transonic axial compressors [23,24].
Furthermore, Figure 25 shows the inducer blade loading trend at a 95% span. With
increasing blade length, tip loading near the leading edge of the forward-swept inducer
blade is significantly reduced, which slows the flow acceleration near the blade suction
surface and weakens the shock intensity. As a result, the impeller flow loss is reduced, and
the compressor efficiency is correspondingly improved.
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To assess the effect of the inducer blade lean on the results, the analysis was concen-
trated on the variations in the secondary flow structure and its effect on the discharge flow
pattern. Figure 26 compares the evolution of the flow patterns within the passages of the
baseline and free-formed tandem impellers in detail. The inducer shedding vortex SSV is
circumferentially adjacent to the splitter pressure surface due to the negative lean design
at an 80% blade span, and the interactions between the SSV and CV are enhanced. As
a result, both the generation and accumulation of the low-momentum wake are further
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restrained, and the impeller discharge flow is generally uniform. The inducer lean design
within the tandem impeller can further improve the secondary flow pattern within the
impeller and the discharge flow uniformity, thus contributing to improved downstream
diffuser performance.
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Figure 24. Comparison of the relative Mach number at a 95% span for different tandem impellers
(P.E. point). (a) Baseline tandem impeller, and (b) tandem impeller with a forward sweep (F = 4 mm).

Based on the discussion above, a performance improvement method for a highly
loaded transonic centrifugal compressor is developed by employing a tandem impeller
configuration and 3D free-formed inducer design; this approach combines the advantages
of the two innovative concepts and achieves a 2.11% compressor-stage efficiency gain with
no pressure ratio penalty. In addition, the design method achieves a balance between
the compressor manufacturing cost and performance. All these results demonstrate the
superiority of the design method investigated in this paper over conventional methods.
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6. Conclusions

The flow within the highly loaded transonic centrifugal compressors is very complex
due to the presence of shock waves and deteriorated flow uniformity, which decrease the
impeller and diffuser performance, respectively. For these compressors, the organization
and control of the transonic and secondary flows within the impellers are of vital impor-
tance. This paper conducts a detailed investigation of a highly loaded transonic centrifugal
compressor designed with a tandem impeller configuration and a 3D free-formed inducer;
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notably, the shock is weakened, and flow uniformity is significantly improved, which
proved the effectiveness of using tandem impeller configuration and 3D free-formed blade
design concepts to improve the transonic compressor performance. As a result, the energy
consumption of the corresponding industrial products can be directedly decreased. The
main conclusions drawn from this study are as follows:

(1) The compressor performance is significantly improved by the tandem impeller config-
uration with the rule-surfaced inducer and exducer blades. A compressor efficiency
gain of 1.4% is achieved through both impeller and diffuser flow loss reductions. Due
to the potential effects within the tandem impeller, the low-pressure region at the
leading edge of the exducer blade suction surface reduces the blade back pressure at
the inducer, the passage shock moves downstream, and impeller flow loss is reduced.
Due to the positive and negative inducer shedding vortices induced by the tandem
design, the generation and accumulation of the low-momentum flow (wake region
at the impeller outlet/diffuser inlet) are partly restrained, and the flow loss at the
downstream diffuser is reduced.

(2) The tandem impeller configuration involved the successful application of 3D design
concepts for centrifugal impellers. This approach can reduce the manufacturing
and cost limits by applying a divided inducer blade. Based on the tandem impeller
configuration, employing a forward sweep and negative lean design for the impeller
can further improve compressor performance; notably, the efficiency gain compared
with that for a conventional compressor reaches up to 2.11%. The 3D free-formed
inducer within the tandem impeller exhibits a very similar leading-edge geometry as
that for an advanced axial transonic blade.

(3) With the extended inducer blade chord at the tip, the inducer forward sweep design
can reduce the flow acceleration before the passage shock, thus further decreasing the
impeller flow loss and improving impeller performance. However, the inducer lean
design has almost no impact on the transonic flow within the impeller, and the main
effect lies in the vortex pattern variation, which is directly related to the secondary
flow pattern and discharge flow uniformity. The negative lean at an 80% blade span
leads to the formation of the suction side shedding vortex SSV and Coriolis force
induced vortex CV in the inducer; the interactions between the vortices is enhanced,
and the generation and accumulation of low-momentum flow are reduced. As a result,
the secondary flow pattern in the impeller is optimized, and the diffuser performance
is further improved by the negative lean design.

(4) Compared with the conventional design method, the tandem impeller coupled with
the 3D free-formed inducer blade is proven to be an effective and practical design
method for highly loaded transonic centrifugal compressors. Notably, compressor
performance can be significantly improved with no additional manufacturing costs.
This topic deserves more detailed investigations to clarify the design guidelines and
flow mechanisms.
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Nomenclature
A normalized cross-sectional area
BVS blade passage vortex at suction side (unit: 1/s)
BVP blade passage vortex at pressure side (unit: 1/s)
Cpt diffuser total pressure loss coefficient defined as the ratio between the total pressure

loss through the diffuser and the diffuser inlet dynamic pressure
CV Coriolis force induced vortex (unit: 1/s)
EP.E. discretization error between the peak efficiency values of simulation and solution of

most refined grid
Echoke discretization error between the choked mass flow of simulation and most refined grid

solution (unit: kg/s)
F magnitude of inducer sweep (unit: mm)

H relative helicity =
(→

ξ ·
→
W
)

/
(∣∣∣∣→ξ ∣∣∣∣ · ∣∣∣∣→W∣∣∣∣)

L magnitude of inducer lean (unit: mm)
L.E. blade leading edge
Ncor corrected rotation speed
P.E. peak efficiency point
P.S. blade pressure side
PSV inducer pressure surface shedding vortex (unit: 1/s)
ps static pressure (unit: Pa)
PT total pressure ratio
S equivalent grid spacing
S.S. blade suction side
SSV inducer suction surface shedding vortex (unit: 1/s)
T.E. blade trailing edge
TLV tip leakage vortex
Vm meridional velocity (unit: m/s)
Vm mass-averaged meridional velocity (unit: m/s)
→
W relative velocity vector (unit: m/s)
∆η the peak efficiency variation
γ velocity distortion parameter
η isentropic efficiency defined as the ratio of the actual enthalpy change and the ideal

enthalpy change
→
ξ vorticity vector (unit: m2/s)
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